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ABSTRACT

An investigation was carried out to assess short-term (2013—16) impact of wastewater irrigations on the chemical
properties of the soil under turfgrass (Cynodon dactylon L. var. Selection-1), planted with and without sub-soil porous
plastic mulch, in the experimental field of the Water Technology Centre of ICAR-IARI, New Delhi. The investigation
comprised 3-replicates of 2 —groundwater irrigation scheduling treatments (each of 50 mm depth) at 100% ET_ and
6- treatments of wastewater irrigation scheduling (also of 50 mm depth each) at 75%, 100% and 125% ET_, under
with and without sub-soil porous plastic mulch planting. The investigation revealed a non-significant change in the
rhizosphere soil pH and EC under all wastewater irrigation treatments. However, a significant (14 to 25%) increase
in the soil organic carbon, particularly under the more frequently (i.e. at 75% ET,) wastewater irrigated plots, was
observed. These were also found to be associated with increased soil major (N: 8.5 to 15.2%; P: 45.7 to 62.8%; K:
12 to 34.7%) and micro nutrients (Zn: 22.4 to 29.5%; Mn: 16.9 to 27.1 %; Cu: 21.9 to 19.2% and Fe: 15.6 to 24.8%).
However, there was no heavy metal built-up in such wastewater irrigated soils probably due to their presence in within
permissible levels in the applied irrigation waters. The investigations thus indicated a great potential of improved
soil health, with no heavy metal threats, under short-term wastewater irrigation applications in urban turfgrass based

landscapes.
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Rapid population growth due to increased urbanization,
industrialization and enhanced economic living standards
has resulted in fresh water diversion to the non-farm sectors
and thereby, increased wastewater generation (Qian and
Mecham 2005). This has concomitantly observed to result
in an enormous interest in wastewater reuse and recycling
particularly for turfgrass based urban landscaping in common
parks, roadsides, golf courses, cemeteries, athletic fields,
etc. for conserving/protecting freshwater resource and
urban environment (Castro ef al. 2011, Manas ef al. 2012
and Harivandi 2012). Turfgrass in particular is known for
its capacity to absorb relatively large amounts of nitrogen
and other nutrients, often found in elevated quantities in
wastewaters (Gurjar and Kaur 2018). However, despite
several benefits associated with effective wastewater
disposal in the turfgrass based urban landscapes, presence
of undesirable levels of one or more chemical constituents/
pathogens in such waters often poses threats to the health
of the so irrigated soils, underlaying aquifers and the
humans/ livestock enjoying these landscapes (Anderson et
al. 1981, Pepper and Mancino 1993). In fact, wastewater
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use in turfgrass based systems is usually dictated by certain
guidelines/ local laws (Jalali et al. 2008). In view of this, the
present investigation was thus primarily aimed at assessing
the comparative short-term impact of continuous wastewater
irrigations, at different irrigation schedules, on the chemical
properties of the soil under turfgrass (Cynodon dactylon L.
var. Selection-1), planted with and without sub-soil porous
plastic mulch, in comparison to the normal ground water
irrigated systems.

MATERIALS AND METHODS

The experimental study was carried out in the Field
No. | of Water Technology Centre research farm, ICAR-
Indian Agricultural Research Institute (IARI), New Delhi,
India during the year 2013-16. The GPS coordinates of
experimental field (mid part) are as Latitude 28° 38* 05”
N, Longitude 77° 09° 38”E and Altitude 225 m above
mean sea level. The study area being a part of the 6" Agro-
Climatic Region/Zone (Trans-Gangetic Plains Region) and
4th Agro-Ecological Region (Hot semi-arid eco-region with
alluvium derived soil) of India has subtropical and semi-
arid climate with hot dry summer and cold winter. The
long-term (past 30 years) average annual rainfall was 710
mm. The experiment was laid out in Randomized Block
Design with three replications. Treatments included T1:
Groundwater irrigation at 100% ET_ without sub-soil porous
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plastic mulch, T2: Groundwater irrigation at 100% ET_ with
sub-soil plastic mulch, T3: Wastewater irrigation at 100%
ET, without sub-soil porous plastic mulch, T4: Wastewater
irrigation at 100% ET_ with sub-soil plastic mulch, TS:
Wastewater irrigation at 125% ET_ without sub-soil porous
plastic mulch, T6: Wastewater irrigation at 125% ET_ with
sub-soil porous plastic mulch, T7: Wastewater irrigation
at 75% ET, without sub-soil porous plastic mulch, T8:
Wastewater irrigation at 75% ET_ with sub-soil porous plastic
mulch. The ET, (i.e. crop evapotranspiration), was computed
as a product of reference evapotranspiration (ET,)) and crop
coefficient (K,). Thus, to compute ET, (=ET,* K), ET,
values were estimated on daily basis using CROPWAT 8.0
model (FAO 1992, Allen et al. 1998) while crop coefficient
(Kc) value was assumed as 0.85 as per FAO 1998; FAO
2002 data on turfgrass at mid growth stage. The turfgrass
(var. Selection-1) cuttings were planted in the month of May
during the year 2013 by dibbling method at a spacing of 10
% 10 cm along with a basal fertilizer dose of 200:200:100
kg NPK/ha. For regular maintenance of turfgrass, manual
weeding, mowing and sweeping operations were followed as
per the standard package of practices. During each irrigation
cycle, groundwater and wastewater samples were collected
and analyzed. Acidity/alkalinity (i.e. pH) and salinity as
electrical conductivity (i.e. EC) were determined though
the pH and electrical conductivity meters, respectively
(Jackson 1973). Sodium, calcium, magnesium (Jackson
1973), carbonate, bicarbonate (Richards 1954) were also
analysed in triplicate, as per the standard procedures. The
concentrations of sodium, calcium, magnesium, carbonate
and bicarbonate so determined were transformed to sodium
absorption ratio (SAR) and residual sodium carbonate (RSC)
concentrations (Ayers and Westcot 1985). Bio-chemical
oxygen demand (BOD: Winkler 1988), chemical oxygen
demand (COD: Singh ef al. 2005) of water samples were
measured as per standard methods. Micronutrients and heavy
metals in water samples were measured by inductively
coupled plasma mass spectrometry (ICP-MS) method as
given in APHA (2005). Faecal coliforms analysis in water
samples was done using most probable number (MPN)
index method (Oblinger and Koburger 1975, WHO 1989,
APHA 2005). Besides this, random soil samples (at 0-15
cm and 15-30 cm depth) from each experimental plot were
also collected and analyzed for their quality characteristics
(as per the standard procedures), during both beginning
(i.e. in year 2013) and end of the study period (i.e. in year
2016). Soil reaction (i.e. pH,.,) and electrical conductivity
(i.e. EC,.,) were determined though the pH and electrical
conductivity meters, respectively (Jackson 1973). While
the soil organic carbon (SOC) and available nitrogen
(N) contents, respectively were determined through the
dichromate oxidation (Walkley and Black 1934) and
alkaline potassium permanganate distillation methods
(Subbiah and Asija 1956) using a (Pelicon make) nitrogen
analyzer. Soil available phosphorus (P) and potassium (K)
on the other hand were determined through a UV visible
spectrophotometer (Model: HACH DR-5000; Olsen et
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al. 1954 method) and a flame photometer (Jackson 1973
method), respectively. DTPA extractable soil micro-nutrients
(viz. Cu, Fe, Mn, Zn) and heavy metal (viz. Cr, Ni, Pb and
Cd) contents (Lindsay and Norvell 1978; APHA 2005)
on the other hand were estimated through an Inductively
Coupled Plasma Spectrophotometer, as per the standard
procedures. The analysis of variation (ANOVA) technique
was carried out on the data for each parameter as applicable
to randomized block design (Gomez and Gomez 1983). The
significance of the treatment effect was determined using
F-test, and to determine the significance of the difference
between the means of the two treatments, least significant
differences (LSD) was estimated at 5% probability level,
and Duncan’s multiple range test was used for comparing
three or more means at the same probability level.

RESULTS AND DISCUSSION
Impact on soil chemical properties

Soil acidity, conductivity and organic carbon

Short-term impact of wastewater vs. ground water
irrigations on the pH, EC and SOC are illustrated in Table
1. It could be observed from Table 1 that the irrigating with
wastewaters (having groundwater comparable pH and EC
values) seems to be having non-significant impacts on the
soil pH at either of the soil depths. This was also observed to
be the case w.r.t the soil electrical conductivity (EC) of the
top-soil (0-15 cm) layer. However, as observed from Table 2,
there was a significant (30 to 35%) decrease in sub-soil (15-
30 cm) electrical conductivity in both ground and wastewater
irrigated plots (with or without sub-soil porous plastic mulch)
due to the constant leaching of salts to the deeper soil layers.
Thus, the investigation revealed non-significant changes
in the soil pH and EC levels under wastewater irrigations,
in comparison to the groundwater irrigations in both with
and without sub-soil porous plastic mulch based turfgrass
planted treatments. However, the investigation revealed a
significant (14 to 25%) increase in the soil organic carbon
particularly under the more frequently (i.e. at 75% ET; 2)
wastewater irrigated plots due to greater leaching of mobile
carbon fractions to the deeper soil layers associated with
relatively lower SOC mineralization and hence relatively
higher SOC sequestration than the frequently tilled top- soil
layers. However, like ground water irrigations, short-term
applications of less frequent wastewater irrigations (at
125% ET_; Table 2), on the contrary, were observed to be
associated with non-significant SOC built-up in both top
and sub-soil layers. These findings were found to be in close
conformity with the other similar investigations (Saha et al.
2010) on short/ long-term impacts of wastewater irrigations.

Major soil available nutrients

Comparative impacts of ground and wastewater
irrigations on the soil available - N, P and K contents are
illustrated in Table 2. Short term impact of wastewaters
scheduled at 75%, 100% and 125% ET_ revealed a significant
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Table 1 Comparative impact of wastewater and ground water

irrigations on the soil chemical properties under turfgrass
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Table 2 Impact of wastewater irrigations on soil available
nutrients (NPK) under turfgrass

Treatment EC Organic carbon
PH (dS/m) (%)

0-15 1530 0-15 15-30 0-15 15-30

cm cm cm cm cm cm

T1 7.62 7.70 0.23 0.18 0.35 0.25
(NS) (-30.8) (NS) (NS

T2 7.70 7.71 0.21 0.18 0.35 0.25
(NS) (-30.8) (NS) (NS)

T3 7.61 7.70 0.21 0.17 0.38 0.30
(NS) (-34.6) (+8.6) (NS)

T4 7.69 7.45 0.23 0.17 0.38 0.31
(NS) (-34.6) (+8.6) (+10.7)

TS 7.60 7.61 0.22 0.17 0.36 0.27
(NS) (-34.6) (NS) (NS)

T6 7.61 7.80 0.24 0.16 0.37 0.27
(NS) (-38.5) (NS) (NS)

T7 7.70 7.76 0.29 0.17 0.40 0.33
(NS)  (-34.6) (+14.3) (+17.9)

T8 7.64 7.72 0.28 0.17 0.41 0.35
(NS) (-34.6) (+17.1) (+25.0)

SEm=+ 0.07 0.08 0.04 0.02 0.01 0.01
LSD NS NS 0.13 0.06 0.02 0.04

(P=0.05)

Note: Percentage significant increase (+) or decrease (-) over
initial value is shown in bracket.

increase in soil -N, P and K contents in both top (0-15 cm)
and sub-soil (15-30 cm) layers under turfgrass. In general,
the soils receiving more frequent wastewater irrigations (i.e.
at 75% ET,), were observed to be associated with higher
soil available - N, P and K built-up. While those receiving
ground water irrigations were observed to be associated
with non-significant soil available N, P and K built-up.
This was primarily attributed to relatively higher levels of
N, P and K contents in the applied wastewaters. Similar
observations have also been reported by Siebe (1998),
Ryan et al. (2006) and Kalavrouziotis et al. (2008) during
long-term sewage irrigations.

Soil available micro-nutrients

Application of wastewater irrigations was also found
to be associated with significantly improved soil available
micronutrient (viz. Cu, Fe, Mn, Zn) contents in both top
and sub-soil layers of soil under turfgrass (Table 3). In
general, the turfgrass (with/ without sub-soil porous plastic
mulch) receiving more frequent wastewater irrigation was
observed to be associated with the highest available micro-
nutrient built up in both top and sub-soil layers (Table
3). In contrast to these treatments, the ones receiving
groundwater irrigations were observed to be associated
with non-significant soil micro-nutrient built up. This could
also be primarily attributed to relatively (3 to 21 times)
higher levels of Cu, Fe, Mn and Zn contents in the applied

Treatment Available Available Available
nitrogen phosphorous potassium
(kg/ha) (kg/ha) (kg/ha)
0-15 1530 0-15 15-30 0-15 15-30
cm cm cm cm cm cm
T1 1640 148.6 325 172 2203 124.0
(+3.5) (+42) (NS) (NS) (NS) (NS)
T2 164.0 1494 325 172 219.8 1235
(+3.5) (+4.8) (NS) (NS) (NS) (NS)
T3 168.7 1572  39.2 194 241.6 1453
(+6.4) (+10.2) (+30.7) (NS) (+7.5) (+14.6)
T4 169.5 158.0 403 209 2452 1489
(+6.9) (+10.8) (+34.3) (NS) (+9.1) (+17.4)
T5 166.4 1525 358 23.1  230.7 1344
(+5.0) (+6.9) (+19.3) (+22.9) (NS) (NS)
T6 1672 151.7 370 254 2383 1420
(+5.5) (+6.4) (+23.3) (+35.1) (+6.1) (+12.0)
T7 1719 1619 437 284 2562 1599
(+8.5) (+13.5) (+45.7) (+51.1) (+14.0) (+26.1)
T8 1742 1643 470 30.6  267.1 170.8
(19.9) (+15.2) (+56.7) (+62.8) (+18.9) (+34.7)
SEms+ 0.96 1.78 1.37 1.15 4.02 4.01
LSD 2.98 5.53 4.27 3.57 1252 1250
(P=0.05)

Note: Percentage significant increase (+) or decrease (-) over
initial value is shown in bracket.

wastewaters than the ground waters. Similar observations
have also been reported by Saha et al. (2010).

Heavy metal built-up

It expected that long-term application of wastewater
irrigation can result into soil heavy metal accumulation.
However, no such pattern of soil heavy metal accumulation
(Cr, Cd, Ni, Pb) was observed in the present investigation,
with differentially applied wastewater irrigations. This
could primarily be due to either the precipitation/
transformation of heavy metals into their non bio-available
forms (Rusan et al. 2007) in soil and/ or its uptake by
turfgrass (Toze 2006).

Thus, the investigations clearly indicated a great
potential of improved soil health, particularly in terms of
the available major and micro-nutrients under short-term
wastewater irrigation applications in urban turfgrass based
landscapes. Besides this, the investigation also clearly
ruled out a significant soil heavy metal build up and the
inter-connected human and livestock threats under such
wastewater irrigated landscapes, at least short-term scales.
However, due to a definite built-up of both major and
micro-nutrients during the investigation period, a regular
monitoring of soil quality under such landscapes exposed
to wastewater irrigations seems imperative for reducing any
future environmental threats.
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Table 3 Impact of wastewater irrigations on soil micro-nutrient content under turfgrass
Treatment Zn (mg/kg) Mn (mg/kg) Cu (mg/kg) Fe (mg/kg)
0-15 cm 15-30 cm 0-15 cm 15-30 cm 0-15 cm 15-30 cm 0-15 cm 15-30 cm
T1 0.61 0.47 6.01 4.67 0.33 0.24 6.44 5.27
(NS) (+6.8) (NS) (NS) (NS) (NS) (NS) (NS)
T2 0.61 0.47 6.00 4.66 0.33 0.24 6.43 5.25
(NS) (+6.8) (NS) (NS) (NS) (NS) (NS) (NS)
T3 0.67 0.52 6.60 5.25 0.37 0.27 7.07 5.89
(+15.5) (+18.2) (+10.4) (+12.2) (+15.6) (NS) +9.1) (+10.7)
T4 0.68 0.53 6.69 5.35 0.37 0.28 7.17 6.00
(+17.2) (+20.5) (+11.9) (+14.3) (+15.6) (NS) (+10.6) (+12.8)
T5 0.64 0.49 6.30 4.95 0.35 0.25 6.75 5.57
(+10.3) (+11.4) (+5.4) (NS) (+9.4) (NS) (NS) (NS)
T6 0.66 0.51 6.51 5.16 0.36 0.27 6.97 5.79
(+13.8) (+15.9) (+8.9) (+10.3) (+12.5) (NS) (+7.6) (+8.8)
T7 0.71 0.55 6.99 5.65 0.39 0.29 7.49 6.32
(+22.4) (+25.0) (+16.9) (+20.7) (+21.9) (+11.5) (+15.6) (+18.8)
T8 0.74 0.57 7.29 5.95 0.41 0.31 7.81 6.64
(+27.6) (+29.5) (+21.9) (+27.1) (+28.1) (+19.2) (+20.5) (+24.8)
SEm+ 0.01 0.01 0.11 0.10 0.01 0.01 0.11 0.12
LSD (P=0.05) 0.03 0.02 0.34 0.33 0.02 0.02 0.37 0.36

Note: Percentage significant increase (+) or decrease (-) over initial value is shown in bracket.
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