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ABSTRACT

Assembly of genome sequences of a microbial community is computationally challenging and complex than its
single genome counterparts. Keeping in view the volume, diversity and varied abundance of different microbes, number
of metagenome assemblers have been developed addressing specific associated computational issues mainly following
De Bruijn Graph (DBG) and Overlap Layout Consensus (OLC) approaches. It is very pertinent to understand different
computational approaches and issues of metagenomic assembly to further improve them with respect to time and
computational resource requirements. Therefore, the main objective of this article is to discuss various metagenomics
assemblers with respect to their development addressing major computational issues. Initially the computational
perspective of single genome assemblers based on OLC and DBG graph construction approaches was described. This
is followed by review of metagenomic assemblers with respect to the algorithm implemented for addressing issues
in metagenome assembly. Further, performance of some of the popular metagenome assemblers were empirically
evaluated with respect to their run time and memory requirements by taking diversified benchmark metagenomics
data at ICAR-IASRI, New Delhi in 2019. It was concluded that performance of assemblers varied considerably on
these datasets and there is further need to make an effort to develop new tools or to modify the existing ones using

efficient algorithms and data structures.
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Metagenomics is emerging as a promising technology
for structural and functional profiling of microbial
communities. With the advent of new sequencing techniques,
the sequencing of the genome of many environmental and
human microbial communities have been done as these
were difficult to culture in the laboratory. This information
overload has given rise to the development of many tools
and software for analysis and assembly of metagenomics
data. Sufficient literature is available on assemblers
which are capable in assembling sequencing data of
single genome, but in case of assembling mixed genomic
sequences, i.e. metagenomics data of microbial community
of an environment have number of computational issues
and challenges. Attempts have been made to analyze the
assembly challenges and accordingly reviews were published
(El-Metwally et al. 2013, Ghurye et al. 2016). Miller et
al. (2010) have compared genome assemblers for single
genome based on DBG and OLC approaches. A classification
of existing assemblers has been provided considering the
common features of these along with complete description
of layout and DBG graph theory. Kleftogiannis et al. (2013)
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have compared the memory efficiency of single genome
assemblers in terms of memory usage, execution time and
quality metrics.

It may be noted that the above reviews were confined
to the genomic assemblers capable of assembling
sequence data of single species. A comprehensive review
of metagenomics assemblers was done by Vollmers et al.
(2017) in terms of biological/microbiologist perspective.
Recently in a review, methods and tools for metagenome
read classification, metageome assembly tools and contents
of existing metagenome databases with quality aspects is
done (Breitwieser et al. 2017). Therefore, hardly there
is any review article which compares metagenomics
assemblers from computational and algorithmic perspective.
Therefore, in this article an attempt has been made to
compare metagenomic assemblers from computational
and algorithmic perspective, i.e. (i) variants of DBG and
OLC graph construction, (ii) algorithmic approaches
and (iii) computational requirements with the help of
benchmark datasets. This article will be highly useful to the
computational biologists/scientists, scholars and students
working in the area of metagenomics and related fields.

Current challenges in assembly of metagenome
Assembly of metagenome consists of three main steps
namely (i) sequence cleaning, (ii) fragment assembly and
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(iii) Binning/taxonomic assignment. Sequence cleaning
deals with the filtering of duplicated, short, low quality,
contaminated reads and reads containing ambiguous bases.
Fragment assembly of metagenomic sequences is performed
following two approaches namely OLC and DBG. De novo
/Fragment assembly results in the generation of contigs/
scaffolds. Binning/taxonomic assignment is needed to
classify/associate these data with the organisms from which
they were originated. This process of association between
sequence data to their related species is called binning or
classification. Existing binning methods can be classified into
two categories, namely taxonomy dependent and taxonomy
independent. In case of taxonomy dependent methods,
the extent of ‘similarity’ of the reads with sequences (in
reference databases) or pre-computed models helps in this
assignment process. Further, based on the strategy used
for comparing sequence reads with existing sequences/
pre-computed models, taxonomy-dependent methods can
be further classified into three categories, i.e. alignment-
based, composition-based and hybrid methods (Mande et al.
2012). Alignment based algorithms uses existing alignment
and read mapping algorithms to align the reads to known
and characterized genomes. This approach is used in MG-
RAST, CAMERA, MEGAN, MetaPhyler and MARTA
etc. Faster methods based on composition features use GC
content, codon usage, oligonucleotide usage patterns for
comparing reads to reference databases. Under this method,
specific models are built for various genomes using various
statistical and data mining approaches. Some binning tools
based on this method are Phylophthia, TACOA, Phymm,
ClaMS and RAIphy etc. Hybrid approaches combine the
alignment and composition based methods for classification
of metagenomic data. In case of taxonomy independent
methods, simply group/bin of sequence reads are made from
given dataset based on their mutual similarity and it does
not involve any database comparison. Tools following this
approach are TETRA (Teeling et al. 2004), CompostBin
(Chatterji et al. 2008), AbundanceBin (Wu et al. 2011) and
MetaCluster (Leung et al. 2011).

Initially, single genome assemblers were used for
assembly of metagenomic data but due to computational and
biological issues specific to this field, effective and accurate
assembly could not be done. Some of the major challenges
with assembly of metagenomes are: (i) uncertainty about
population size, (ii) composition of species and (iii) noise
model of sequencing technology. Also, coverage across
species is uneven and affected by the species abundance in
the sample. Therefore, an alternative approach was required
which may also construct the contigs even for species
having low coverage data. It was further observed that the
performance of existing DBG based approaches degrade
with increase in number of errors in the reads. This demands
additional efforts for detecting, correcting and filtering
the reads before assembly. Most of existing techniques
in this regard implemented in single genome assemblers
assumes the low coverage as a criterion to filter out the
reads. This is not desirable as well as applicable in case of

[Indian Journal of Agricultural Sciences 90 (5)

metagenomics data. Also, identification of repeat region in
case of metagenomic data needs to be extended to multiple
genomes. Separation of Single Nucleotide Polymorphism
(SNPs) is difficult to separate from sequencing errors in
metagenome. Due to the above facts, application of single
genome assemblers for metagenome assembly leads to the
formation of chimeric and shorter contigs. Therefore, number
of metagenomic assemblers are developed in due course
of time by addressing above issues. In the next section
computational developments in DBG and OLC approaches
are described briefly.

Computational developments

Assemblers have been developed for assembling
metagenomic data generated through various sequencing
platforms. The algorithmic approach of different assemblers
varies in: (i) ways of handling type of reads (i.e. long
reads to short reads), (ii) type of graph construction, (iii)
sequencing error correction methods, and (iv) ability to deal
with different length of fragments. Mainly, two types of
assembling algorithms were developed following OLC and
DBG construction approach according to the size of reads.
The DBG is a graph data structure suitable for representing
the overlap relationship of short read sequences, whereas,
OLC is generally used for assembling long read sequences.
It was observed that, the overlap graphs work well if there
is small number of reads with significant overlap. However,
this method is computationally expensive for large genomes.
Complexity of pairwise sequence alignment is quadratic
in terms of number of reads. Efforts have been made by
researchers for improving the computational efficiency of
OLC and DBG based approaches.

Developments in computational framework of OLC
approach

The first graphical representation of sequence
assembly as an overlap graph was introduced by
Kececioglu and Myers in 1995. In an overlap graph, a
vertex represents a read and an edge represents an overlap.
Optimal path through each vertex was used to find the
layout of reads to covert to larger fragments of reads.
Transitive reduction approach was proposed to reduce the
redundancy of the overlaps. In 2000, Celera assembler was
developed for best assembly of short-gun reads (Myers et
al. 2000). A more accurate and efficient assembly program
for better handling of overlap reads using multiprocessors
was developed in 2003 (Huang et al. 2003). Further, an
efficient and better tool for detection and classification of
single nucleotide polymorphisms for expressed sequence
tags using OLC approach was developed by Chevreux
et al. (2004). Also, Myers in 2005 has proposed a string
graph OLC based assembler. In order to apply this
approach for short read sequences, FM-index was applied
to find overlaps in OLC graph (Simpson and Durbin 2010).
This was followed by two faster and efficient overlap
finder proposed by Dinh and Rajasekaran (2011) and
Gonnella and Kurtz (2012).
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Developments in computational framework of DBG
approach

DBG based approach is more computationally efficient
as compared to OLC approach. The DBG approach also
resolves repeat region problem of OLC based approach with
polynomial time solution (Pevzner et al. 2001, Pevzner and
Tang 2001). Further, the problem of repeat region is addressed
efficiently through double-barrel data or by additional PCR
experiments following this approach. A parallel version of
DBG decomposition algorithm was given by Bokhari and
Sauer (2005). This algorithm made an attempt to resolve
some important issues of genome assembly like reads length,
orientation, complementarity and errors in a DNA sequence.
Further, the computational efficiency was improved through
parallelized DBG implementation in C language. Alternative
DBG representation has provided better error elimination
and sequence resolution by using more efficient algorithms
which was implemented in Velvet assembler (Zerbino and
Birney 2008). Velvet was implemented in C and tested on
a 64-bit Linux machine. Issue of scaling up the available
memory for storing DBG graphs especially for large
genomes was addressed by Simpson et al. (2009). For
reducing the memory requirements, a new distributed DBG
structure using hash tables instead of pointers was proposed
which was implemented in an assembler for short sequences
named as ABySS. In this, sequence data is partitioned and
distributed over a number of nodes in Linux Cluster to run
it parallel. Message Passing Interface (MPI) protocol was
used for communication between the nodes.

In order to further reduce memory requirements, Li et
al. (2010) proposed an approach of recording minimum-
information in DBG instead of read locations and pair-end
information. Another effort in this direction of reducing
large memory space requirements for DBG construction
was undertaken by Ye ef al. (2011). They proposed sparse
DBG structure which requires less memory and space
through skipping some intermediate k-mers. This proposed
structure also takes care of substitution errors introduced
during the sequencing process.

Storing of nodes in a DBG using hash tables and pointers
was further modified by Conway and Bromage (2011). They
proposed a new storage configuration having more efficient
data structure using information theory concepts. In this
case, DBG was represented as entropy compressed succinct
DBG. This configuration is ten times more memory efficient
as compared to the existing methods. Further, Chikhi and
Risk (2013) introduced a new, space-efficient representation
of the DBG by implicitly encoding this as a Bloom filter.
In this case, separate data structure is used to store each of
the false and true positive nodes. Besides this, a new data
structure was also proposed which stores the information
of visited nodes during traversal. Therefore, this structure
stores only a subset of k-mers leading to more efficient space
utilization. An efficient tool for de novo assembly namely
Minia was developed by combining the Bloom filter, critical
false positives structure and the above marking structure.
The memory requirements of the data structure proposed
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by Chikhi and Rizk (2013) was further reduced up to 40%
through using cascading Bloom filters and storing k-mers in
less number of bits (Salikhov ez al. 2014 ). Many popular
assemblies of genome and metagenome requires to construct
the DBG graph with multiple values of k. This hampers
their performance with the increase in genome size. In order
to resolve this problem, generalization to DBG has been
proposed by Lin and Pevzner (2014) with the introduction
of the manifold de Bruijn (M-Bruijn) graph theory. In this,
multiple k-mers sizes are considered in single iteration for
selection of optimal k-mer size instead of varying k-mer size
in each iteration as in Iterative de bruijn Graph Assembly
(IDBA) approach.

Boucher et al. (2015) described a method for efficiently
representing multiple DBG of different orders in a single
succinct data structure. The proposed data structure allows
the order of the DBG to be changed on the fly. This technique
considerably improves the memory and space requirements
of the existing assemblers. Recent technology such as
Single Molecule Real Time (SMRT) sequencing platform
generates longer but error-prone reads which is being
assembled using OLC based approach. Lin et al. (2016)
have applied generalized DBG approach to assemble these
reads to generate more accurate genome reconstruction using
A-Bruijn graph. A-Bruijn graph is developed by exploiting
the benefits from both DBG and OLC approaches.

A computational perspective of metagenome assemblers

Assembly of metagenomic data poses many challenges
which cannot be addressed by existing single genome
assemblers. Some of the existing metagenomic assemblers
are Genovo, Xgenovo, Meta-IDBA, Ray Meta, IDBA-UD,
MetaVelvet, MetaVelvet-SL, MegaHit, MegaHit1.0, PRICE,
Omega etc. There is a need to understand the algorithmic
approaches of existing assemblers to develop more
efficient algorithm to address the computational challenges.
Therefore, in this section the important algorithms used by
above assemblers are given in brief.

OLC based approaches for metagenome assembly

Genovo is a de novo assembler developed by Laserson et
al. (2011) for assembling metagenome. In order to discover
the population structure, sample is initially subjected to
Chinese restaurant process to generate prior probabilities
to classify reads. This process accounts for the unknown
number of genomes in the sample prior to their assembly.
Likely assemblies are made by applying a series of hill-
climbing algorithms steps iteratively until convergence.
This Bayesian based approach offers better sensitivity
for assembly in highly diverse environment. Genovo’s
reconstruction procedures are comparatively more efficient
than their competitive procedure which consequently yields
a higher assembly score. Genovo was further improved as
Xgenovo by incorporating paired-end information to get
higher quality assemblies (Afiahayati et al. 2013).

Haider et al. (2014) proposed an assembler named
Omega (Overlap Graph Metagenome Assembler) for
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assembling and scaffolding metagenomics data obtained
from Illumina sequencing platform at a deeper coverage.
In this, hash table is used as data structure to find overlaps
between reads. Also, simplification to the overlap graph
was done by deleting transitive edges and trimming short
branches. Further, mate-pair information is used to get
scaffolds after merging contigs. It is reported that Omega
outperforms its competitors in terms of computing time
with respect to existing OLC based Celera assembler on
the MiSeq dataset. Also, it was found that the performance
of Omega is at par on a HiSeq 100-bp dataset and superior
on a MiSeq 300-bp dataset when compared to DBG based
popular assemblers such as SOAPdenovo, IDBA-UD and
MetaVelvet.

DBG based approaches for metagenome assembly

The Meta-IDBA algorithm was proposed by Peng et
al. (2011) for assembling reads of metagenomic data for
handling the issue of polymorphism. This assembler is
based on the biological observation that the genome of
sub species of same species share more common regions
than the genome of sub-species from different species.
Therefore, the major task is partitioning of the DBG graph
is into different components such that each component
represents a consensus contig of a species. The process
of DBG partition is based on the concept that if, path
of a given length from one k-mer can be traversed to
another k-mer in DBG starting from each of its out-going
edges then two k-mers are assumed to be originated from
the same species. Otherwise, the given two k-mers may
belong to genomes of different species/sub-species and
should be separated. Further, larger components are broken
down into the smaller components and each component
represents a consensus contig of sub species from a single
species. Paired-end information was used by Meta-IDBA
to combine the contigs into scaffolds. This was followed
by performing multiple alignment of each component with
small variants of the genomes of sub-species. Finally,
consensus sequence was used to represent genome of one
species. Meta-IDBA was shown by Peng et al. (2011) to
construct longer contigs with accuracy similar to Velvet
and Abyss for different metagenomic datasets. One of the
major limitation of Meta-IDBA is that it cannot reconstruct
the contigs of each single sub-species due to presence of
common regions in the genomes of sub-species. Another,
drawback is that the accurate separation of components in
some case for some species is not possible. Also, in some
situations many small components may be obtained after
graph partitioning like presence of false positive edges,
more number of species (>1000). It may be noted that
Meta-IDBA does not depend upon the coverage for the
construction of DBG graph, so the change in abundance
ratio does not affect its performance. Subsequently, Peng
et al. (2012) developed an algorithm (IDBA-UD) based on
DBG approach considering uneven sequencing depths for
metagenomic assembly. In this assembler, instead of using
single threshold value for k-mer removal multiple values are

[Indian Journal of Agricultural Sciences 90 (5)

used depending on the sequencing depth. Also, the branching
problem of low-depth short repeat regions is solved with
the help of local assembly using paired-end information.
In order to speed up the process, an error correction step is
incorporated to correct reads of high-depth regions which
can be aligned to high confident contigs.

Metavelvet assembler is the extension of single genome
assembler named Velvet for the assembly of genome of
various species in microbial communities. It was developed
by Namiki et al. (2012) for mixed short read sequences of
multiple species. The process of assembly in MetaVelvet
is done in four phases. In the first phase, it constructs the
DBG from the input reads. In second phase, it detects the
multiple peaks based on empirical distribution of node
coverage assuming that the expected frequencies of k-mer
occurrences follow a Poisson distribution in a single-
genome assembly and the expected k-mer frequencies in
metagenome assembly were shown to follow a mixture of
Poisson distributions. MetaVelvet distinguishes a sub-graph
composed of nodes belonging to a same peak from the other
sub-graphs in the main DBG. In phase three, it identifies
shared nodes (chimeric nodes) between two sub-graphs and
disconnects two sub-graphs by separating the shared nodes
with one in and out degree. MetaVelvet uses the number of
incoming and outgoing nodes to classify a chimeric node
constructed due to repeats in the same species or due to
similar sequence in different species. Lastly in phase four,
it builds contigs and scaffolds based on the decomposed
subgraphs using Velvet functions.

The major issue in MetaVelvet is the correct
identification of chimeric nodes as this prevents generation
of longer contigs and scaffolds due to their misclassification
among species. In order to address this problem a new tool
called MetaVelvet-SL was developed (Afiahayati et al.
2015). The performance of this tool is improved by applying
supervised machine learning for classification of chimeric
node. The first step of MetaVelvet-SL is the construction
of DBG followed by identification of chimeric candidate
nodes along with their features as a second step. Further, a
Support Vector Machine is used for learning the classification
model based on features extracted from candidate nodes.
It also prepares training sample using MetaPhlAn based
on prior knowledge about the taxonomic profile of the
target microbial community. This training samples are
generated using various profiling methods such as: (i)
collection of reference genome of closely related species,
(i1) collection of genomes to simulate sequence reads, and
(ii1) alignment of nodes with reference genome. Finally,
species for each node is identified. The major drawback of
low accuracy and sensitivity in detecting the chimeric nodes
in the DBG generated by MetaVelvet is overcome by this
approach. Further, DBG is decomposed into sub-graphs for
identification of unique nodes in each sub-graph. Finally,
MetaVelvet is used for generation of contigs and scaffolds.

The problem of assembling metagenome of species
having large genomes was addressed by Li et al. (2015) by
developing MEGAHIT based on succinct DBG (SdBG), i.e.
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compressed representation of DBG. This is the first attempt
of efficient metagenome assembly from NGS data of large
genomes. In this parallelized algorithm was implemented
for construction of SABG graph which encodes m edges on
O(m) bits, and supports O(1) time traversal from a vertex
to its neighbors. Although, it offers many advantages over
DBG but its construction is a difficult task. One of major
bottleneck involved in constructing of SABG is the sorting a
set of (k+1)-mers representing edges of an SADB in reverse
lexicographical order of their length-k prefixes. MEGAHIT
tackles this problem by (i) parallelizing this with the help of
BWT-construction algorithm CX1(Liu et al. 2014), and (ii)
taking advantage of a GPU to sort suffices of a set of reads
very efficiently. In order to address the problem of limited
on-board memory of GPU, block wise strategy that partition
the k-mers according to their length-/ prefix (where /=8)
was adopted. Accordingly, k-mers in consecutive partitions
are sorted together in memory. The issue of erroneous
k-mer singletons, which increases the memory consumption
significantly was resolved by notion of mercy k-mers for
strengthening the contiguity of low-depth regions, as, the
removal of such reads may lead to the removal of low-
abundant species from data. MEGAHIT is available in both
CPU only and GPU accelerated versions. An enhancement
to MEGAHIT has been proposed by Li ef al. (2016) with
improved algorithms for assembly and merging of long
bubbles. Construction of SdBG is reduced by developing a
more refined algorithm along with modifications in existing
data structure for reducing the memory usage.

Paired-read Iterative Contig Extension (PRICE) is a
software developed by Ruby et al. (2013) for complex
metagenomics data having highly uneven coverage across an
entity along with tiny portion of a massive largely irrelevant
dataset. This is quiet useful for metageomic assembly
of viral genomes. This software operates in cycles, with
each cycle in the assembly includes various steps like (i)
mapping of reads to existing contigs, assembly with the
help of pair end read information to create larger contigs,
(i1) construction of scaffolds linking multiple seed contigs
that can be assembled together into a single sequence, (iii)
avoidance of spurious assemblies that can be created by
multi-copy genetic elements, (iv) evaluation of the output
sequence to determine its relevancy to the original target
of the assembly and, (v) removal of redundant output
sequence. This cycle of steps is repeated iteratively till
desired results are obtained. Also, Ray Meta assembler
associated with Ray Communities has been proposed by
Boisvert et al. (2012) which profiles microbiomes based
on uniquely-colored k-mers and have the capability of
assembling three billion reads from a metagenomic
experiment representing 1000 bacterial genomes of
uneven proportions.

Recently, an assembler named as metaSPAdes has
been developed which is useful in case of single cell
and highly polymorphic diploid genomes (Nurk et al.
2017). This tool is useful in efficient assembling of
metagenomic data from application of single cell (Kashtan
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et al. 2014) and TruSeq Synthetic Long Reads, i.e. TSLRs
(Sharon et al. 2015) technologies. Therefore, it is capable
of assembling vast micro diversity strains which shares
genomic sequences having variations due to mutations,
insertions of mobile elements, genome re-arrangements, and
gene transfer. metaSPAdes initially constructs DBG using
SPAdes and simplifies using various graph simplification
algorithms. The main objective of metaSPAdes is to
generate consensus assembly of strain mixture. Genomic
differences between related strains and other sequencing
errors leads to formation of large buldges and longer tips
which are detected and removed following the algorithmic
approaches suggested by Pevzner et al. (2004), Zerbino and
Birney (2008). In order to preserve the information about
rare strains, this assembler first detects the filigree edges
formed due to rare strain variants and then disconnect them
from their predominating vertices in the assembly graph
instead of removing. Further, metaSPAdes algorithm also
resolves repeats through application of exSPAnder module
of SPAdes after modification in its decision rules by making
it more conservative (Prjibelski et al. 2014, Vasilinetc et al.
2015, Antipov et al. 2016). Subsequently, undesirable path
extensions are filtered out using coverage estimate of region
being constructed. The various computational features of
metagenomic assemblers are provided in Table 1.

Empirical evaluation and discussion

Computational comparison of recent assemblers namely
MEGAHIT, Meta-IDBA, MetaVelvet and metaSPAdes has
been done for assessing the memory and time complexity on
a sever machine with four processors (each with § cores),
256 GB RAM and hard disk of 3 TB approximately. For
the purpose of performance evaluation of these assemblers,
two benchmark datasets (Vollmers et al. 2017) representing
bacterial community of varying complexity are selected and
downloaded from NCBI. The dataset samples are chosen
from Kelp BioFilm (KBF) and Marburg Forest Soil (MFS)
samples. KBF dataset comprises low community diversity
but high read redundancy, whereas, MFS dataset is highly
community diversified but is with low read redundancy. Raw
sequences from chosen dataset are pre-processed for adapter
clipping, quality and length trimming of sequences using

Running time of different Metagenome assemblers
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Fig 1 Comparison of time of assembly for selected assemblers for

KBF and MFS datasets.
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Table 1 Computational features of metagenome assemblers
Name of Data Novelty in approach Parallelism Limitation Language Read size/
assembler structure developed platform
Genovo OLC  Extracts more information Single Server Assessment with C++ 454 sequencing
from datasets and thus is [llumima dataset
suitable for low abundance
sequences.
Meta-IDBA DBG  -Handled the polymorphism Single Server -Quality of assembly C++ NGS
in similar species. depends on the quality
of DBG.
-Change in abundance -Many species leads to
ratio does not affect the many false positive edges
performance which leads to many
small components.
MetaVelvet DBG Decomposition of DGB Single Server Accurate identification of C++ Short Read
graph constructed from the chimeric reads
mixed short reads into sub-
graphs
PRICE DBG Contig length extension Multi-threading - C++ Short Read
using paired read on multicore Shotgun
single CPU. metagenomics
data
XGenovo OLC  -Additional parameter for Single Server -Implementation of C++ 454 paired end
solving chimera contig case probabilistic model with reads
-Use of modified sampling DBG graph
process for the location of
read in a contig -high computational cost
Omega OLC  Uses less computing time as Multi-threaded Less efficient as C++ [llumina Long
compared to existing OLC and multiprocess compared to DBG based Reads
based assemblers at higher distributed assemblers
coverage memory
MetaVelvet-SL  DBG  Better detection of chimeric Single Server Classification model for C++ Short Read
nodes by supervised learning. chimeric reads may be
improved.
MEGAHIT Succinct -No need for normalization GPU based and Parallelization is C++ NGS
DBG  and partitioning 3-5 times fast as restricted by small size of
_Efficient compared to its on-board GPU memory.
dynamic removal of edges ~ CPU counterpart.
MEGAHIT Refined -Long bubble merging Runs on Single - C++ NGS
v1.0 Succinct  -Faster and uses less memory ~Sever
DBG  than MEGAHIT
metaSPAdes DBG  Detection and removal of Single Server Incorporation of recent C++ Single cell and

large bulges and longer tips

high quality jumping
mate-pair libraries

TSLRs

Trimmomatic tool. Running time and peak memory usage
of selected assemblers for complete assembly process has
been observed and shown in Fig 1 and Fig 2, respectively.

Following points can be observed from this empirical
analysis

The assembly of KBF dataset takes less time as
compared to MFS irrespective of assemblers. However
peak memory usage for KBF is more in case of MEGAHIT
and Meta-IDBA, whereas it is less in case of metaSPAdes

and Meta-Velvet.

The performance of MetaVelvet with respect to running
time is best which is followed by MEGAHIT, whereas the
performance of Meta-IDBA is comparable with metaSPAdes
specially for KBF dataset. However, for MFS dataset,
Meta-IDBA performs poorly in terms of running time than
other assemblers.

The peak memory requirement for MEGAHIT is the
least followed by metaSPAdes, MetaVelvet and Meta-IDBA.

The runtime requirement for KBF dataset is less in
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Peak Memory Usage of different Metagenome assemblers
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Fig 2 Comparison of peak memory usage for selected assemblers

for KBF and MFS datasets.

comparison to MFS dataset across all assemblers is less
due to the fact that this dataset is less diverse and have high
read redundancy as comparison to MFS dataset. The runtime
requirement for metagenome assembly for both datasets
is less in case of MetaVelvet, as it partition the graph into
sub-graph with the help of statistical distribution of k-mers.
Although, Meta-IDBA also makes sub-graphs from DBG
graph based on identification of particular graph pattern of
k-mers which may be computationally less efficient.

The performance of MEGAHIT in terms of runtime
assembly is likely to be much better than MetaVelvet on
GPU machine. Run time performance of metaSPAdes is on
expected lines, as this assembler is specifically developed for
single cell and sequencing data based on TSLR technology.
Peak memory requirements for assembly in MEGAHIT
is least due to the reason that it dynamically removes the
edges and normalization as well as partitioning of graph
is not required. This has been followed by less memory
requirement of metaSPAdes which may be due to removal
of large buldges and longer tips during the construction
of graph.

Conclusion and future research directions

In general, it may be difficult to identify the
computationally best assembler from the existing assemblers
as their performance may vary based on characteristic
of dataset as well as architecture of the computational
resources available for metagenome assembly. However,
from this study it can be concluded that the performance
of MetaVelvet is considerably better than its counterparts.
Although, the performance of MEGAHIT is likely to be
better on GPU environment. The computational performance
of metagenome assembly process can be further improved in
future by (i) computationally efficient graph partitioning to
handle highly diversified multi-genomic data, (ii) application
of better time and memory management data structures,
(iii) implementation of novel parallelization approaches
and Big Data technologies, and (iv) incorporating recently
introduced auxiliary information such as Nextra Mate Pair
libraries with existing recent TSLR technology in existing
metagenome assemblers.
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