Rational Exploitation of Catla catla (Ham) from Hirakud Reservoir - A Preliminary Account

V. C. GEORGE, A. A. KHAN AND M. D. VARGHESE

Burla Research Centre of Central Institute of Fisheries Technology, Burla-768 017

Frame nets and simple gill nets of identical mesh size were experimented to determine their comparative efficiency for exploiting economic size group of *Catla catla*. The results indicated that frame nets of 90 mm mesh bar as the most effective.

Gangetic carps occupy the most important place in reservoir fisheries. According to Natarajan (1976) C. catla is a highly priced economic carp. Jhingran and Natarajan (1976) emphasized the importance of stocking this species in reservoirs in view of its rapid growth. The occurrence of C. catla has been recorded in almost all reservoirs. In Rihand, C. catla is the only major carp that dominates the fishery (Natarajan, 1976). Job et al. (1955) recorded the occurrence of C. catla in Mahanadi river. Subsequently Sulochanan et al. (1968), George et al. (1973) and Khan et al. (1974) confirmed that this species contributed to one of the most viable and productive fisheries of Hirakud reservoir. These workers have suggested frame nets as the most suitable gear for catching commercially important fishes of the reservoir. But their conclusions are based on observations with nets of 75 mm bar.

Znamensky (1967) recommended frame nets of 75,85 and 100 mm mesh bar for Hirakud reservoir. However, hitherto no attempt has been made to find out the optimum mesh size for the exploitation of commerical size groups of C. catla. Studies on these lines are of vital significance as these investigations apart from evolving an effective gear for the capture of C. catla will also pave way for the proper management and conservations of the fishery. To achieve this objective different designs of nets were experimented during November 1977 to December 1978 and the results presented in this communication.

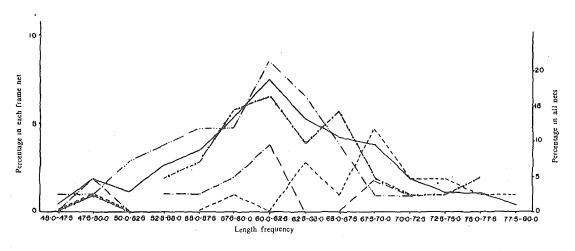


Fig. 1. Percentage representation of C. Catla in frame nets and its length frequency distribution

thick rod, 120g each

140 mm Ø mild steel ring of 8 mm

Specification sinkers

Num-ber of floats Specification of extra-buoyancy $780\,\mathrm{g}$ each Aluminium, 127 mm Ø, spherical, Specification of head rope & foot rope braided rope 5 mm & polyethylene monofilament Co-effi-cient of hanging verti-cal Co-efficient of hanging horizontal 0.05 Num-ber of meshes in depth 20 4 4 34 23 25 9 59 Num-ber of meshes in length 334 292 467 390 334 292 467 390 Nylon Mate-rial Table 1. Design details of nets Twine 210/3/3 210/2/3 210/2/3 210/2/3 210/2/3 210/3/3 210/2/3 Mesh bar mm 105 120 75 105 90 120 75 90 Type of gear Frame net

			Frame net		Simple gill net		
Mesh bar mm	Area sq.m	Total weight kg	Percentage	Yield per unit area kg	Total weight kg	Percentage	Yield per unit area kg
75 90 105 120	41343	42.40 190.80 168.98 79.00	8.05 36.24 32.09 15.00	1.025 4.614 4.087 1.910	8.60 5.90 16.20 14.65	1.63 1.13 3.08 2.78	0.208 0.142 0.391 0.354

Table 2. Percentage weight of C, catla and yield per unit area (1000 sq.m) in frame and simple gill nets

Table 3. Analysis of variance of C. catla

Source	SS	df	ms	\mathbf{f}
Total Nets Meshes Days Error	47.9352 4.3946 0.9545 8.8124 33.7737	599 1 3 74 521	4.3946 0.3182 0.1191 0.0648	67.82* 4.91* 1.84*

^{*} Indicates significance at 1% level

Materials and Methods

Two shots of frame and simple gill nets of mesh sizes 75, 90, 105 and 120 mm bar were operated at different locations in the reservoir. The design details of nets are given in Table 1. The nets were suitably set so as to get equal chances for all nets. The nets were surface set in the evening and hauled up the next morning. The morphometric data of each fish caught by the different nets were recorded.

Results and Discussion

The catch per unit area (kg/1000 sq.m) for individual net is given in Table 2. Fig. 1 depicts the percentage length frequency distribution of *C. catla* in all frame nets and in individual frame nets. Fig. 2 shows the percentage representation of predominant size groups in each frame net. Figs. 1, 2 and Table 2 clearly indicate that net with 90 mm mesh bar as the most effective for capturing the predominant size groups of *C. catla*, followed by net with 105 mm mesh bar.

Analysis of variance (Table 3) shows that between nets, between meshes and

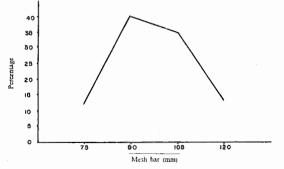


Fig. 2. Percentage representation of predominant size group of C. Catla in each frame net

between days, variations are highly significant (p<0.01). The average catch of the simple gill nets and frame nets was 0.0302 and 0.2014 kg respectively in the logarithmic scale. The average catch of nets with different meshes, namely, 75,90,105 and 120 mm mesh bar were 0.0636, 0.1584, 0.1498 and 0.909 kg respectively in logarithmic scale, indicating better performance of 90 and 105 mm mesh bar. Simple gill nets of 105 mm bar landed more *C. catla* while frame nets of 90mm bar scored the maximum.

As seen from Tables 2 and 3, frame nets caught more C. catla than simple gill

nets. The frame nets landed 91.38% of the total catch by weight (Table 2). This was further confirmed by the analysis of variance (Table 3). Though 105 mm mesh bar simple gill nets caught more *C. catla*, the quantum of catch was negligible when compared to that of frame nets. The observation that frame nets are more efficient than other types of gill net is also noticed by earlier workers (Sulochanan et al. 1968).

Among frame nets the maximum catch was obtained with 90 mm mesh bar nets. The catch by this net was 1.129 to 4.5 times more than that of other frame nets. A similar trend is noticed with regard to the number of fishes caught. Analysis of variance of catch also confirmed that 90 mm bar frame net is superior to others.

The predominant size group of C. catla (Fig. 1) ranging from 55 to 70 cm constituted 73.58% of the total catch. This size group is worth commercial exploitation as it represented the economical size group of C. catla in Hirakud reservoir. Jhingran & Ghosh (1978) fixed 55 cm length as the minimum size limit of C. catla for exploitation from river Ganga. According to Natarajan & Jhingran (1963) those between 50 and 55 cm length range attain maturity. In the absence of published records with respect to the biology of C. catla from Hirakud reservoir, it is presumed that fishes which have crossed this size are matured ones and hence can be exploited. Since 90 mm mesh bar net landed 40% of the predominant size group, it is better suited for the exploitation of C. catla.

The authors are grateful to Shri G. K. Kuriyan, Director, Central Institute of Fisheries Technology, Cochin for valuable suggestions, Shri S. Gopalan Nayar, Scientist for helpful criticism of the manuscript, Shri H. Krishna Iyer, Scientist, for the statistical analysis of the data and Shri G. Narayanappa, Scientist for the services rendered during the initial stages of the work.

References

- George, V.C., Naidu, R.M. & Kunjipalu, K.K. (1973) Fish. Technol. 10, 73
- Jhingran, V.G. (1977) Fish and Fisheries of India, 1st edn., P. 954, Hindustan Publishing Corporation (India), 6-UB, Jawahar Nagar, Delhi–110 007
- Jhingran, A.G. & Ghosh, K.K. (1978) Aquaculture, 4, 141
- Job, T.J., David, A. & Das, K.N. (1955) *Indian J. Fish.* 2, 1
- Khan, A.A., Naidu, R.M. & Narayanappa, G. (1974) Fish. Technol. 11, 73
- Natarajan, A.V. (1976) Indo-Pacif. Fish. Coun. Symp. 26 June
- Natarajan, A.V. & Jhingran, A.G. (1963) *Proc. Nat. Inst. Sci. India.* **29** (B), 326
- Sulochanan, P., George, V.C. & Naidu, R.M. (1968) Fish. Technol. 5, 81
- Znamensky, Yu. (1967) *FAO/UNDP*. Rep. (TA), TA 2290