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ABSTRACT

Assembly of genome sequences of a microbial community is computationally challenging and complex than its 
single genome counterparts. Keeping in view the volume, diversity and varied abundance of different microbes, number 
of metagenome assemblers have been developed addressing specific associated computational issues mainly following 
De Bruijn Graph (DBG) and Overlap Layout Consensus (OLC) approaches. It is very pertinent to understand different 
computational approaches and issues of metagenomic assembly to further improve them with respect to time and 
computational resource requirements. Therefore, the main objective of this article is to discuss various metagenomics 
assemblers with respect to their development addressing major computational issues. Initially the computational 
perspective of single genome assemblers based on OLC and DBG graph construction approaches was described. This 
is followed by review of metagenomic assemblers with respect to the algorithm implemented for addressing issues 
in metagenome assembly. Further, performance of some of the popular metagenome assemblers were empirically 
evaluated with respect to their run time and memory requirements by taking diversified benchmark metagenomics 
data at ICAR-IASRI, New Delhi in 2019. It was concluded that performance of assemblers varied considerably on 
these datasets and there is further need to make an effort to develop new tools or to modify the existing ones using 
efficient algorithms and data structures. 
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Metagenomics is emerging as a promising technology 
for structural and functional profiling of microbial 
communities. With the advent of new sequencing techniques, 
the sequencing of the genome of many environmental and 
human microbial communities have been done as these 
were difficult to culture in the laboratory. This information 
overload has given rise to the development of many tools 
and software for analysis and assembly of metagenomics 
data. Sufficient literature is available on assemblers 
which are capable in assembling sequencing data of 
single genome, but in case of assembling mixed genomic 
sequences, i.e. metagenomics data of microbial community 
of an environment have number of computational issues 
and challenges. Attempts have been made to analyze the 
assembly challenges and accordingly reviews were published 
(El-Metwally et al. 2013, Ghurye et al. 2016). Miller et 
al. (2010) have compared genome assemblers for single 
genome based on DBG and OLC approaches. A classification 
of existing assemblers has been provided considering the 
common features of these along with complete description 
of layout and DBG graph theory. Kleftogiannis et al. (2013) 

have compared the memory efficiency of single genome 
assemblers in terms of memory usage, execution time and 
quality metrics. 

It may be noted that the above reviews were confined 
to the genomic assemblers capable of assembling 
sequence data of single species. A comprehensive review 
of metagenomics assemblers was done by Vollmers et al. 
(2017) in terms of biological/microbiologist perspective. 
Recently in a review, methods and tools for metagenome 
read classification, metageome assembly tools and contents 
of existing metagenome databases with quality aspects is 
done (Breitwieser et al. 2017). Therefore, hardly there 
is any review article which compares metagenomics 
assemblers from computational and algorithmic perspective. 
Therefore, in this article an attempt has been made to 
compare metagenomic assemblers from computational 
and algorithmic perspective, i.e. (i) variants of DBG and 
OLC graph construction, (ii) algorithmic approaches 
and (iii) computational requirements with the help of 
benchmark datasets. This article will be highly useful to the 
computational biologists/scientists, scholars and students 
working in the area of metagenomics and related fields. 

Current challenges in assembly of metagenome
Assembly of metagenome consists of three main steps 

namely (i) sequence cleaning, (ii) fragment assembly and 

https://doi.org/10.56093/ijas.v90i5.104327



848 [Indian Journal of Agricultural Sciences 90 (5)

8

SHARMA ET AL.

(iii) Binning/taxonomic assignment. Sequence cleaning 
deals with the filtering of duplicated, short, low quality, 
contaminated reads and reads containing ambiguous bases. 
Fragment assembly of metagenomic sequences is performed 
following two approaches namely OLC and DBG. De novo 
/Fragment assembly results in the generation of contigs/ 
scaffolds. Binning/taxonomic assignment is needed to 
classify/associate these data with the organisms from which 
they were originated. This process of association between 
sequence data to their related species is called binning or 
classification. Existing binning methods can be classified into 
two categories, namely taxonomy dependent and taxonomy 
independent. In case of taxonomy dependent methods, 
the extent of ‘similarity’ of the reads with sequences (in 
reference databases) or pre-computed models helps in this 
assignment process. Further, based on the strategy used 
for comparing sequence reads with existing sequences/
pre-computed models, taxonomy-dependent methods can 
be further classified into three categories, i.e. alignment-
based, composition-based and hybrid methods (Mande et al. 
2012). Alignment based algorithms uses existing alignment 
and read mapping algorithms to align the reads to known 
and characterized genomes. This approach is used in MG-
RAST, CAMERA, MEGAN, MetaPhyler and MARTA 
etc. Faster methods based on composition features use GC 
content, codon usage, oligonucleotide usage patterns for 
comparing reads to reference databases. Under this method, 
specific models are built for various genomes using various 
statistical and data mining approaches. Some binning tools 
based on this method are Phylophthia, TACOA, Phymm, 
ClaMS and RAIphy etc. Hybrid approaches combine the 
alignment and composition based methods for classification 
of metagenomic data. In case of taxonomy independent 
methods, simply group/bin of sequence reads are made from 
given dataset based on their mutual similarity and it does 
not involve any database comparison. Tools following this 
approach are TETRA (Teeling et al. 2004), CompostBin 
(Chatterji et al. 2008), AbundanceBin (Wu et al. 2011) and 
MetaCluster (Leung et al. 2011).

Initially, single genome assemblers were used for 
assembly of metagenomic data but due to computational and 
biological issues specific to this field, effective and accurate 
assembly could not be done. Some of the major challenges 
with assembly of metagenomes are: (i) uncertainty about 
population size, (ii) composition of species and (iii) noise 
model of sequencing technology. Also, coverage across 
species is uneven and affected by the species abundance in 
the sample. Therefore, an alternative approach was required 
which may also construct the contigs even for species 
having low coverage data. It was further observed that the 
performance of existing DBG based approaches degrade 
with increase in number of errors in the reads. This demands 
additional efforts for detecting, correcting and filtering 
the reads before assembly. Most of existing techniques 
in this regard implemented in single genome assemblers 
assumes the low coverage as a criterion to filter out the 
reads. This is not desirable as well as applicable in case of 

metagenomics data. Also, identification of repeat region in 
case of metagenomic data needs to be extended to multiple 
genomes. Separation of Single Nucleotide Polymorphism 
(SNPs) is difficult to separate from sequencing errors in 
metagenome. Due to the above facts, application of single 
genome assemblers for metagenome assembly leads to the 
formation of chimeric and shorter contigs. Therefore, number 
of metagenomic assemblers are developed in due course 
of time by addressing above issues. In the next section 
computational developments in DBG and OLC approaches 
are described briefly.

Computational developments
Assemblers have been developed for assembling 

metagenomic data generated through various sequencing 
platforms. The algorithmic approach of different assemblers 
varies in: (i) ways of handling type of reads (i.e. long 
reads to short reads), (ii) type of graph construction, (iii) 
sequencing error correction methods, and (iv) ability to deal 
with different length of fragments. Mainly, two types of 
assembling algorithms were developed following OLC and 
DBG construction approach according to the size of reads. 
The DBG is a graph data structure suitable for representing 
the overlap relationship of short read sequences, whereas, 
OLC is generally used for assembling long read sequences. 
It was observed that, the overlap graphs work well if there 
is small number of reads with significant overlap. However, 
this method is computationally expensive for large genomes. 
Complexity of pairwise sequence alignment is quadratic 
in terms of number of reads. Efforts have been made by 
researchers for improving the computational efficiency of 
OLC and DBG based approaches.

Developments in computational framework of OLC 
approach

The first graphical representation of sequence 
assembly as an overlap graph was introduced by 
Kececioglu and Myers in 1995. In an overlap graph, a 
vertex represents a read and an edge represents an overlap. 
Optimal path through each vertex was used to find the 
layout of reads to covert to larger fragments of reads. 
Transitive reduction approach was proposed to reduce the 
redundancy of the overlaps. In 2000, Celera assembler was 
developed for best assembly of short-gun reads (Myers et 
al. 2000). A more accurate and efficient assembly program 
for better handling of overlap reads using multiprocessors 
was developed in 2003 (Huang et al. 2003). Further, an 
efficient and better tool for detection and classification of 
single nucleotide polymorphisms for expressed sequence 
tags using OLC approach was developed by Chevreux 
et al. (2004). Also, Myers in 2005 has proposed a string 
graph OLC based assembler. In order to apply this 
approach for short read sequences, FM-index was applied 
to find overlaps in OLC graph (Simpson and Durbin 2010). 
This was followed by two faster and efficient overlap 
finder proposed by Dinh and Rajasekaran (2011) and 
Gonnella and Kurtz (2012). 
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Developments in computational framework of DBG 
approach

DBG based approach is more computationally efficient 
as compared to OLC approach. The DBG approach also 
resolves repeat region problem of OLC based approach with 
polynomial time solution (Pevzner et al. 2001, Pevzner and 
Tang 2001). Further, the problem of repeat region is addressed 
efficiently through double-barrel data or by additional PCR 
experiments following this approach. A parallel version of 
DBG decomposition algorithm was given by Bokhari and 
Sauer (2005). This algorithm made an attempt to resolve 
some important issues of genome assembly like reads length, 
orientation, complementarity and errors in a DNA sequence. 
Further, the computational efficiency was improved through 
parallelized DBG implementation in C language. Alternative 
DBG representation has provided better error elimination 
and sequence resolution by using more efficient algorithms 
which was implemented in Velvet assembler (Zerbino and 
Birney 2008). Velvet was implemented in C and tested on 
a 64-bit Linux machine. Issue of scaling up the available 
memory for storing DBG graphs especially for large 
genomes was addressed by Simpson et al. (2009). For 
reducing the memory requirements, a new distributed DBG 
structure using hash tables instead of pointers was proposed 
which was implemented in an assembler for short sequences 
named as ABySS. In this, sequence data is partitioned and 
distributed over a number of nodes in Linux Cluster to run 
it parallel. Message Passing Interface (MPI) protocol was 
used for communication between the nodes.

In order to further reduce memory requirements, Li et 
al. (2010) proposed an approach of recording minimum-
information in DBG instead of read locations and pair-end 
information. Another effort in this direction of reducing 
large memory space requirements for DBG construction 
was undertaken by Ye et al. (2011). They proposed sparse 
DBG structure which requires less memory and space 
through skipping some intermediate k-mers. This proposed 
structure also takes care of substitution errors introduced 
during the sequencing process. 

Storing of nodes in a DBG using hash tables and pointers 
was further modified by Conway and Bromage (2011). They 
proposed a new storage configuration having more efficient 
data structure using information theory concepts. In this 
case, DBG was represented as entropy compressed succinct 
DBG. This configuration is ten times more memory efficient 
as compared to the existing methods. Further, Chikhi and 
Risk (2013) introduced a new, space-efficient representation 
of the DBG by implicitly encoding this as a Bloom filter. 
In this case, separate data structure is used to store each of 
the false and true positive nodes. Besides this, a new data 
structure was also proposed which stores the information 
of visited nodes during traversal. Therefore, this structure 
stores only a subset of k-mers leading to more efficient space 
utilization. An efficient tool for de novo assembly namely 
Minia was developed by combining the Bloom filter, critical 
false positives structure and the above marking structure. 
The memory requirements of the data structure proposed 

by Chikhi and Rizk (2013) was further reduced up to 40% 
through using cascading Bloom filters and storing k-mers in 
less number of bits (Salikhov et al. 2014 ). Many popular 
assemblies of genome and metagenome requires to construct 
the DBG graph with multiple values of k. This hampers 
their performance with the increase in genome size. In order 
to resolve this problem, generalization to DBG has been 
proposed by Lin and Pevzner (2014) with the introduction 
of the manifold de Bruijn (M-Bruijn) graph theory. In this, 
multiple k-mers sizes are considered in single iteration for 
selection of optimal k-mer size instead of varying k-mer size 
in each iteration as in Iterative de bruijn Graph Assembly 
(IDBA) approach. 

Boucher et al. (2015) described a method for efficiently 
representing multiple DBG of different orders in a single 
succinct data structure. The proposed data structure allows 
the order of the DBG to be changed on the fly. This technique 
considerably improves the memory and space requirements 
of the existing assemblers. Recent technology such as 
Single Molecule Real Time (SMRT) sequencing platform 
generates longer but error-prone reads which is being 
assembled using OLC based approach. Lin et al. (2016) 
have applied generalized DBG approach to assemble these 
reads to generate more accurate genome reconstruction using 
A-Bruijn graph. A-Bruijn graph is developed by exploiting 
the benefits from both DBG and OLC approaches. 

A computational perspective of metagenome assemblers
Assembly of metagenomic data poses many challenges 

which cannot be addressed by existing single genome 
assemblers. Some of the existing metagenomic assemblers 
are Genovo, Xgenovo, Meta-IDBA, Ray Meta, IDBA-UD, 
MetaVelvet, MetaVelvet-SL, MegaHit, MegaHit1.0, PRICE, 
Omega etc. There is a need to understand the algorithmic 
approaches of existing assemblers to develop more 
efficient algorithm to address the computational challenges. 
Therefore, in this section the important algorithms used by 
above assemblers are given in brief. 

OLC based approaches for metagenome assembly
Genovo is a de novo assembler developed by Laserson et 

al. (2011) for assembling metagenome. In order to discover 
the population structure, sample is initially subjected to 
Chinese restaurant process to generate prior probabilities 
to classify reads. This process accounts for the unknown 
number of genomes in the sample prior to their assembly. 
Likely assemblies are made by applying a series of hill-
climbing algorithms steps iteratively until convergence. 
This Bayesian based approach offers better sensitivity 
for assembly in highly diverse environment. Genovo’s 
reconstruction procedures are comparatively more efficient 
than their competitive procedure which consequently yields 
a higher assembly score. Genovo was further improved as 
Xgenovo by incorporating paired-end information to get 
higher quality assemblies (Afiahayati et al. 2013). 

Haider et al. (2014) proposed an assembler named 
Omega (Overlap Graph Metagenome Assembler) for 
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assembling and scaffolding metagenomics data obtained 
from Illumina sequencing platform at a deeper coverage. 
In this, hash table is used as data structure to find overlaps 
between reads. Also, simplification to the overlap graph 
was done by deleting transitive edges and trimming short 
branches. Further, mate-pair information is used to get 
scaffolds after merging contigs. It is reported that Omega 
outperforms its competitors in terms of computing time 
with respect to existing OLC based Celera assembler on 
the MiSeq dataset. Also, it was found that the performance 
of Omega is at par on a HiSeq 100-bp dataset and superior 
on a MiSeq 300-bp dataset when compared to DBG based 
popular assemblers such as SOAPdenovo, IDBA-UD and 
MetaVelvet.

DBG based approaches for metagenome assembly
The Meta-IDBA algorithm was proposed by Peng et 

al. (2011) for assembling reads of metagenomic data for 
handling the issue of polymorphism. This assembler is 
based on the biological observation that the genome of 
sub species of same species share more common regions 
than the genome of sub-species from different species. 
Therefore, the major task is partitioning of the DBG graph 
is into different components such that each component 
represents a consensus contig of a species. The process 
of DBG partition is based on the concept that if, path 
of a given length from one k-mer can be traversed to 
another k-mer in DBG starting from each of its out-going 
edges then two k-mers are assumed to be originated from 
the same species. Otherwise, the given two k-mers may 
belong to genomes of different species/sub-species and 
should be separated. Further, larger components are broken 
down into the smaller components and each component 
represents a consensus contig of sub species from a single 
species. Paired-end information was used by Meta-IDBA 
to combine the contigs into scaffolds. This was followed 
by performing multiple alignment of each component with 
small variants of the genomes of sub-species. Finally, 
consensus sequence was used to represent genome of one 
species. Meta-IDBA was shown by Peng et al. (2011) to 
construct longer contigs with accuracy similar to Velvet 
and Abyss for different metagenomic datasets. One of the 
major limitation of Meta-IDBA is that it cannot reconstruct 
the contigs of each single sub-species due to presence of 
common regions in the genomes of sub-species. Another, 
drawback is that the accurate separation of components in 
some case for some species is not possible. Also, in some 
situations many small components may be obtained after 
graph partitioning like presence of false positive edges, 
more number of species (>1000). It may be noted that 
Meta-IDBA does not depend upon the coverage for the 
construction of DBG graph, so the change in abundance 
ratio does not affect its performance. Subsequently, Peng 
et al. (2012) developed an algorithm (IDBA-UD) based on 
DBG approach considering uneven sequencing depths for 
metagenomic assembly. In this assembler, instead of using 
single threshold value for k-mer removal multiple values are 

used depending on the sequencing depth. Also, the branching 
problem of low-depth short repeat regions is solved with 
the help of local assembly using paired-end information. 
In order to speed up the process, an error correction step is 
incorporated to correct reads of high-depth regions which 
can be aligned to high confident contigs.

Metavelvet assembler is the extension of single genome 
assembler named Velvet for the assembly of genome of 
various species in microbial communities. It was developed 
by Namiki et al. (2012) for mixed short read sequences of 
multiple species. The process of assembly in MetaVelvet 
is done in four phases. In the first phase, it constructs the 
DBG from the input reads. In second phase, it detects the 
multiple peaks based on empirical distribution of node 
coverage assuming that the expected frequencies of k-mer 
occurrences follow a Poisson distribution in a single-
genome assembly and the expected k-mer frequencies in 
metagenome assembly were shown to follow a mixture of 
Poisson distributions. MetaVelvet distinguishes a sub-graph 
composed of nodes belonging to a same peak from the other 
sub-graphs in the main DBG. In phase three, it identifies 
shared nodes (chimeric nodes) between two sub-graphs and 
disconnects two sub-graphs by separating the shared nodes 
with one in and out degree. MetaVelvet uses the number of 
incoming and outgoing nodes to classify a chimeric node 
constructed due to repeats in the same species or due to 
similar sequence in different species. Lastly in phase four, 
it builds contigs and scaffolds based on the decomposed 
subgraphs using Velvet functions.

The major issue in MetaVelvet is the correct 
identification of chimeric nodes as this prevents generation 
of longer contigs and scaffolds due to their misclassification 
among species. In order to address this problem a new tool 
called MetaVelvet-SL was developed (Afiahayati et al. 
2015). The performance of this tool is improved by applying 
supervised machine learning for classification of chimeric 
node. The first step of MetaVelvet-SL is the construction 
of DBG followed by identification of chimeric candidate 
nodes along with their features as a second step. Further, a 
Support Vector Machine is used for learning the classification 
model based on features extracted from candidate nodes. 
It also prepares training sample using MetaPhlAn based 
on prior knowledge about the taxonomic profile of the 
target microbial community. This training samples are 
generated using various profiling methods such as: (i) 
collection of reference genome of closely related species, 
(ii) collection of genomes to simulate sequence reads, and 
(iii) alignment of nodes with reference genome. Finally, 
species for each node is identified. The major drawback of 
low accuracy and sensitivity in detecting the chimeric nodes 
in the DBG generated by MetaVelvet is overcome by this 
approach. Further, DBG is decomposed into sub-graphs for 
identification of unique nodes in each sub-graph. Finally, 
MetaVelvet is used for generation of contigs and scaffolds. 

The problem of assembling metagenome of species 
having large genomes was addressed by Li et al. (2015) by 
developing MEGAHIT based on succinct DBG (SdBG), i.e. 
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compressed representation of DBG. This is the first attempt 
of efficient metagenome assembly from NGS data of large 
genomes. In this parallelized algorithm was implemented 
for construction of SdBG graph which encodes m edges on 
O(m) bits, and supports O(1) time traversal from a vertex 
to its neighbors. Although, it offers many advantages over 
DBG but its construction is a difficult task. One of major 
bottleneck involved in constructing of SdBG is the sorting a 
set of (k+1)-mers representing edges of an SdDB in reverse 
lexicographical order of their length-k prefixes. MEGAHIT 
tackles this problem by (i) parallelizing this with the help of 
BWT-construction algorithm CX1(Liu et al. 2014), and (ii) 
taking advantage of a GPU to sort suffices of a set of reads 
very efficiently. In order to address the problem of limited 
on-board memory of GPU, block wise strategy that partition 
the k-mers according to their length-l prefix (where l=8) 
was adopted. Accordingly, k-mers in consecutive partitions 
are sorted together in memory. The issue of erroneous 
k-mer singletons, which increases the memory consumption 
significantly was resolved by notion of mercy k-mers for 
strengthening the contiguity of low-depth regions, as, the 
removal of such reads may lead to the removal of low-
abundant species from data. MEGAHIT is available in both 
CPU only and GPU accelerated versions. An enhancement 
to MEGAHIT has been proposed by Li et al. (2016) with 
improved algorithms for assembly and merging of long 
bubbles. Construction of SdBG is reduced by developing a 
more refined algorithm along with modifications in existing 
data structure for reducing the memory usage. 

Paired-read Iterative Contig Extension (PRICE) is a 
software developed by Ruby et al. (2013) for complex 
metagenomics data having highly uneven coverage across an 
entity along with tiny portion of a massive largely irrelevant 
dataset. This is quiet useful for metageomic assembly 
of viral genomes. This software operates in cycles, with 
each cycle in the assembly includes various steps like (i) 
mapping of reads to existing contigs, assembly with the 
help of pair end read information to create larger contigs, 
(ii) construction of scaffolds linking multiple seed contigs 
that can be assembled together into a single sequence, (iii) 
avoidance of spurious assemblies that can be created by 
multi-copy genetic elements, (iv) evaluation of the output 
sequence to determine its relevancy to the original target 
of the assembly and, (v) removal of redundant output 
sequence. This cycle of steps is repeated iteratively till 
desired results are obtained. Also, Ray Meta assembler 
associated with Ray Communities has been proposed by 
Boisvert et al. (2012) which profiles microbiomes based 
on uniquely-colored k-mers and have the capability of 
assembling three billion reads from a metagenomic 
experiment representing 1000 bacterial genomes of 
uneven proportions.

Recently, an assembler named as metaSPAdes has 
been developed which is useful in case of single cell 
and highly polymorphic diploid genomes (Nurk et al. 
2017). This tool is useful in efficient assembling of 
metagenomic data from application of single cell (Kashtan 

et al. 2014) and TruSeq Synthetic Long Reads, i.e. TSLRs 
(Sharon et al. 2015) technologies. Therefore, it is capable 
of assembling vast micro diversity strains which shares 
genomic sequences having variations due to mutations, 
insertions of mobile elements, genome re-arrangements, and 
gene transfer. metaSPAdes initially constructs DBG using 
SPAdes and simplifies using various graph simplification 
algorithms. The main objective of metaSPAdes is to 
generate consensus assembly of strain mixture. Genomic 
differences between related strains and other sequencing 
errors leads to formation of large buldges and longer tips 
which are detected and removed following the algorithmic 
approaches suggested by Pevzner et al. (2004), Zerbino and 
Birney (2008). In order to preserve the information about 
rare strains, this assembler first detects the filigree edges 
formed due to rare strain variants and then disconnect them 
from their predominating vertices in the assembly graph 
instead of removing. Further, metaSPAdes algorithm also 
resolves repeats through application of exSPAnder module 
of SPAdes after modification in its decision rules by making 
it more conservative (Prjibelski et al. 2014, Vasilinetc et al. 
2015, Antipov et al. 2016). Subsequently, undesirable path 
extensions are filtered out using coverage estimate of region 
being constructed. The various computational features of 
metagenomic assemblers are provided in Table 1.

Empirical evaluation and discussion
Computational comparison of recent assemblers namely 

MEGAHIT, Meta-IDBA, MetaVelvet and metaSPAdes has 
been done for assessing the memory and time complexity on 
a sever machine with four processors (each with 8 cores), 
256 GB RAM and hard disk of 3 TB approximately. For 
the purpose of performance evaluation of these assemblers, 
two benchmark datasets (Vollmers et al. 2017) representing 
bacterial community of varying complexity are selected and 
downloaded from NCBI. The dataset samples are chosen 
from Kelp BioFilm (KBF) and Marburg Forest Soil (MFS) 
samples. KBF dataset comprises low community diversity 
but high read redundancy, whereas, MFS dataset is highly 
community diversified but is with low read redundancy. Raw 
sequences from chosen dataset are pre-processed for adapter 
clipping, quality and length trimming of sequences using 

Fig 1	 Comparison of time of assembly for selected assemblers for 
KBF and MFS datasets.
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Table 1  Computational features of metagenome assemblers

Name of 
assembler

Data 
structure

Novelty in approach Parallelism Limitation Language 
developed

Read size/
platform

Genovo
. 

OLC Extracts more information 
from datasets and thus is 
suitable for low abundance 
sequences.

Single Server A s s e s s m e n t  w i t h 
Illumima dataset 

C++ 454 sequencing

Meta-IDBA DBG -Handled the polymorphism 
in similar species.

Single Server -Quality of assembly 
depends on the quality 
of DBG. 

C++ NGS

-Change in abundance 
ratio does not affect the 
performance

-Many species leads to 
many false positive edges 
which leads to many 
small components.

MetaVelvet DBG Decomposition of DGB 
graph constructed from the 
mixed short reads into sub-
graphs

Single Server Accurate identification of 
chimeric reads

C++ Short Read

PRICE DBG Contig length extension 
using paired read

Multi-threading 
o n  m u l t i c o r e 
single CPU. 

- C++ Short Read 
Shotgun 
metagenomics 
data

XGenovo OLC -Additional parameter for 
solving chimera contig case 
-Use of modified sampling 
process for the location of 
read in a contig

Single Server -Implementat ion of 
probabilistic model with 
DBG graph 

-high computational cost

C++ 454 paired end 
reads

Omega OLC Uses less computing time as 
compared to existing OLC 
based assemblers at higher 
coverage

Multi- threaded 
and multiprocess 
d i s t r i b u t e d 
memory

L e s s  e f f i c i e n t  a s 
compared to DBG based 
assemblers

C++ Illumina Long 
Reads

MetaVelvet-SL DBG Better detection of chimeric 
nodes by supervised learning.

Single Server Classification model for 
chimeric reads may be 
improved. 

C++ Short Read

MEGAHIT Succinct 
DBG

-No need for normalization 
and partitioning
-Efficient 
dynamic removal of edges

GPU based and 
3-5 times fast as 
compared to its 
CPU counterpart.

P a r a l l e l i z a t i o n  i s 
restricted by small size of 
on-board GPU memory. 

C++ NGS

MEGAHIT 
v1.0

Refined 
Succinct 

DBG

-Long bubble merging
-Faster and uses less memory 
than MEGAHIT

Runs on Single 
Sever

- C++ NGS 

metaSPAdes DBG Detection and removal of 
large bulges and longer tips 

Single Server Incorporation of recent 
high quality jumping 
mate-pair libraries

C++ Single cell and 
TSLRs

and Meta-Velvet.
The performance of MetaVelvet with respect to running 

time is best which is followed by MEGAHIT, whereas the 
performance of Meta-IDBA is comparable with metaSPAdes 
specially for KBF dataset. However, for MFS dataset, 
Meta-IDBA performs poorly in terms of running time than 
other assemblers.

The peak memory requirement for MEGAHIT is the 
least followed by metaSPAdes, MetaVelvet and Meta-IDBA.

The runtime requirement for KBF dataset is less in 

Trimmomatic tool. Running time and peak memory usage 
of selected assemblers for complete assembly process has 
been observed and shown in Fig 1 and Fig 2, respectively.

Following points can be observed from this empirical 
analysis

The assembly of KBF dataset takes less time as 
compared to MFS irrespective of assemblers. However 
peak memory usage for KBF is more in case of MEGAHIT 
and Meta-IDBA, whereas it is less in case of metaSPAdes 
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comparison to MFS dataset across all assemblers is less 
due to the fact that this dataset is less diverse and have high 
read redundancy as comparison to MFS dataset. The runtime 
requirement for metagenome assembly for both datasets 
is less in case of MetaVelvet, as it partition the graph into 
sub-graph with the help of statistical distribution of k-mers. 
Although, Meta-IDBA also makes sub-graphs from DBG 
graph based on identification of particular graph pattern of 
k-mers which may be computationally less efficient.

The performance of MEGAHIT in terms of runtime 
assembly is likely to be much better than MetaVelvet on 
GPU machine. Run time performance of metaSPAdes is on 
expected lines, as this assembler is specifically developed for 
single cell and sequencing data based on TSLR technology. 
Peak memory requirements for assembly in MEGAHIT 
is least due to the reason that it dynamically removes the 
edges and normalization as well as partitioning of graph 
is not required. This has been followed by less memory 
requirement of metaSPAdes which may be due to removal 
of large buldges and longer tips during the construction 
of graph.

Conclusion and future research directions
In general, it may be difficult to identify the 

computationally best assembler from the existing assemblers 
as their performance may vary based on characteristic 
of dataset as well as architecture of the computational 
resources available for metagenome assembly. However, 
from this study it can be concluded that the performance 
of MetaVelvet is considerably better than its counterparts. 
Although, the performance of MEGAHIT is likely to be 
better on GPU environment. The computational performance 
of metagenome assembly process can be further improved in 
future by (i) computationally efficient graph partitioning to 
handle highly diversified multi-genomic data, (ii) application 
of better time and memory management data structures, 
(iii) implementation of novel parallelization approaches 
and Big Data technologies, and (iv) incorporating recently 
introduced auxiliary information such as Nextra Mate Pair 
libraries with existing recent TSLR technology in existing 
metagenome assemblers. 
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