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ABSTRACT

After drought salinity is the major abiotic stress that severely affects agricultural productivity globally. Chickpea 
(Cicer arietinum L.) is the important grain legume which suffers approximately 8-10% of total global yield loss 
due to salinity. Screening for salt stress is difficult and traits that correlate salinity tolerance are least understood. 
The present study was carried out at ICAR-IARI, New Delhi 2017-18, deals with the important morphological and 
physiological traits like RWC (Relative water content), EL (Electrolyte Leakage), Na/K (sodium and potassium ratio) 
to characterize the salt tolerant genotypes under hydroponic condition which is a quick and easy method to screen 
large number of chickpea genotypes at initial stage under salt stress condition. Genotypes showing high RWC, low 
EL and Na/K ratio were tolerant like ICCV 10, JG 11, JG 62 and CSG-8962 whereas genotypes like ICC4958 and 
Pusa362 fall under moderately tolerant genotypes and DCP 93-3, Pusa 256, Phule G5 and SBD 377 were classified 
as susceptible genotypes. This study also attempts to understand the candidate genes responsible for salt-stress related 
pathways in chickpea genotypes based on sequence similarity approach exploiting known salt-stress responsive genes 
from model crops or other crop species. 

Key words: Chickpea, Hydroponics, Salinity, Seedling Screening

*Corresponding author e-mail: chbharadwaj@yahoo.co.in

Chickpea (Cicer arietinum L.) is the second most 
important grain legume and serves as a rich source of proteins 
(20–25%) and essential amino acids. It is also known for its 
unique ability to fix atmospheric nitrogen resulting in soil 
fertility enhancement. The global annual total production of 
chickpea is over 14.79 million tonnes, of which India alone 
contributes more than 70% (FAOSTAT 2017). Although 
the chickpea production potential is high, it has not been 
fully realized owing to several abiotic stresses, including 
drought and salinity stress (Jha et al. 2014, Kashiwagi et 
al. 2015).The yield loss in chickpea due to salinity has 
been estimated to be approximately 8-10% of total global 
production (Flowers et al. 2010). Chickpea is known to be 
sensitive to salinity at both the vegetative and reproductive 
stages (Samineni et al. 2011), which affects the productivity 
of the crop across the chickpea growing areas (Rengasamy 
2006). Salinity stresses are among the major reasons that 
attenuate its production. Chickpea is highly sensitive to 
salinity, even a tolerant cultivar dies within 75 days when 
exposed to 40 mM sodium chloride (Samineni et al. 2011). 

Screening for salt stress is complex because of variation in 
sensitivity at various stages in the life cycle of chickpea. 
Seedling screening becomes the important part before going 
for adult plant screening which can give perfect idea of 
salinity tolerance in plants at early growth stage (3 to 4 week 
old seedlings) which is more convenient than at flowering 
as it is quick, take up less space and efficient in terms of 
time and costs. The present study deals with the important 
morphological and physiological parameters to characterize 
the salt tolerant genotypes, which may be used directly in 
chickpea breeding programmes for salt-stress tolerance. 
This study also attempts to understand the candidate genes 
responsible for salt-stress related pathways in chickpea 
genotypes based on sequence similarity approach exploiting 
known salt-stress responsive genes from model crops or 
other plant species.

MATERIALS AND METHODS
Plant material: The materials included 10 chickpea 

genotypes, which were procured from ICAR-Indian 
Agricultural Research Institute, New Delhi. These genotypes 
included popular released varieties of chickpea along with 
their pedigree in India (Table 1).

Hydroponics experiment and salt stress imposition: The 
hydroponic experiment was conducted at National Phytotron 
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Facility, ICAR-Indian Agricultural Research Institute, New 
Delhi, India during 2017-18. The air temperature was 
maintained as 22/18°C (± 2°C) day/night temperature; 
10/14 h light/dark photoperiod; 45% relative humidity and 
450 μmol m/s/1 light intensity. Hydroponic experiment for 
screening was carried out by the newly develop protocol 
in  which seed surface was sterilized with 2% sodium 
hypochlorite for 45 min and  were soaked in Petri plate 
for 2 days. Soaked and sprouted seeds were transferred to 
sterilized germination paper on reverse osmosis (RO) water. 
Pre germinated seeds were transplanted on hydroponic tray 
and grown on Normal RO water for four days. On fifth day 
crates were filled with 0.5 × modified Hoagland's nutrient 
medium. The medium was aerated using aquarium pumps 
per crate. The nutrient medium was subsequently replaced 
with 1.0 × Hoagland's solution (pH 6.5) after seven days. 
At 18th day, the nutrient medium was replaced with 1.0 × 
modified Hoagland's with 150 mM Sodium Chloride (NaCl) 
(pH 6.5) which was to impose salinity stress. The control 
plants were grown in replaced 1.0 × modified Hoagland's 
solution (pH 6.5). The tissues from stressed and control 
plants were collected for various physiological analysis. 

Morphological traits recorded during salt stress: 
Seedling response was studied by phenotyping seedling 
parameters like shoot length (SL); root length (RL); fresh 
shoot weight (FSW) and fresh root weight (FRW).

Physiological traits recorded: Electrolyte leakage was 
recorded using 10 mg fresh leaf sample, taken in test tube 
and immersed in 10 ml of distilled water. This test tube 

was kept in water bath at 45°C for 30 min. It was allowed 
to cool at room temperature and then water conductivity 
of sample (C1) was measured using Electrical Conductivity 
Meter. Again, the test tube was kept in water bath at 100°C 
for 10 min. and subsequently cooled to room temperature 
and the final conductivity reading of the sample (C2) was 
measured. The Electrolyte leakage was calculated as: 

EL = [C1/ C2] × 100

Relative water content (RWC) was worked out as 
per protocol of Barrs and Weatherley (1962). Sodium and 
potassium measurement were estimated from shoot samples 
according to Bhargava and Raghupathi (1993). Homogenate 
tissue was dried at 80°C for 24 h. finely ground dried 
shoot samples (0.1 g) were digested in 10 ml of digestion 
mixture (HNO3 and HClO4, 9:4). The digested solution 
was cooled and washed in a 50 ml volumetric flask. The 
solution was again filtered with Whatman filter paper no. 
42 and analyzed for Na and K using flame photometer 
(Systronics Flame photometer, microcontroller based with 
compressor, Type 128).

Molecular validation of candidate genes for salt-stress 
tolerance in chickpea genotypes: Genomic DNA extraction: 
CTAB method of DNA isolation Murray and Thomson 
(1980) modified by Tapan et al. (2014) was utilized to 
isolate chickpea genomic DNA.

DNA quantification: Quantification of DNA was done 
by analyzing the purified DNA on 0.8% agarose gel with 
Hind III-cut λ DNA as standard. The concentration of DNA 

Table 1	 List of chickpea genotypes used in study along with their seedling morphological traits and physiological parameters under 
salt stress (EL: electrolyte leakage, RWC: relative water content, Na/K: sodium potassium ratio)

Genotype Pedigree Root length (cm) Shoot length (cm) Root weight (g) Shoot weight (g) EL RWC Na/K
N S N S N S N S S S S

ICCV 10 P1231 × P1265 15.17 13.53 17.00 15.00 0.48 0.39 0.76 0.49 21.21 89.22 0.71
JG 11 {(9Phule G5 × 

Narshinghpur bold)  × 
ICCC37}

15.00 12.33 16.67 15.00 0.50 0.41 0.72 0.47 23.36 88.81 0.81

JG 62 Local selection from 
west Nimar (M.P.) 

14.67 11.33 18.00 16.00 0.45 0.34 0.77 0.53 34.98 77.13 0.89

CSG 8964 Selection from GPF 
7035

16.33 15.00 17.33 15.00 0.48 0.40 0.73 0.55 20.21 86.44 0.68

ICC 4958 Genetic stock Screened 
from germplasm

11.67 10.00 14.00 13.00 0.28 0.22 0.49 0.37 32.99 62.97 1.34

DCP 92-3 Selection from local  
germplasm

10.00 8.67 10.33 10.33 0.26 0.20 0.43 0.35 44.24 64.4 2

Pusa 256 (JG 62 × 850-3/27) × (L 
550 × H 208)

9.67 6.00 10.00 9.00 0.21 0.17 0.34 0.26 43.77 53.68 2.24

Pusa 362 (BG 203 × P 179) × BC 
203

11.00 9.67 14.33 13.33 0.31 0.25 0.54 0.39 24.15 77.49 1.14

Phule G-5 Selection from local 
material 

8.33 7.33 11.00 9.67 0.20 0.14 0.34 0.27 31.03 69.75 1.7

SBD 377 (ICCV 88109 × PRR 1) 
× ICC 4958

9.00 7.00 8.33 7.67 0.13 0.11 0.34 0.24 47.11 47.45 2.06

Mean 12.08 10.09 13.70 12.40 0.33 0.26 0.54 0.39 32.31 71.73 1.36
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in individual sample was determined based on the intensity 
of the bands in the λ DNA ladder.

Amplification and detection candidate genes involved 
in salinity tolerance: Eight gene specific primers based on 
their prior information about involvement in abiotic stress 
especially salinity tolerance were used for validation of 10 
genotypes. Primers were synthesized as per the sequences 
of Manish et al. (2013) from Bioneer, South Korea. 
BIORAD thermal cycler (Icycler), USA was used to carry 
out amplifications in 10 μl volume reaction mixture. This 
mixture contained 1 μl of 20 ng plant genomic DNA, 1.6 μl 
of 10 x Tris buffer (15 mM MgCl2 and Gelatine), 1 μl of 10 
mM dNTP mix, 1.0 μl each of forward and reverse primer 
and 0.3 μl of 3 U/μl Taq polymerase (Life Technology, India). 
PCR amplification profile was programmed for 35 cycles, 
consisting of denaturation at 94°C for 1 min, annealing at 
50-60°C (depending on the primer) for 1 min and extension 
at 72°C for 2 min. An initial denaturation at 94°C for 5 min 
and a final synthesis of 10 min at 72°C were also included.

The amplification products were resolved on 3% agarose 
gels (Cambrex, USA) depending upon the size, stained with 
ethidium bromide and analyzed using the gel documentation 
system (AlphaImager 2200, Alpha Innotech Corp., USA).

RESULTS AND DISCUSSION
Phenotyping of seedling morphological traits under 

salt stress: Screening for salt tolerance is more challenging 
because of its complex character and precise requirement of 
screening environment. Seedling screening analysis gives 
us about preliminary understanding of variation for salt 

tolerance in different genotypes. The analysis of variance 
shows that the differences among the genotypes were 
significant. The mean sum of square were highly significant 
for all the characters, viz. root length, shoot length, root 
weight and shoot weight indicating presence of significant 
variability in 10 genotypes selected for study. Therefore root 
and shoot length are important traits under salinity stress 
(Jamil and Rha 2004), similar results also seen in studies 
of Werner and Finkelstein (1995) and Neumann (1995).
Chickpea is considered as moderately salt tolerant crop 
but it shows variation between genotypes in response to 
saline environment. The deleterious effects of salt stress on 
seedling growth hamper its normal development. Parameters 
affecting seedling growth were recorded in both stress and 
normal conditions and best performing genotypes were 
selected (Table 1).

Characterization of physiological traits: Physiological 
variables like electrolyte leakage (EL) varied from 20.21 
to 47.11% with mean of 32.31%. The tolerant genotypes 
showed considerable lesser EL as compared to susceptible 
one. Similarly RWC value varied from 45.45-89.22% with 
average value of 71.73%, more the RWC value more is the 
tolerance. But Na/K ratio is inverse to the tolerance behavior; 
more the ratio the genotype is more susceptible to salt 
stress (Table 1). EL, RWC, Na/K ratio and morphological 
traits for biomass of plant were the parameters to access 
the salinity tolerance in 10 genotypes. Many workers have 
reported that the salinity caused yield reductions due to the 
effect of sodium ion (Tester and Davenport 2003, Rains 
and Epstein 1967, Warne et al. 1996, Tyerman and Skerrett 

1999, Kader and 
Lindberg 2005). 
The graphical 
approach was 
fo l lowed for 
identif icat ion 
of  genotypes 
having superior 
physiological 
parameters and 
morphological 
s t r e s s  s c o r e 
(MSS) and these 
were classified 
as tolerant and 
m o d e r a t e l y 
t o l e r an t  and 
susceptible (Fig 
1). Under salt 
stress condition 
the genotypes 
showing high 
RW C ,  M S S , 
low EL and 
Na/K ratio were 
considered as 
to le ran t  l ike 

Fig 1	 Graphical classification of genotypes on the basis of morpho-physiological parameters for salinity tolerance 
(EL: electrolyte leakage, RWC: relative water content, Na/K: sodium potassium ratio; MSS: morphological 
stress score).
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ICCV 10, JG 11, JG 62 and CSG-8962 whereas genotypes 
like ICC 4958 and Pusa 362 fall under moderately tolerant 
genotypes and DCP 93-3, Pusa 256, Phule G5 and SBD 
377 were classified as susceptible genotypes on the basis 
of above mentioned parameters.

Correlation analysis of morphological and physiological 
traits: Correlation analysis indicates the magnitude of 
association between pairs of character and forms the basis 
of selection index. The estimates of phenotypic correlation 
coefficients between seven characters of different chickpea 
genotypes are given in Table 2. Under saline stress condition 
morphological traits exhibited highly significant positive 
correlation with RWC and significantly negative correlation 
with EL and Na/k ratio. The physiological parameters like 
Na/K ratio and EL showed significantly positive correlation 
(0.889), whereas RWC is significantly negative correlated 
with Na/K ratio (-0.919) and EL (-0.913). It was observed 
that plant showing more RWC and less EL and Na/K ratio 
were more tolerant in salt stress conditions than others. 
Similar results were observed by Sivasankaramoorthy (2013) 
indicating negative correlation for Na/K ratio content in 
stem with the plant yield under salt stress indicates that 
those genotypes are salt tolerant.

Validation of previously reported candidate genes 
for salt stress tolerance: Through this study an attempt 
has been made to understand the candidate genes 
responsible for salt stress related pathways amplifying in 
chickpea genotypes on the basis of Sequence similarity 
approach for the identification of salt stress responsive 
genes. Eight known candidate genes were selected on 
the basis of prior information about their involvement in 
salt tolerance mechanism in other crop species and their 
coding sequences available in NCBI database for abiotic 
stresses was utilized for similarity search against known 
candidate genes for salt stress tolerance (Manish et al. 
2012) unigene sequences showing significant match with a 
candidate gene were selected and used for primer designing 
using primer3 software. Only three salt specific genes 
generated amplicons in the 10 genotypes studied and were 
CAD, DREB and DHN. Cinnamyl alcohol dehydrogenase 
(CAD) gene homologue was amplified at ∼ 225bp in all 
chickpea genotypes using primers designed for contig 
showing match with cinnamyl alcohol dehydrogenase 
(CAD) gene of Arabidopsis thaliana. CAD is known to 

play a key role in plant defence against various abiotic 
stresses including salt stress. Dehydrin homologue was 
amplified using primer pair designed for known Dehydrin 
gene using chickpea unigene. Approximate amplicon size 
of Dehydrin (DHN) gene was ~300 bp. DHNs are one 
of several proteins that have been specifically associated 
with qualitative and quantitative changes in abiotic 
stresses. DREB (Dehydration response element binding) 
homologue in chickpea was also amplified using primer 
pairs designed using unigene showing match against DREB 
gene. Approximate amplicon size of the DREB gene was 
~1200 bp. DREB is known for its role in salt tolerance in 
several crops. Similar results have also been established 
by (Manish et al. 2012). Further PCR amplicons can be 
directly used for DNA sequencing after purification using 
gene specific primers. Good quality sequences were then  
can used for confirmation of these genes in chickpea 
using sequence similarity approach based on sequence 
information of these genes from related crop species or 
model plants. Therefore, present study provides basic 
information about some salt stress responsive genes in 
chickpea that can be exploited to overcome salinity stress 
related problems limiting chickpea production.
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