Discriminant Analysis of Selected Variables in the Adoption of Fish Curing

S. BALASUBRAMANIAM and P. N. KAUL

Central Institute of Fisheries Technology, Cochin - 682 029

Discriminant functions were worked out for adoption or non-adoption of five improved practices in fish curing. Four variables measured quantitatively formed the basis for discrimination. In four out of five equations, the selected variables were found to discriminate significantly between the adopters and non-adopters.

In an earlier study (Kaul & Balasubramaniam, 1982) it has been shown that several quantitative and qualitative variables correlate significantly with the adoption index in the case of fish curing. For the present study, the four quantitative variables significantly associated with adoption index were selected for discriminant analysis with individual improved practices.

Materials and Methods

The selected variables are total investment (X₁), experience in fish curing in years (X₂). distance of curing yard from the house in km (X3), and size of the curing yard in cu. ft. (X4) The improved practices selected were (1) use of good quality fish (2) use of correct salt to fish ratio (3) keeping the floor, salting tanks and accessories clean (4) use of good potable water and (5) use of table or clean floor. The remaining three practices namely use of detergents and disinfectants, use of preservatives and use of improved packing materials were not taken into consideration because there were no adopters for these three. The study was conducted on 110 fish curers of two fish curing centres in Kerala.

Results and Discussion

The percentage of adopters for the five improved practices is given in Table 1.

Discriminant functions were worked out for each individual practice so as to find out whether the four variables could discriminate

Table 1. Percentage of adopters for the five improved practices

	Practice	% adopters		
1.	Use of good quality fish	90.91		
2.	Use of correct salt to fish ratio	68.18		
3.	Keeping the floor, salting ta	nks		
	and accessories clean	26.36		
4.	Use of good potable water	25.45		
5.	Use of table or clean floor	10.00		

significantly between adopters and non-adopters in each case. The method followed was as given by Goulden (1959) and Tintner (1952).

The difference between the means of adopters and non-adopters are presented in Table 2.

The Gauss multipliers were worked out from the sums of squares and products (Table 3) by the Doolittle method. The resulting four simultaneous equations were solved for the coefficients of the four variables. The five discriminant functions are presented in Table 4.

The different discriminant functions can be seen from Table 4. In all cases, the weightage is maximum for the distance of curing vard from the house, followed by experience in fish curing (in years). The discriminant function for one of the practices, namely, use of correct salt to fish ratio, is not significant.

Table 2. Differences between the means for each practice

1. Use of good quality fish

	X,	X ₂	X,	X.
Mean (adopters)	6710	16.15	0.795	10510.64
Mean (non-adopters) Difference between	7000	16.50	1.200	20597.00
the means	-290	-0.35	-0.405	-10086,36
Pooled mean	6736.36	16.18	0.83	11427.58
2. Use of correct salt	to fish ratio			
Mean (adopters)	6873.33	15.65	0.847	10740.65
Mean (non-adopters) Difference between	6442.86	17.31	0.80	12899.57
the means	430.47	-1.66	0.047	-2158.92
3. Keeping the floor, sa	lting tanks and ac	cessories clean		
Mean (adopters)	9137.93	10.52	1.12	13922.72
Mean (non-adopters) Difference between	5876.54	18.21	0.73	10534.26
the means	3261.39	-7.69	0.39	3388.46
4. Use of good potable	water			
Mean (adopters)	10428.57	14.57	1.14	19912.82
Mean (non-adopters) Difference between	5475.61	16.73	0.73	8530.18
the means	4952.96	-2.16	0.41	11382,64
5. Use of table or clean	ı floor			
Mean (adopters)	11045.45	7.91	1.09	15834.09
Mean (non-adopters) Difference between	6257.58	17.10	0.80	10937.97
the means	4787.87	-9.19	0.29	4896.12

Table 3. Sums of squares and products (uncorrected) for four variables

	X,	X ₂	Xa	X4
Xi	7027000000	11398000	690750	10431852500
X ₂		42076	1366.5	18954000
Xa			136.75	1282872
X4				24241781156

Table 4. Results of discriminant analysis

	Coefficients for					Discriminat-	
Practice	Xı	X2	Xı	X4	R ²	F	ing point (Z)
1. Use of good quality fish	-1.0	122.196	3425.663	1.081	0.118	3.51**	10437.285
2. Use of correct salt to fish ratio		357.465	-3769.982	1.0	0.030	0.82 N	S
3. Keeping the floor, salting tanks and accessories clean	13.165	-4607.455	39338.638	-1.0	0.206	6.80**	35359,047
4. Use of good potable water	2.022	8.198	2147.56	1.0	0.368	15.30**	26963.618
5. Use of table or clean floor	43.618	-11807.346	23799.852	-1.0	0.158	4.92**	111109.989
**Significant at th	e 1% lev	el: NS = N	lot significan	t			

All the remaining F values are significant at the 1% level. The cutting points have also been shown against each function. In the case of the first practice, the total investment and the size of the curing yard have almost equal weightage.

Thus we see that the discriminant analysis has shown that it is possible to discriminate between adopters and non-adopters on the basis of the selected four quantitative variables in all cases except one practice.

References

Goulden, C. H. (1959) Methods of Statistical Analysis. Asia Publishing House, Bombay

Kaul, P. N. & Balasubramaniam, S. (1982) Personal and Socio-Economic Correlates of Adoption of Improved Fish Curing Practices. Presented at the symposium on Harvest and Post-Harvest Technology of Fish, SOFT(1) Cochin, November, 1982

Tinner, G. (1952) Econometrics. John Wiley, New York and Toppan Co., Tokyo