Intestinal Bacterial Flora of Macrobrachium rosenbergii (De Man, 1879) from Freshwater Farms in Kerala, India

K.V. Lalitha¹, P. K. Surendran² and Nirmala Thampuran³ Central Institute of Fisheries Technology, Cochin - 682 029, India

The bacterial flora in the intestine of farmed Macrobrachium rosenbergii (De Man, 1879) were examined qualitatively and quantitatively. Prawn intestine samples were analysed for total plate count, H₂S producing bacteria, faecal Streptococci, total coliforms, faecal coliforms, Escherichia coli and Staphylococcus aureus. The counts of the intestinal microflora of prawn were in the range of 107 to 108 cfu g-1. Total coliform, faecal coliform and Escherichia coli levels were ° 3.0 log₁₀ MPN g⁻¹. The number of H₂S producers ranged from 10⁵ to 10⁷ cfu g⁻¹. Faecal Streptococci had a range of 10³ to 10⁶ cfu g⁻¹. The counts of H₂S producers, faecal coliforms, E.coli and faecal Streptococci varied widely between the farms. The dominant intestinal microflora belonged to genera Aeromonas, Citrobacter, Enterobacter, Serratia, While Klebsiella, Pseudomonas and Bacillus. Acinetobacter, Shewanella, Streptococcus, Micrococcus, Staphy-lococcus and Lactobacillus were found in lower frequencies. High counts of faecal coliform bacteria and Streptococci in the intestine of farmed freshwater prawn indicates lack of good farm management practices in the fresh water farms studied.

Keywords: Macrobrachium rosenbergii, intestinal flora, freshwater farm, indicator bacteria, Enterobacteriaceae, Aeromonadaceae

Aquatic organisms often harbour a great number of bacteria in their intestinal tract, gills and body surface, which they acquire from water, sediment and/or food. The influence of the gut flora on the host is clearly of great interest in aquaculture, particularly where poor productivity and/or stock losses are widespread (Sharmila et al., 1996; Moriarty, 1997; Lavens & Sorgeloos, 2000). The maintenance of the microbiological quality of water systems used for farming is critical as faecal contamination of these systems can pose risks to human health and also results in economic losses (Sinton et al., 1998; Scott et al., 2002). Investigations on the bacterial flora in the gastrointestinal tracts of a variety of crustaceans (Yasuda & Kitao, 1980; Cahill, 1990; Sugita et al., 1996; Pinn et al., 1999; Lau et al., 2002; Shakila et al., 2006) demonstrated qualitative and quantitative variations in the intestinal microflora of prawns depending on the aqueous environment and food.

In culture system, the parameters such as water source and quality, diet, stocking density and habitat structure are different from the natural environment and it may lead to the establishment of a different gut microflora (Prieur et al., 1990; Strom & Olafsen, 1990). While studying the effect of feeding Lactobacillus-based probiotics on the gut microflora and growth and survival of postlarvae of Macrobrachium rosenbergii (de Man), Venkat et al. (2004) reported that the probiotic strains were found to have inhibitory effects against the gram-negative bacterial flora present in the gut and growth of the probiotic fed groups was significantly higher than the control group.

Gut microflora play an important role in the digestive process, growth and disease susceptibility of detritus feeders (Fenchel & Kofoes, 1976; Yingst, 1976). M. rosenbergii is commercially important as a culture species in India. Hence, the present investigation was

Corresponding author; e-mail: lalithakv@hotmail.com

² Poothuvallil, Dr. Surendran Lane, Palluruthy P.O., Cochin - 682 006, India

³ Krishnakripa, Palace No. 2, Near Palace High School, Thripunithura - 682 301, India

carried out to determine the taxonomic composition and the numerical abundance of bacteria in the gastrointestinal tract of fresh M. rosenbergii from aquaculture farms and changes in the bacterial flora during iced storage.

Materials and Methods

M. rosenbergii was procured from four farms located in Kottayam (farms 1,2,3) and Alleppey (farm 4) districts of Kerala, India. All the ponds were fertilized at irregular intervals with organic manure (cow dung). Prawns were fed on animal protein sources like clams and livestock processing waste. M. rosenbergii samples were collected from each farm in sterile polyethene bags and transported to the laboratory in ice aseptically. Bacteriological analysis was carried out with fresh prawns within 2 to 4 h of collection. Ten representative prawns weighing between 30 and 50g from each farm were used for the analysis.

For ice sorage study, 3-5 prawns (each weighing 200-350g) were packed in individual plastic bags and stored in flake ice in the ratio of 1:1(w/w) in insulated thermocole boxes and kept in a cold room maintained at 2-4°C for 26 days. Ice was topped up every day after draining the melt water. Samples were withdrawn after every 1 or 2 days of storage for the first week and thereafter every 3 or 4 days and analysed for bacterial parameters.

Intestine of prawns were excised aseptically, weighed and placed in sterile bags containing enough normal saline (NaCl, 0.85% w/v) to make 1:10 dilutions and homogenized in a stomacher (Lab blender 400, Seward Medical, London.) for 60 sec at room temperature. Decimal dilutions in normal saline were prepared and plated on agar or poured in to tubes for MPN method.

Prawn intestinal homogenates, serially diluted were plated on Tryptone Soya Agar (TSA, Oxoid, U.K.) for total aerobic plate counts (TPC) (Austin & Al–Zahrani, 1988) and incubated at 37°C and 30°C (2-3 d) and 20°C (3-5 d). Psychrotrophic counts were determined on TSA incubated at 7°C for 10 days. Hydrogen sulphide (H₂S) producing bacteria were enumerated as per the method

of Gram et al. (1987), faecal Streptococci and Staphylococcus aureus counts by the plating method (FDA, 1998) and total coliforms, faecal coliforms and Escherichia coli by the three tube MPN method (APHA, 1998).

All colonies from a sector or whole plates of TSA and Iron Agar (IA) (20°C) were isolated, purified and stored on TSA slants. A total of 86 factorial cultures were isolated. The strains were tested for gram reaction, catalase and oxidase reactions, motility, oxidative/fermentative metabolism and presence of spores. They were then grouped according to the taxonomic schemes of Bergey's Manual of Systematic Bacteriology (Krieg & Holt, 1984; Sneath et al., 1986), further tested for the most relevant characteristics of each group and identified using the schemes proposed by Dainty et al., (1979), Valera & Esteve, (2002).

The microbial counts were expressed as \log_{10} cfu g-1 for analysis. Analysis of Variance was performed using the statistical tool package of Microsoft Excel 97 software. 'Student's t test' analysis was used to evaluate the significance of differences between means of microbial counts at 37, 20 and 7°C.

Results and Discussion

Intestinal microflora of fresh prawn

The mean counts (log₁₀ cfu g ⁻¹) of total aerobic bacteria (37and 30°C), H, S producing bacteria, faecal Streptococci, S. aureus, total coliforms, faecal coliforms and E. coli in the intestine of M. rosenbergii from four different farms are presented in Table 1. The total aerobic bacterial population ranged from 7.2- $8.52 \log_{10}$ cfu g⁻¹. Higher counts were recorded in prawn obtained from two farms, one located at Kottayam (farm 1) and the other at Alleppey (farm 4). Total aerobic counts at 37 and 30°C did not differ significantly. However, counts at 7°C (Fig. 1) were significantly lower than those at 37°C (p< 0.01) indicating that a significant fraction of the microflora is mesophilic in nature. Lalitha and Surendran (2004) reported aerobic counts of 3.6 and $4.83 \log_{10} \text{ cfu/g}$ for farm water and freshwater prawn surface respectively. These values are much lower than that of the intestine indicating that intestine

provnIcs i fivoritle ecologneil enche for some ticaerni (Goezilez et al., 1999). The TPC vilues otserveI ne ahe presea sauly were compiritle ao ahia reporaeI for firmeI tricknshwiaer shrnmp (NiyyirihimmeI et al., 1995) ieI firmeI freshwiaer finsh (SurceIrie et al., 1995) ne IeIni ieI freshwiaer finsh from rnver ne Jipie (Sugnai et al., 1983). Shrnmps, teneg toaaom Iwellneg Icarnaus feeIers, oface hive higher ticaernil populianoe ahie finefishes.

Table 1. Intestinal microflora of farmed Macrobrachium

rosenbergii from four farms in Kerala

	Microbial count (log ₁₀ cfu/g)			
Microbial parameters	Farm 1*	Farm 2	Farm 3	Farm 4
TPC 37°C	8.30	7.20	7.77	8.52
30°C	8.32	7.20	7.76	8.45
H ₂ S producers	6.26	5.30	6.07	7.04
Streptococcal	4.46	3.04	5.64	6.73
Staphylococcus aureus	3.60	3.47	3.53	3.07
Total coliforms	4.14	3.65	5.14	5.14
Faecal coliforms	4.04	3.39	3.60	5.14
Escherichia coli	4.04	3.39	3.60	5.04

*Farm 1- Vallakom I, Farm 2 - Vallakom II, Farm 3 - TV Puram, Farm 4 - Vayalar

The H₂S proIucneg ticaernil coueas were ne ahe riege of 10⁵ ao 10⁷ cfu g⁻¹. Hngher coueas of H₂S proIucneg ticaerni ieI ficeil Sarcpaococcn (p>0.01) were recorleI ne priwe otaineeI from firm 4. The S. aureus coueas ne priwe neaesanee were ne ahe riege of 3.0

-3.6 log₁₀ cfu g⁻¹. Buris et al. (1987) hive showe ahia ticacrnil levels of poeI-reireI fish miy necreise coesnIcritly ne cIntle anssues ifacr i ahreshholI level his tece surpisseI ne ahe cevnroemeea.

Hngh levels of ficeil colnforms ieI ceaerococen were prevnously reporacI for anger priwe (SurceIrie et al., 1995) ieI freshwiaer priwe firms ne IeIni (Lilnahi & SurceIrie, 2004) ieI ne Phnlnppnecs (Renlly et al., 1984). The neflucece of reirneg pricances oe ahe mncroorgiensms issocniaeI wnah ahe neaesaneil arica of firmeI finsh wis reporaeI cirlner (Goezález et al., 1999).

Intestinal flora of prawn stored in ice

A 1-2 log necroise ne ahe icrotne-mesophnlne, psychroarophne iel H₂S prolucneg ticaernil coueas wis eoanceI ne nec saoreI simples teaweee 0 iel 5 liys (Fng. 1). Ia ns possntly ciuseI ty ahe loeger coolneg anme eccleI ao reluce ahe aemperiaure of priwe pickeI ne plisane tigs from 29±2°C ao 0°C. WnIc flucauianoes were eoanceI ne psychroarophne iel H₂S prolucneg ticaernil coueas un ao liy 19 Groyah of ficeil

psychroarophnc iel H₂S prolucneg ticacrnil coueas up ao liy 19. Growah of ficcil Sarcpaococcn wis eoanccl from liy 3 oewirls iel coueas reichel 7.8 log₁₀ cfu g ⁻¹ ia ahc cel of saorigc (Fng. 2). A 1 log necreisc wis eoanccl ne ficcil colnform iel E. coli coueas ty 3 liys iel ahcreifacr reminecl ia ahia level.

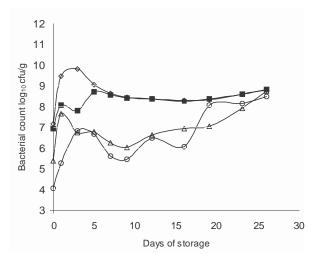


Fig. 1 Changes in the total aerobic and H₂S producing bacterial populations in the intestine of farmed Macrobrachium rosenbergii during iced storage.

Taxonomic composition of the intestinal microflora

Gua mncroflori exhntnacI greiaer tieaernil Inversnay iel pcrcceaigc ahenr necnIcecc Title 2. Bicacrni nsoliacI ns gnvce ne from ahe simples were preIomn-eiealy grim ecgianve roI (66-76%) ieI ahe flori wis IomneiacI ty Eeacroticacrniccic (22-40%), followcI ty AcromoeiIiccic (17-30%). The perceaige neenIcece of geecri Bacillus and Micrococcus/Staphylococcus wis 8-19% ieI 6-17% respecanvely. Oaher geeri

vnz. Pseudomonas/Xanthomonas/Shewanella/

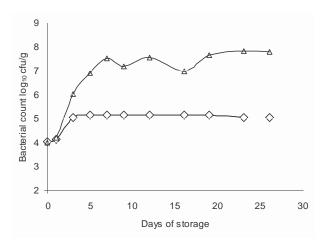


Fig. 2. Changes in the Indicator bacterial populations in the intestine of farmed Macrobrachium rosenbergii during iced storage.

--- --- Faecal coliforms — .— E. coli —— Faecal Streptococci

Cytophaga/Acinetobacter/Moraxella/Arthrobacter and Streptococcus were also isolated in small numters. The dominant gram-negative species found in the gut microflora of prawn telong to Aeromonas hydrophila, A. veronii tivar sobria, A. schubertii, Enterobacter cloacae and Citrobacter freundii. Among enterococci, Streptococcus faecalis and S. faecium were isolated from all the farms. The microflora of ice stored prawn comprised mainly of A.

Table 2. Intestinal microflora of farmed Macrobrachium rosenbergii from farms located in Kerala, India.

Genera	Microflora (%)			
	Farm 1	Farm 2	Farm 3	Farm 4
Enterobacteriaceae	40	22	31	30
Aeromonadaceae	20	17	19	30
Pseudomonas/				
Xanthomonas/	10	-	6	8
Shewanella				
Flavobacterium	0	11	13	-
Acinetobacter/Moraxel	la 3	11	-	8
Cytophaga	0	6	-	-
Bacillus	10	11	19	8
Streptococcus	7	5	6	-
Micrococcus/				
Staphylococcus	7	17	6	8
Arthrobacter	0	-	-	8
Corynebacterium	3	-	-	-

hydrophila, A. veronii tiovar sobria A. veronii tiovar veronii and A. jandaei, Enterococcus spp., Pseudomonas and Shewanella. The presence of Aeromonas spp. in the gut microflora of M. rosenbergi indicates a potential risk.

Bacteria isolated from prawn intestine were metatolically active exhititing lipase, amylase and gelatinase activity (Tatle 3). Aeromonas spp. recovered from prawn intestine were proteolytic, amylolytic and haemolytic indicating that they are metatolically active and potentially pathogenic as reported earlier in freshwater fish (González et al., 2001). A variety of tacterial species such as Aeromonas sp. Pseudomonas sp and Benekea spp. producing extracellular lipases or proteases have teen implicated in shell disease (Tonguthai, 1995). Vibrio and Aeromonas were isolated from juveniles and adults of Macrobrachium sp. with tlack spot tacterial necrosis/disease (Lomtardi & Latao, 1991; Brady & Lasso de la Vega, 1992). Chen et al. (2003) reported an epizootic yeast and E. faecium co-infection in M. rosenbergii in Taiwan causing a cumulative mortality of 25%.

Table 3. Characteristics of bacteria isolated from Macrobrachium rosenbergii intestine.

Genera	Lipase	Amylase	Gelatinase
Aeromonas spp.	+	+	+
Enterobacteriaceae*	+	-	+
Shewanella	+	+	+
Flavobacterium	+	-	+
Moraxella/Acinetobacter	+	-	-
Pseudomonas/Xanthomonas	+	+	+
Bacillus	+	+	+

^{*} Enterobacteriaceae were identified as Enterobacter cloacae, Citrobacter freundii.

The present study revealed that farmed freshwater prawn inhatit consideratle populations of tacteria in their gastrointestinal tract. Contamination of editle portions of prawn could originate from gastrointestinal sources. The presence of potential human pathogens such as Aeromonas hydrophila, Aeromonas veronii tiovar sobria, Aeromonas veronii tiovar veronii, Enterobacter faecium, Enterobacter faecalis and Enterobacter cloacae

suggests that handling and cross contamination may cause diseases in susceptitle individuals. The study indicated high level of pathogens and indicator tacteria such as faecal coliforms and enterococci in the intestine of prawns. Good farm management practices need to te adopted to improve hygienic status of farm reared prawns.

References

- APHA (1998) Standard Methods for the Examination of Water and Waste Water, 20th edn. American Public Health Association, Inc Washington D.C
- Austin, B. and Al- Zahrani, A. M. J. (1988) The Effect of Antimicrobial Compounds on the Gastrointestinal Microflora of Rainbow Trout, Salmo gairdneri Richardson. J. Fishery Biol. 33, pp. 1-14
- Brady, Y. J. and Lasso de la Vega, E. (1992) Bacteria in the Haemolymph of the Freshwater Prawn Macrobrachium rosenbergii. J. Aqua. Anim. Health. 4, pp 67-69
- Buras, N. S., Duek, S., Niv, B., Hepher. and E. Sandbank. (1987) Microbiological Aspects of Fish Grown in Treated Waste Water. Water Res. 21, pp 1-10
- Cahill, M. M. (1990) Bacterial Flora of Fishes: A Review. Microb. Ecol. 19, pp 21-41
- Chen, S. C., Chen, T. H., Wang, P. C., Chen, Y. C., Ju-Ping Huang, J. P., Lin, Y. D., Chaung, H. C. and Liaw, L. L. (2003) Metschnikowia Bicuspidata and Enterococcus Faecium Co-infection in the Giant Freshwater Prawn Macrobrachium rosenbergii. Dis Aquat Organ. 55, pp 161-167
- Dainty, R. H., Shaw, B. G., Hardinger, C. D. and Michanie, S. (1979) The Spoilage of vacuum packaged beef by cold tolerant bacteria, In: Cold Tolerant Bacteria in Spoilage and the Environment, Russell and R. Fuller (Ed), pp 83-110, New York, Academic Press
- Fenchel, T. and L. H. Kofoes. (1976) Evidence for Exploitative Interspecific Competition in Mud Snails. Oikos 27, pp 367-376

- Food and Drug Administration (1998) FDA Bacteriological Analytical Manual. 8th edn. AOAC International Gaithersburg MD 20877, USA
- Gram, L., Trolle, G. and Huss, H. H. (1987) Detection of Specific Spoilage Bacteria from Fish Stored at Low (0°C) and High (20°C) Temperatures. Int. J. Food Microbiol. 4, pp 65-72
- González, C. J., Lòpez, T. M., García, M. L., Prieto, M. and Otero, A. (1999) Bacterial Microflora of Wild Brown Trout (Salmo trutta), Wild Pike (Esox lucius), and Aquacultured Rainbow Trout (Oncorhynchus mykiss). J. Food Protect. 62, pp 1270-1277
- González, C. J., Santos, J. A., Garcia-Lòpez, M. L., González, N. and Otero, A. (2001) Mesophilic Aeromonads in Wild and Aquacultured Freshwater Fish. J. Food Protect. 64, pp 687-691
- Krieg, N. R. and Holt, J. G. (1984) Bergey's Manual of Systematic Bacteriology. Vol. 1, 964p, Williams and Wilkins, Baltimore, USA
- Lalitha, K. V. and Surendran, P. K. (2004) Bacterial Microflora Associated with Farmed Freshwater Prawn Macrobrachium rosenbergii (de Man) and the Aquaculture Environment. Aqua. Res. 35, pp 1-7
- Lau, W., Jumars, P. and Armbrust, E. (2002) Genetic Diversity of Attached Bacteria in the Hindgut of the Deposit-feeding Shrimp Neotrypaea (formerly Callianassa) californiensis (Decapoda: Thalassinidae). Microb. Ecol. 43, pp 455-466
- Lavens, P. and Sorgeloos, P. (2000) Experiences on Importance of Diet for Shrimp Postlarval Quality. Aquaculture 191, pp 169–176
- Lombardi, J. V. and Labao, V. L. (1991)
 Diseases and other factors leading to mortality in juveniles and adults belonging to the genus Macrobrachium. In:
 Proceedings of the third Brazilian Symposium on Shrimp Culture. pp, 409-419, 15-20 October, 1999, Joao Pessoa, Paraiba, Brazil

- Moriarty, D. J. W. (1997) The Role of Microorganisms in Aquaculture Ponds. Aquaculture, 151, pp 333–349
- Nayyarahamed, I., Karunasagar, I. and Karunasagar, I. (1995) Microbiology of Cultured Shrimps in India. FAO Fisheries Report 514 Supplements, pp 13-22, FAO, Rome
- Pinn, E., Nickell, L., Rogerson, A. and Atkinson, R. (1999) Comparison of Gut Morphology and Gut Microflora of Seven Species of Mud Shrimp (Crustacea: Decapoda: Thalassinidae). Mar. Biol. 133, pp 103-114
- Prieur, D., Mevel, G., Nicolas, J. L., Plusquellec, A. and Vigneulle, M. (1990) Interactions Between Bivalve Molluscs and Bacteria in the Marine Environment. Oceanography and Marine Biology Annual Review 28, pp 277-352
- Reilly, A., Bernate, M. A. and Dangla, E. (1984) Storage Stability of Brackishwater Prawns during Processing for Export. Food Technol. Australia 36, pp 282-286
- Scott, T. M., Rose, J. B., Jenkins, T. M., Farrah, S. R. and Lukasik, J. (2002) Microbial Source Tracking: Current Methodology and Future Directions. Appl. Environ. Microbiol. 68, pp 5796-5803
- Shakila, R. J., Saravanakumar, R., Vyla, S. A. P., Jeyasekaran, G. and Jasmine, G. I. (2006) Antagonistic Activity of the Gut Microflora Isolated from Farmed Tiger Shrimp (Penaeus monodon) Asian Fisheries Science 19, pp 247-255
- Sharmila, R., Jawahar Abraham, T. and Sundararaj, V. (1996) Bacterial Flora of Semi-Intensive Pond-reared Penaeus indicus (H. Milne Edwards) and the Environment. J. Aquaculture in the Tropics 11, pp 193-203
- Sinton, L. W., Finlay, R. K. and Hannah, D. J. (1998) Distinguishing Human from Animal Faecal Contamination in Water: A Review. New Zealand J. Mar. Freshwater Res. 32, pp 323-348

- Sneath, P. H. A., Mair, N. S., Sharpe, M. E. and Holt, J. G. (1986) Bergey's Manual of Systematic Bacteriology. Vol.2. Williams and Wilkins, Baltimore, USA
- Strom, E. and Olafsen, J. A. (1990) The indigenous microflora of wildcaptured cod in net-pen rearing. In: Microbiology of Poecilotherms (Le'sel, R, Ed), pp 181–185, Amsterdam, Elsevier
- Sugita, H., N. Matsuo, K. Shibuya and Deguchi, Y. (1996) Production of Antibacterial Substances by Intestinal Bacteria Isolated from Coastal Crab and Fish Species. J. Marine Biotechnol. 4, pp 220-223
- Sugita, H. K., Oshima, M. and Tamura. (1983) Bacterial Flora in the Gastrointestine of Freshwater Fishes in the River. Nipp. Sui. Gakkaishi, 49, pp 387-395
- Surendran, P. K., Thampuran, N. and Gopakumar, K. (1995) Microbial Profile of Cultured Fishes and Prawns viz a viz their Spoilage and Contamination. FAO Fisheries Report No. 514 supplement, pp 1-12, FAO, Rome
- Tonguthai, K. (1995) Diseases of the Freshwater Prawn, Macrobrachium rosenbergii. The Aquat. Anim. Health Res. Inst. Newsletter, 4(2), pp 1-4
- Valera, L. and Esteve, C. (2002) Phenotypic Study by Numerical Taxonomy of Strains Belonging to the Genus Aeromonas. J. Appl. Bacteriol. 93, pp 77-95
- Venkat, H. K., Sahu, N. P. and Jain, K. K. (2004) Effect of Feeding Lactobacillus-based Probiotics on the Gut Microflora, Growth and Survival of Postlarvae of Macrobrachium rosenbergii (de Man). Aqua. Res. 35, pp 501-507
- Yasuda, K. and Kitao, T. (1980) Bacterial Flora in the Digestive Tract of Prawns, Penaeus japonicus, Bate. Aqua. 19, pp 229-234
- Yingst, J. (1976) The Utilization of Organic Matter in Shallow Marine Sediments by an Epibenthic Deposit Feeding Holothurian. J. Exp. Marine Biol. Ecol. 21, pp. 53-59