

Determination of LC₅₀ of Copper in Cirrhinus mrigala (Hamilton, 1822) and Ctenopharyngodon idella (Steindachner, 1866)

C. Mamatha^{1*}, L. M. Rao² and M. S. Chakravarty³

- ¹Mrs. A.V.N. College, Visakhapatnam 530 001, India
- ²Department of Zoology, Andhra University 530 003, India
- ³ Department of Marine Living Resources, Andhra University 530 003, India

Abstract

Static bioassays were conducted on *Cirrhinus mrigala* (8±0.5g) and *Ctenopharyngodon idella* (8.5±1g) fingerlings, to determine the acute toxicity of copper. The experiments were designed as three replicates with five exposure groups arranged exponentially(0.25, 0.75, 1.62, 3.25 and 6.62 mgl⁻¹) for *C. mrigala* and five concentrations (0.5, 0.75, 1.62, 2.5 and 3.25 mgl⁻¹) for *C. idella*, besides the controls. Each exposure group comprised of 10 fish each. The median lethal concentration (96-h LC₅₀) of copper was determined as 0.74 mgl⁻¹ Cu for *C. mrigala* and 3.07 mgl⁻¹ Cu for *C. idella* respectively. Copper proved to be more toxic to *C. mrigala* than *C. idella*. The mortality rates increased with increasing copper concentrations, in both species.

Keywords: *Cirrhinus mrigala, Ctenopharyngodon idella,* copper, acute toxicity

Introduction

Heavy metal contamination has devastating effects on the ecological balance of the recipient environment by altering the diversity of aquatic organisms (Farombi et al., 2007; Vosyliene & Jankaite, 2006; Ashraf, 2005; Javed, 2005) especially to the fish community (Olaifaet al., 2004). Heavy metals, like all toxicants, when present in high concentrations in aquatic ecosystems, are capable of severely interfering with the biological systems, producing damage

Received 21 July 2016; Revised 03 October 2017; Accepted 06 October 2017

to the structure and function of a particular organism (Spacie & Hamelink, 1985).

Although heavy metals are often referred to as a common group of pollutants, individual metals pose different problems in freshwater environment and therefore they have to be considered separately (Loyd, 1992). The toxic effects of heavy metals on fish are multidirectional and manifested by numerous changes in physiological and chemical processes of their body systems (Dimitrova et al., 1994). The capacity to counter uptakeby excretory, metabolic, storage and detoxification mechanisms varies between different species and different metals (Heath, 1987; Langston, 1990; Eaton et al., 1995).

Copper is an essential trace element required in small amounts by fish for metabolism of carbohydrates and is needed for synthesis of haemoglobin. However, concentrations that exceed 20 micrograms per gram (µgg-1) can be toxic (Wright & Welbourn, 2002). Fish are 10 to 100 times more sensitive to the toxic effects of copper than mammals (Forstner & Wittman, 1979). Copper releases to the biosphere come mostly from anthropogenic activities such as mining and smelting, industrial emissions and effluents, and municipal wastes and sewage sludge (Wright & Welbourn, 2002). Copper compounds are widely used as biocides to control algae, macrophytes and ectoparasites of fish. Copper compounds are also used in agricultural fertilizers (Eisler, 1998), aqua feeds, as impurities in fertilizers (Boyd & Massaut, 1999) wood preservatives (Edwin & Sreeja, 2011)and as active principles of pesticides used in the activity (Tacon & Forster, 2003).

Copper is generally more toxic to organisms in freshwater than in saltwater (Brooks et al., 2007). Copper toxicity in fishes causes impairment of

^{*} E-mail: c.mamatha@rediffmail.com

osmoregulation and ion regulation in the gill (Blanchard & Grosell, 2005) and inhibition of ATP-driven pumps and ion channels (Katranitsas et al., 2003). Sub-lethal copper levels result in the loss of chemosensory function (McIntyre et al., 2008).

The acute toxicity tests are conducted to measure the susceptibility and survival potential of organisms to toxic substances such as heavy metals (Eaton et al., 1995). Acute Copper toxicity experiments were conducted on freshwater fishes such as *Cyprinus carpio* (Panawon, 2000), *Labeo rohita* (Adhikari, 2003) and rainbow trout (Ayse, 2008). Acute copper toxicity studies in *C. mrigala* and *C.idella* is lacking. Hence to measure the susceptibility and survival of the two species, 96 h LC₅₀ tests were conducted with copper.

Materials and methods

Male and female fingerlings of *C. mrigala* and *C. idella* ranging in length from 3.5 to 4 inches and weight of 8-8.5 g were procured from a private fish farmer in Kaikaluru, Andhra Pradesh. They were acclimated at a temperature of 28±2°C and fed with rice bran and oil-cake. The copper in water and feed used for the experiments was below detectable level.

As the approximate toxicity of the test material was unknown, a range-finding test was conducted to determine the concentrations that should be used in the definitive test as per APHA, 1989. The experiments were designed as three replicates in tubs containing 100 l of water. Cupric chloride was used asthe copper agent. Double-distilled water was used wherever necessary and the copper agent was of extra pure grade.

Each replicate had five exposure groups for copper as well as one control for C. mrigala and five exposure groups for copper (as well as one control for C. idella. Each exposure group comprised 10 fish. Feeding was terminated 24 h prior to initiating the tests. Mortality, if any, was only less but not more than 5% during the 48 h immediately before conducting the test. Temperature has not varied by more than \pm 2°C during the 96 h test and \pm 1°C during any 48 h. Mortality, if any, in a control system was not more than 10%.

To determine LC_{50} , a 96 h test with five toxicant concentrations arranged exponentially and a control were used, according to the results of the range-finding test, adopting the static bioassay method.

The experiments were designed as three replicates in tubs containing 100 l of water. Each replicate had five exposure groups for copper as well as one control for *C. mrigala* and the same for *C. idella*. The water quality parameters are the same as those of the range–finding tests. Feeding was terminated 24 h prior to initiating the tests. The variations in temperature was similar to the range finding test. Mortality, if any, in a control system, was not more than 10%.

The experiment contained five copper concentrations (0.25, 0.75, 1.62, 3.25 and 6.62 mgl⁻¹) besides the control (not containing copper) for *C. mrigala* and five copper concentrations (0.5, 0.75, 1.62, 2.5 and 3.25 mgl⁻¹) besides the control (not containing copper) for *C. idella*.

The tubs were checked daily for temperature and dissolved oxygen as they are important factors to be monitored in toxicity experiments. Fish were not fed for one day prior to startingthe experiments to the end of the 96 h experiment period. Aeration was also avoided to make sure that there is no loss of toxicant during that period. Thus build-up of metabolic products and occurrence of high concentrations of carbondioxide and ammonia were avoided. Death was diagnosed by lack of swimming behaviour.

The term LC_{50} is in accordance with APHA (1989), which is the concentration at which 50% of test organisms survive for a specified exposure time. This term has been superseded by median lethal concentration (LC_{50}).

The LC_{50} concentration values were analysed by Probit Analysis (Finney, 1971). Data on mortalities recorded in the three replicates for each concentration were pooled. Regression analysis based on probit (transformed percentage mortality) against log-dose was calculated for each metal independently and considering these calculations for the lethal concentrations (LC_{50}), fiducial limits were determined. Statistical analysis was carried out using computer program, BIOSTATTM package.

Results and Discussion

The mortality rates increased with increasing copper concentrations, in both *C. mrigala* as well as *C. idella* as shown in Fig. 1 and Fig. 2 respectively. No mortality occurred in the control groups.

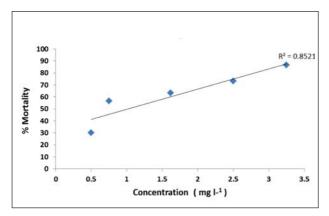


Fig. 1. Mortality (%) in different cupric ion concentrations at the end of 96 hr. exposure experiment with *C. mrigala*

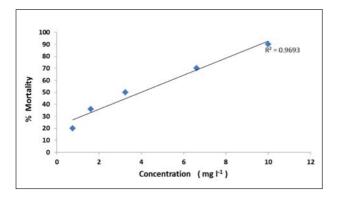


Fig. 2. Mortality (%) in different cupric ion concentrations at the end of 96 hr. exposure experiment with *C. idella*

The concentration values causing 50% mortality at the end of 96 h period, were analysed. LC_{50} was observed at concentrations of 0.74 mg l^{-1} Cu for *C. mrigala* and 3.07 mg l^{-1} Cu for *C. idella* respectively, after 96 h exposure. The concentration values were analysed by Probit Analysis (Finney method) and LC_{50} values were calculated as 0.84 mg l^{-1} Cu, for *C. mrigala* and 2.66 mg l^{-1} Cu for *C. idella* respectively (Table 2 and Table 3). There were no significant differences (p=>0.05) between the observed and calculated mortality. Fig. 3 and 4

show dose response relationship in differentcupric ion concentrations at the end of 96 h exposure experiment with *C. mrigala* and *C. idella.* 95% confidence limits have been calculated for both *C. mrigala* and *C. idella* with copper. The calculated 96 h. LC₅₀ values with 95% fiducial limits, their upper and lower limits, and the probit regression equations for toxicity of copper to *C. mrigala* and *C. idella* are given in Table 1.

Similarly, the concentration values were also analysed for LC₅, LC₁₀, LC₂₅, LC₇₅ and LC₉₀ by Probit Analysis. The LC₅, LC₁₀, LC₂₅, LC₇₅ and LC₉₀ for *C. mrigala* were calculated as 0.08 mgl⁻¹ Cu, 0.14 mgl⁻¹ Cu, 0.32 mgl⁻¹ Cu, 2.15 mgl⁻¹ Cu and 5.01 mgl⁻¹ Cu and the LC_{5} , LC_{10} , LC_{25} , LC_{75} and LC₉₀ for *C. idella* with copper were calculated as 0.29 mgl⁻¹ Cu, 0.47 mgl⁻¹ Cu, 1.05 mgl⁻¹ Cu, 6.27 mgl⁻¹ Cu and 14 mgl⁻¹ Cu respectively. No mortality was observed at concentration of 0.04 mgl⁻¹ Cu for C. mrigala and 0.25 mgl⁻¹ Cu for C. idella. It indicates that C. mrigala and C. idella can be safely consumed if the concentration of copper in water is below 0.04 mgl⁻¹ Cu and 0.25 mgl⁻¹ Cu respectively. Regression statistics for concentration values of copper and percentage mortality of C. mrigala and C. idella in different cupric ion concentrations at the end of 96 h. Exposure experiment is given in Tables 2 and 3.

The results of this study indicated that mortalityrate was influenced by the concentration levels of the heavy metals, as well as the kind of metal used. Besides it was found that there was a positive relationship between the mortality and concentration levels. When the concentration level increased, the mortality rate increased as well. Copper proved to be more toxic to $C.\ mrigala$ than $C.\ idella$. The susceptibility of fish to a particular heavy metal is a very important factor determing the LC_{50} values. The fish that is highly susceptible to toxicity of one metal, may be less or non-susceptible to the toxicity of another metal at the same concentration (Sajid & Muhammad, 2006).

Table 1. 96 h LC₅₀ values with 95% confidence limits and probit regression equations for toxicity of copper to *Cirrhinus mrigala* and *Ctenopharyngodon idella*.

Name of the fish	Lower limit	96 h. LC ₅₀ (mgl ⁻¹)	Upper limit	Probit Regression Equation
Cirrhinus mrigala	0.5138	0.8477	1.1537	Y = 5.1158 + 1.6143 X
Ctenopharyngodon idella	1.9066	2.6619	3.6045	Y = 4.2801 + 1.693 X

Y = Predicted Probit 5.1158 & 4.2801 = Intercept values

1.6143 & 1.693 = Beta values

 $X = Log_{10}$ value [Concentration (Stimulus)

Table 2.	Regression statistics for concentration values of copper and % mortality of Cirrhinus mrigala in different cupric
	ion concentrations at the end of 96 h exposure experiment.

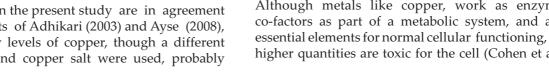

LD50	2.6619	LD50 Standard Error	0.4344
LD50 LCL	1.9066	LD50 UCL	3.6045
Log10[LD50]	0.4252	Standard Error	0.0706
Beta	1.693	Intercept	4.2801
Beta Standard Error	0.2896		

Table 3. Regression statistics for concentration values of copper and % mortality of Ctenopharyngodon idella in different cupric ion concentrations at the end of 96 h exposure experiment.

LD50	0.8477	LD50 Standard Error	0.1762
LD50 LCL	0.5138	LD50 UCL	1.1537
Log10[LD50]	-0.0718	Standard Error	0.0896
Beta	1.6143	Intercept	5.1158
Beta Standard Error	0.3582		

Similar experiments were also conducted by Panawon (2000), Adhikari (2003), and Ayse (2008) using different fish species, viz., common carp, rohita, Catla catla and rainbow trout respectively. In the above mentioned studies, copper sulphate was used as the copper agent. The values obtained by toxicity testing (eg., LC_{50}) are very dependent on the conditions under which tests were performed, so that interpretation of LC₅₀ values needs to be done with caution (Walker et al., 1996).

The findings in the present study are in agreement with the results of Adhikari (2003) and Ayse (2008), in the toxicity levels of copper, though a different fish species and copper salt were used, probably

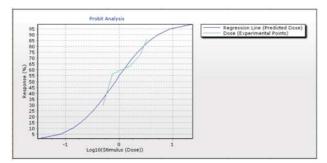


Fig. 3. Probit graph showing dose (experimental points and regression line) response (% mortality) relationship in different cupric ion concentrations at the end of 96 h exposure experiment with Cirrhinus mrigala

because of the same life-history stage and similarity in the appropriate weight of the fish used.

A 96 h LC₅₀ value of 0.56 mgl⁻¹ with copper sulphate was determined for Labeo rohita fingerlings, by Adhikari (2003). In the present study, 96 h LC₅₀ values of 2.57 mgl⁻¹ Cu and 0.84 mgl⁻¹ Cu with cupric chloride, were determined for C. mrigala (8 \pm 0.5 g) and C. idella (8.5 \pm 1g) fingerlings respectively.

Although metals like copper, work as enzyme co-factors as part of a metabolic system, and are essential elements for normal cellular functioning, its higher quantities are toxic for the cell (Cohen et al.,

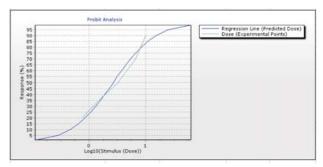


Fig. 4. Probit graph showing dose (experimental points and regression line) response (% mortality) relationship in different cupric ion concentrations at the end of 96 h Exposure experiment with Ctenopharyngodon idella

2001). The body has the ability to tolerate excesses of the trace elements but this ability is limited. If the dietary level of a trace element is greater than the body's ability to cope with it, toxicity symptoms will develop (Shinn et al., 2009) Metal accumulation is affected by some of the same parameters that affect toxicity and is potentially one of the most valuable tools for identifying and quantifying the impact of metals in aquatic environments (Borgmann & Norwood, 1994). Absorption of heavy metals can occur via. two pathways, as discussed by Bryan (1976) and demonstrated in a comparative study by Alquezar et al., (2008). The first is absorption from solution. Ion transfer through the gills serves as a good example. Metals may, however, also diffuse passively through skin and gills as a soluble complex down gradients created by adsorption at the surface. The second pathway is absorption from food or particles. After these trace elements are absorbed, it is transferred from the gills and intestine to the blood and distributed to other parts of the body (Hogstrand & Haux, 1991).

Copper has been used effectively for many years to control algae and fish parasites in freshwater and marine systems. Water chemistry and other environmental factors will determine how much copper will be biologically available and for how long. However, the copper concentrations required for effective treatment may be acutely toxic for some species of finfish (Cardeilhac & Whitaker, 1988). Chronic copper exposure will also adversely affect fish health. Copper may cause toxic effects even at low levels under certain conditions. Some species of fish are highly sensitive to copper and will die even at concentrations below therapeutic levels. Factors that affect survival include, the amount of free copper (Cu2+) in the water, the sensitivity of the fish exposed, the age of the fish (Furata et al., 2008), the acclimation time to target concentration (Sellin et al., 2005), presence of dissolved substances that may bind with copper and reduce its activity, including carbonates, the presence of "live foods" that may absorb and bio accumulate copper in their bodies; water pH (Cardeilhac & Whitaker, 1988).

Copper will damage a number of organs and systems, including the gills, liver, kidney, immune system, and nervous system (Cardeilhac & Whitaker, 1988). Gills are the most affected organs during acute toxicity and will become blunt and thickened and lose ability to regulate body fluid ion concentrations (Pickering & Lazorchak, 1995). Copper also

suppresses immune system function, and can affect the lateral line of fish. Prolonged copper exposure also may result in reduced growth (Wong et al., 1999). During toxicity, in addition to general signs of distress (e.g., increased respiration), fish may display darkening and behavioral abnormalities like, lethargy, incoordination, problems with posture and balance, and eventually, death (Cardeilhac & Whitaker, 1988).

The results of this study clearly illustrated that the toxic effect of copper to fish, ie., the 96 h LC $_{50}$ value varied according to the species and it's susceptibility to the metal. These findings helped to understand the species-specific dose-response relationship. The dose-response relationship can be compared with the effect of these particular heavy metals on the particular species in the field.

Fish occupies the highest trophic level in aquatic system (APHA, 1981) and humans can be exposed to metals through food web. In predators at top of the food chain, the levels of such pollutants may reach toxic concentrations with deadly results (Shuhaimi et al., 2010), thus implying a need for analytical monitoring of copper jn aquaculture ponds. Hence, assessment of toxicity on a particular organism exposed to a particular toxicant will reveal facts regarding the health of a given ecosystem and would eventually help us to propose policies to protect the ecosystem.

References

- Adhikari, S. (2003) Effect of calcium and magnesium hardness on acute copper toxicity to Indian major carp, *Labeo rohita* (Hamilton) and murrel, *Channa punctatus* (Bloch). Aqua. Res. 34: 975-980
- Alquezar, R., Markich, S.J. and Twining, J.R. (2008) Comparative accumulation of 109 Cd and 75 Se from water and food by an estuarine fish (*Tetractenos glaber*). J. Environ. Radioactiv. 99: 167-180
- American Public Health Association (1981) Standard methods for the examination of water and wastewater, 15thedn., American Water Work Association and Water Pollution Control Federation, Ogden, Utah. p: 77
- APHA/AWWA/WPCF (1989) Standard methods for the examination of water and wastewater 17thedn., American Public Health Association, Washington, D.C
- Ashraf, W. (2005) Accumulation of heavy metals in kidney and heart tissues of *Epinephelus microdon* fish from the Arabian Gulf. Environ. Monit. Assess. 101: 311-316

- Ayse-Gundogdu (2008) Acute toxicity of zinc and copper for rainbow trout (*Oncorhynchus mykiss*). J. Fish. Sci. 2(5): 711-721
- Blanchard, J. and Grosell, M. (2005) Effects of salinity on copper accumulation in the common killifish (*Fundulus heteroclitus*. Environ. Toxicol. Chem. 24(6): 1403-1413
- Borgmann, U. and Norwood, W.P. (1994) Kinetics of excess (above background) copper and zinc in *Hyalella azteca* and their relationship to chronic toxicity. Can. J. Fish. Aquat. Sci. 52: 864-874
- Boyd, C.E. and Massaut, I. (1999) Risks associated with the use of chemicals in pond aquaculture. Aquaculture Engineering, 20(2): 113-132
- Bradl, H. (2005) Heavy Metals in the Environment: Origin, Interaction and Remediation. Elsevier/Academic Press, London
- Brooks, S. J., Bolam, T., Tolhurst, L., Bassett, J., Roche, J.L., Waldock, M., Barry, J. and Thomas, K.V. (2007) Effects of dissolved organic carbon on the toxicity of copper to the developing embryos of the Pacific oyster (*Crassostrea gigas*). Toxicol. Chem 26(8): 1756-1763
- Bryan, G.W. (1976) Heavy metal contamination in the sea, In: Marine Pollution, (Johnston R.Ed). pp185 - 302 Academic Press, London
- Cardeilhac, P.T. and. Whitaker, B.R. (1988) Copper treatments: uses and precautions. In: Tropical fish Medicine (Stoskopf, M.K., Ed) The Veterinary Clinics of North America: Small Animal Practice 18(2): 435-448
- Cohen, T., Que Hee, S. S. and Ambrose, R.F. 2001. Trace metals in fish and invertebrates of three California Coastal Wetlands. Marine Poll. Bull. 42(3), 224-232
- Dimitrova, M. S., Tishinova, T. and Velcheva, V. (1994) Combined effects of zinc and lead on the hepatic superoxide dismutase-catalase system in carp. Comp. Biochem. Physiol. 108C: 43-46
- Edwin, L. and Sreeja, A. (2011) Ecological impact of chromated copper arsenate(CCA) treated wood for marine applications: A Review. Fish. Technol. 48(1): 1-12
- Eaton, A.D., Clesceri, L.S., Greenberg, A.E. and Franson, M.A.H. (1995) Standard methods for the examination of the water and waste water. 19th edn., American Public Health Association, Washington DC, 2005
- Eisler, R. 1998. Copper hazards to fish, wildlife, and invertebrates: a synoptic review. U.S. Geological Survey, Biological Resources Division, Biological Science Report USGS/BRD/BSR—1998-0002
- Farombi, E.O., Adelowo, O.A. and Ajimoko, Y.R. (2007) Biomarkers of oxidative stress and heavy metal levels

- as indicators of environmental pollution in African cat fish (*Clarias gariepinus*) from Nigeria Ogun River. Int. J. Environ. Res. Public Health, 4: 158-165
- Finney, D.J. (1971) Probit Analysis (3rd edition). Cambridge University Press, London
- Furata, T., Iwata, N and Kikuchi, K. (2008) Effects of fish size and water temperature on the acute toxicity of copper for Japanese flounder, *Paralichthys olivaceus*, and red sea bream, *Pagrus major*. J. World Aquacult. Soc. 39(6): 766-773
- Heath, A.G. (1987) Water Pollution and Fish Physiology. CRC Press.: 245. Florida, USA
- Hogstrand, C. and Haux, C.(1991) Mini-review: Binding and detoxification of heavy metals in lower vertebrates with reference to metallothionien. Comp. Biochem. Physiol. 10: 383-390
- Javed, M. (2005) Growth responses of Catla catla, Labeo rohita and Cirrhinus mrigala for bioaccumulation of zinc during chronic exposure. Pak. J. Biol. Sci. 8: 1357-1360
- Katranitsas, A., Castritsi-Catharios, J., Persoone, G. (2003) The effects of a copper-based antifouling paint on mortality and enzymatic activity of a non-target marineorganism. Mar. Pollut. Bull. 46: 1491-1494
- Langston, W.J. (1990) Toxic effects of metals and the incidence of marine ecosystems. In: Heavy Metals in the Marine Environment (Furness, R.W. and Rainbow, P.S., Eds): 256. CRC Press, New York
- Loyd, R. (1992) Pollution and Freshwater Fish. Blackwell, London
- McIntyre, J.K., David, H.B., James, P.M. and Nathaniel, L.S. (2008) Chemosensory deprivation in juvenile Coho salmon exposed to dissolved water chemistry conditions. Environ. Sci. & Tech. 42: 1352-1358
- Olaifa, F.G., Olaifa, A.K. and Onwude, T.E. (2004) Lethal and sublethal effects of copper to the African catfish (*Clarias gariepinus*) Afr. J. Biomed. Res. 7: 65-70
- Panawon, J. (2000) Toxicity of copper sulphate to fishes, phytoplankton and bacteria, *Aeromonas hydrophila*. Abstracts of Master of Science Theses (Fisheries Science) 1985-1990 pp 35-36 Fac. Fish. Kasetsart Univ.
- Pickering, Q.H. and Lazorchak, J.M. (1995) Evaluation of the robustness of the fathead minnow, *Pimephales* promelas, larval survival and growth test. Environ. Toxicol. and Chem. 14: 653-659
- Sajid, A. and Muhammad, J. (2006) Studies on acute toxicity of metals to the fish, *Catlacatla*. Pak. J. Biol. Sci. 9(9): 1807-1811
- Sellin, M.K., Tate-Boldt, E. and Kolok, A.S. (2005) Acclimation to Cu in fathead minnows: Does age influence the response? Aquat. Toxicol. 74(2): 97-109

- Shinn, C., Dauba, F., Grenouillet, G., Guenard, G. and Lek, S. (2009) Temporal variation of heavy metal contamination in fish of the river lot in southern France. Ecotoxicol. Environ. Safety. 72: 1957-1965
- Shuhaimi-Othman, Nadzifah M.Y. and Ahmad, A.K. (2010) Toxicity of copper and cadmium to freshwater fishes. World Acad. Sci. Eng. Technol. 65: 869-871
- Spacie, A. and Hamelink, J.L. (1985) Bioaccumulation. In: Fundamentals and aquatic toxicology methods and applications (Rand, G. M. and Petrocelli, S. R., Eds) pp 495-525 Hemisphere Publishing Corporation, New York
- Tacon, A.G.J. and Forster, I.P., (2003) Aquafeeds and the environment: policy implications. Aquaculture, 226 (1-4): 181-189

- Forstner, U. K. and Witmann, G. T. W. (1979) Metal Pollution in the Aquatic Environment. Springer-Verlag, Berlin
- Vosyliene, M.Z. and Jankaite, A. (2006) Effect of heavy metal model mixture on rainbow trout biological parameters. Ecologija. 4: 12-17
- Walker, C. H., Hopkin, S. P., Sibly, R. M. and Peakall, D. B. (1996) Principles of Ecotoxicology. Taylor and Francis, London
- Wong, P.P.K., Chu, L.M. and Wong, C.K. (1999) Study of toxicity and bioaccumulation of copper in the silver sea bream *Sparuss arba*. Environ. Int. 25(4): 417-422
- Wright, D.A. and Pamela, W. (2002) Environmental Toxicology. Cambridge University Press, Cambridge