# Performance evaluation of pomegranate (*Punica granatum*) genotypes under saline conditions

RAJKUMAR\*, ANSHUMAN SINGH, ANITA MANN and R K YADAV

ICAR-Central Soil Salinity Research Institute, Karnal, Haryana 132 001, India

Received: 22 April 2019; Accepted: 06 September 2019

#### **ABSTRACT**

Pomegranate (Punica granatum L., family: Lytheraceae) is widely grown in arid and semi-arid areas across the globe, where moderate or relatively high salt concentration in the soil negatively affect the plant growth properties. However, there is scarce information on the response of pomegranate cultivars under saline field conditions. Therefore, this experiment was conducted in a saline field (soil EC<sub>e</sub> 6-8 dS/m, EC<sub>iw</sub> 3.9-4.2 dS/m) during two consecutive years (2017-18) at Nain Experimental Farm, Panipat, India to study the effects of salinity on vegetative growth and fruit quality traits in 15 genotypes of pomegranate. The experiment was laid out in Randomized Block Design with four replications. Analysis of Variance revealed highly significant differences among the genotypes for fruit growth and quality traits. Results showed considerable variation in the plant growth and fruit quality traits of the pomegranate genotypes. Our findings indicated that fruit quality traits like fruit weight, juice percentage, number of arils, and aril colour could be used as criteria for selecting promising pomegranate genotypes for salt-affected soils. Overall, genotypes Udaipur 2, Udaipur 3, Rajasmand 4 and Jaipur 1 seem to be more tolerant of salinity stress than other genotypes and thus have potential for cultivation in saline soils.

**Key words:** Fruit quality, Pomegranate, Salinity, Variability

Pomegranate (Punica granatum L.) is widely grown throughout the world for its nutritious fruits (Chandra et al. 2010) and consumption of pomegranate products has steadily increased in the last few years, giving impetus to its commercial cultivation (Fawole and Opara 2013). Better adaptability to varying agro-climatic conditions is one of the main reasons for wide distribution and cultivation of pomegranate (Levin 2006a, Rajkumar 2016). In India, pomegranate is grown over about 209.0 thousand ha area with total fruit production of 2442.0 thousand tonnes. Maharashtra followed by Karnataka, Gujarat, Andhra Pradesh and Madhya Pradesh are the major pomegranate producing states of India. Although Maharashtra accounts for nearly 65.0% of total pomegranate area and production in the country, it lags behind other states in average productivity (MAFW 2017). Insect-pests, diseases and environmental stresses are the major factors responsible for poor fruit yields in the leading pomegranate producing states of India (NIPHM 2014). Although, pomegranate is considered to be moderately salt tolerant fruit crop, but environmental stresses particularly high salinity in soils and irrigation waters and associated problems like drought or water-logging are the major obstacles to profitable pomegranate cultivation in

\*Corresponding author e-mail:rajhorticulture@gmail.com

India (Rajkumar 2017), Iran (Naeini et al. 2006), Israel (Bhantana and Lazarovitch 2010) and Spain (Costa and Melgarejo 2000). Most of the research work to evaluate the pomegranate genotypes for selection and breeding programs is based on fruit characteristics (Dafny-Yalin et al. 2010, Wetzstein et al. 2011). Still, very little information is available on genotypic variability in fruit quality attributes in salt-affected soils. Such information could be useful to the breeders in selecting the desirable traits for the genetic improvement (Leon et al. 2004). In light of these facts, this experiment was carried out to evaluate 15 different pomegranate genotypes on the basis of fruit quality attributes for identifying the promising pomegranate genotypes for cultivation in salt-affected soils.

## MATERIALS AND METHODS

Present experiment was conducted during two

consecutive years (2017-18) to study the effects of salinity on vegetative growth and fruit quality parameters of 15 pomegranate genotypes. Pomegranate genotypes collected from the farmers' fields and research institutions in Rajasthan state of India were used in this study. Genotypes were code named after the respective places of collection including one each from Pali (Pali-1), Jodhpur (Jodhpur-1) and Nagaur (Nagaur-1), three each from Jaipur (Jaipur-1, Jaipur-2 and Jaipur-3) and Udaipur (Udaipur-1, Udaipur-2 and Udaipur-3), four each from Rajasamand (Rajasmand-1, Rajasmand-2, Rajasmand-3 and Rajasmand-4) and Ajmer (Ajmer-1, Ajmer-2, Ajmer-3, Ajmer-4) and two commercial cultivars Ganesh and Bhagwa. Cuttings were initially raised in polybags containing garden soil, sand and farmyard manure (2:1:1) for root induction. Subsequently, sufficiently developed six months old plants were transplanted in saline soils at ICAR-CSSRI Nain Experimental Farm, Panipat (29°19'08.88" N, 76°47'38.47" E). Planting was done in pits at row-to-row and plant-to-plant spacing of 4 m each. Experimental soil was sandy loam in texture. Mean soil  $EC_e$  was 6.9 dS/m and 8.2 dS/m at 0-30 cm and 0-60 cm soil depths. Standard cultural practices recommended for pomegranate cultivation were followed. The experiment was laid out in Randomized Block Design with four replications. Plant height and spread were recorded using a measuring tape and stem diameter by a digital Vernier Caliper (Mitutoyo, Japan). Mature fruits were harvested in the month of July during both the years for determining various fruit quality parameters, viz. fruit length (cm), width (cm), weight (g), volume (ml<sup>3</sup>), density (g/cm<sup>3</sup>), juice percentage (%), number of arils, weight of arils/ fruit, weight of 100 arils, aril colour and softness, rind thickness, rind colour and TSS (°B). Pooled data analysis of two years following standard statistical methods was carried out using SAS 9.2 software (SAS institute, Cary, NC, 2011). Correlations between fruit characteristics were also determined.

#### RESULTS AND DISCUSSION

Data revealed significant genotypic differences only for plant height; stem girth and canopy spread did not differ significantly after two years of planting (Table 1). Genotype Jaipur-1 attained the maximum plant height (207.10 cm), while the minimum height (154.47 cm) was recorded in Bhagwa. Only four genotypes (Udaipur-2, Udaipur-3, Jaipur-1 and Rajasmand-4) showed average stem diameter of around 5.0 cm, while it mostly ranged between 4.0-4.5 cm in others. The maximum canopy spread (N-S) of 185.83 cm was recorded in Rajasmand-3 followed by

Jaipur-2 (162.93 cm) and Jaipur-1 (160.70 cm). Similarly, the maximum canopy spread (E-W) of 188.43 cm was noted in Jaipur-1 followed by Rajasmand-3 (180.13 cm) and Udaipur-3 (175.77 cm). Earlier study also reported considerable reductions in stem length and marginally decline in stem diameter with increasing salinity of irrigation water (Khayyat et al. 2014). Pomegranate cultivars vary widely in salinity tolerance, i.e. some cultivars do not show or show only nominal decreases in growth up to a threshold salinity, others are adversely affected (Naeini et al. 2006, Okhovatian et al. 2010, Amri et al. 2011, Karimi and Hasanpour 2014). Another study conducted at ICAR-CSSRI, Karnal revealed that salinity had a more repressive effect on branching and leaf emergence in guava and bael while plant height and stem girth were relatively less affected (Singh *et al.* 2018). Despite relatively high soil  $EC_e$  (~8.0 dS/m), use of saline waters with low electrolyte concentration ( $EC_{iw}$  ~4.0 dS/m) could have enhanced salt leaching to the lower depths, resulting in better plant growth. It has been shown that application of moderately saline waters ( $EC_{iw}$  ~5.0) reduces salt load in highly saline soils (Arora *et al.* 2012). Further, salts accumulated during previous irrigation events also tend to leach below the rootzone in semi-arid areas receiving moderate rainfall of 500-600 mm (Sharma *et al.* 2005).

Fully ripe fruits were picked during both the years of the experiment. Because there were only slight differences in various parameters between the years, data were pooled for analysis. Results indicated significant differences in various fruit quality attributes (Table 1 and 2; Fig 1) among the pomegranate genotypes studied. Fruit length, width, volume and weight ranged from 6.04 to 7.55 cm, 5.90 to 7.76 cm, 113.50 to 253.25 cm<sup>3</sup> and 133.25 to 238.88 g, respectively, with corresponding mean values of 6.86 cm, 7.09 cm, 188.01 cm<sup>3</sup> and 194.37 g, respectively.

Previous studies have shown that weight and shape are the major fruit traits determining genotypic differences in pomegranate. Furthermore, a close positive correlation has been reported between fruit size, and number and weight of arils plus seeds (Blasco *et al.* 2009). Okhovatian *et al.* (2010) found that while low salinity (4 dS/m) stimulated growth in some pomegranate cultivars; moderate and high salinities (7 and 10 dS/m) led to considerable reductions in the biomass yield. Grieve *et al.* (2007) reported that salt treatments (0.44 dS/m to 2.50 dS/m) decreased average fruit weight by 4%, reduced average fruit size and decreased juice content in Valencia orange trees. Nieves *et al.* (1991) reported that total soluble solids, density and peel thickness increased while juice content remained unaffected in citrus fruits with increasing salinity.

The juice percentage ranged from 37.09 to 54.74, with the minimum in genotype Nagaur 1 and the maximum in

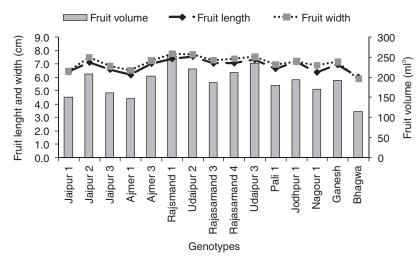



Fig 1 Fruit volume, fruit length and fruit width in different genotypes of pomegranate.

Table 1 Plant growth analysis, fruit weight, juice percentage, number of arils, rind thickness, weight of 100 arils, TSS (B) and weight of arils per fruit and fruit density in different genotypes of pomegranate

| S I          |                       |            |              |        |                       |                     |                       |                       |                      |                      |                         |                       |
|--------------|-----------------------|------------|--------------|--------|-----------------------|---------------------|-----------------------|-----------------------|----------------------|----------------------|-------------------------|-----------------------|
| Genotype     | Plant height          | Stem       | Plant spread | read   | Fruit weight          | Juice               | Number of             | Rind                  | Weight of            | TSS                  | Weight of               | Fruit density         |
|              | (cm)                  | diameter _ | N-S          | E-W    | (g)                   | (%)                 | arils                 | thickness             | 100 arils            | (°B)                 | arils/fruit             | (g/cm <sup>3</sup> )  |
| Jaipur 1     | 207.10 <sup>a</sup>   | 4.93       | 160.70       | 188.43 | 168.13 <sup>def</sup> | 52.56 <sup>ab</sup> | 481.75 <sup>def</sup> | 0.36bcd               | 22.05abcd            | 13.91e               | 101.93efg               | 1.14 <sup>ab</sup>    |
| Jaipur 2     | $196.20^{ab}$         | 4.50       | 162.93       | 173.03 | 216.38abc             | 45.28bcdefg         | 669.50abc             | $0.42^{abc}$          | 21.02bcd             | $13.78^{e}$          | 133.02abc               | 1.05bcdef             |
| Jaipur 3     | 180.97abcd            | 4.47       | 150.77       | 150.77 | 169.38 <sup>def</sup> | 42.68defg           | 556.88 <sup>cde</sup> | $0.46^{ab}$           | 20.71 <sup>bcd</sup> | 15.14 <sup>ab</sup>  | $105.01^{\rm defg}$     | 1.05bcde              |
| Ajmer 1      | 189.70abc             | 3.97       | 144.03       | 149.40 | 163.88ef              | 46.77abcdef         | 423.13ef              | 0.36bcd               | 22.56abc             | $14.00^{e}$          | 90.92fg                 | 1.14abc               |
| Ajmer 3      | $197.30^{ab}$         | 4.00       | 145.07       | 160.37 | 203.75abcde           | 51.32abc            | 602.00bcd             | $0.36^{\mathrm{bcd}}$ | 22.83abc             | $13.83^{e}$          | 124.88abcde             | $1.04^{\mathrm{def}}$ |
| Rajasmand 1  | 178.90 <sup>bcd</sup> | 4.30       | 157.80       | 165.27 | $238.88^{a}$          | 47.06abcdef         | $779.00^{a}$          | $0.36^{\mathrm{bcd}}$ | 20.75bcd             | $15.61^{a}$          | 152.3 <sup>a</sup>      | 0.96 <sup>f</sup>     |
| Udaipur 2    | 180.37abcd            | 5.27       | 160.07       | 165.67 | 236.63 <sup>ab</sup>  | 43.27cdefg          | 706.87 <sup>ab</sup>  | $0.40^{ m abc}$       | 23.29ab              | $13.86^{\rm e}$      | $152.06^{a}$            | 1.08bcde              |
| Rajasmand 3  | 193.57abc             | 4.63       | 185.83       | 180.13 | 206.63abcde           | 54.74ª              | 556.63 <sup>cde</sup> | $0.43^{abc}$          | 24.56 <sup>a</sup>   | 14.23 <sup>de</sup>  | 119.66bcde              | 1.12abcd              |
| Rajasmand 4  | 176.70 <sup>bcd</sup> | 4.93       | 151.07       | 150.10 | 210.63abcd            | 47.34abcdef         | $633.50^{bc}$         | $0.35^{\text{bcd}}$   | $24.40^{a}$          | 15.05ab              | 130.33abcd              | $1.00^{\rm ef}$       |
| Udaipur 3    | 170.37 <sup>bcd</sup> | 5.02       | 158.50       | 175.77 | 231.75 <sup>ab</sup>  | 41.22efg            | 617.88bcd             | $0.40^{ m abc}$       | 23.79 <sup>ab</sup>  | 14.88bcd             | 142.53ab                | $1.00^{\rm ef}$       |
| Pali 1       | 159.70 <sup>d</sup>   | 4.10       | 146.40       | 148.27 | 176.38cdef            | 41.16efg            | 575.50 <sup>bcd</sup> | 0.27 <sup>d</sup>     | 22.96ab              | 15.01abc             | 108.49cdef              | <sub>Je</sub> 66.0    |
| Jodhpur 1    | 157.80 <sup>d</sup>   | 4.87       | 122.83       | 123.63 | 199.00abcde           | 49.43abcde          | 563.50 <sup>cd</sup>  | 0.36 pcq              | $23.30^{ab}$         | 14.29cde             | 135.06abc               | 1.05cdef              |
| Nagour 1     | 168.53 <sup>cd</sup>  | 4.23       | 150.37       | 146.70 | 167.37 <sup>def</sup> | 37.098              | 537.88cdef            | $0.49^{a}$            | 19.67 <sup>cd</sup>  | 14.86 <sup>bcd</sup> | $100.11^{\mathrm{efg}}$ | <sub>Je</sub> 66.0    |
| Ganesh       | 162.07 <sup>d</sup>   | 4.37       | 145.63       | 160.53 | 193.50bcde            | 50.33abcd           | 599.50bcd             | 0.32cd                | 22.37abc             | 14.09e               | 114.63 <sup>cdef</sup>  | $1.03^{\rm ef}$       |
| Bhagwa       | 154.47 <sup>d</sup>   | 4.70       | 134.20       | 143.97 | $133.25^{\mathrm{f}}$ | $40.70^{fg}$        | $410.38^{\mathrm{f}}$ | $0.31^{\rm cd}$       | 19.12 <sup>d</sup>   | 13.64 <sup>e</sup>   | 79.508                  | 1.19ª                 |
| LSD (P=0.05) | 27.144                | NS         | NS           | NS     | 44.528                | 8.5719              | 140.36                | 0.1132                | 3.2476               | 0.7277               | 27.452                  | 0.0917                |
|              |                       |            |              |        |                       |                     |                       |                       |                      |                      |                         |                       |

Note: Means (n=4) with at least one letter common are not statistically significant using Duncan's Multiple Range Test at 5% level of significance. NS: non-significant.

Rajasmand-3, respectively. In pomegranate, juice recovery varies between 42-55% (Chobe 1999). The number of arils ranged from 410.38 (Rajasamand 1) to 779 (Bhagwa), respectively. Lal et al. (2013) found that number of arils rather than aril size determines the fruit size: fruits with more arils tend to be relatively large sized compared to those having fewer alleles. The rind thickness varied from 0.27 cm in genotype Pali 1 to 0.49 cm in the genotype Nagaur 1 and was found to be non-significant among various genotypes. Lal et al. (2013) also observed that rind thickness ranged from 1.27-4.46 mm in pomegranate cv. Dholka. The weight of 100 arils ranged from 19.12 to 24.56 g with the minimum in Bhagwa and the maximum in the Rajasmand 3. However, the weight of 100 arils did not vary significantly between different genotypes. Caliskan and Bayazit (2013) reported that weight of 100 arils ranged between 17.5 to 66.7g in pomegranate accessions grown in a Mediterranean climate. The maximum weight of arils per fruit (152.31 g) was recorded in the genotype Udaipur 2 which was statistically at par with Udaipur 2 (152.06 g). Fruit total soluble solids were the highest (15.61 °B) in the genotype Rajasmand 1 and the lowest (13.64 °B) in genotype Bhagwa. The concentration of total soluble solids is the most significant factor in determining fruit quality. Akbarpour et al. (2009) found that TSS ranged from 15.17 to 22.03% among twelve pomegranate cultivars studied for different chemical characters. Sinha (2014) reported that TSS content was maximum (15.87°B) in Purple Heart and minimum in (9.93°B) in Ovadan cultivars of pomegranate. Generally, saline conditions tend to increased TSS concentrations in the fruit juice. Garcia-Sanchez et al. (2000) observed significant decrease in juice content in fruits of salt stressed lime trees. Saito et al. (2006) reported that tomato fruit Brix increased from 6.1 to 9.9% when nutrient solution EC was increased up to 8.0 dS/m. Fruit density varies significantly from 0.96 to 1.19 g/cm<sup>3</sup> in Rajasmand 1 and Bhagwa, respectively. One of the reasons for the non-significant differences in some fruit quality traits could be ascribed to more or less similar agro-climatic conditions in the growing areas from where the pomegranate genotypes were collected.

It was observed that genotypes having yellowish fruit peel mostly had white colored arils (Table 2). On the basis of seed mellowness, an important fruit quality parameter, genotypes Jaipur 1, Ajmer 1, Ajmer 3, Udaipur 2, Rajasmand 3, Rajasmand 4, Udaipur 3, Jodhpur 1, Ganesh and Bhagwa were characterized as soft seeded. In general, genotypes with light pink coloured arils were sweet sour in taste and hard seeded. The variations in fruit peel characteristics in salt treated plants seem to be caused by the loss of water in albedo due to osmotic stress (Sinclair 1984). Salinity also affects the anthocyanins and non-pigment phenolics, and thus influences the fruit colour intensity (Borochov-Neori et al. 2014). It is known that seed hardness and red and pink aril colour are the dominant traits over seed softness and white aril colour in pomegranate (Jalikop 2003, Jalikop et al. 2005).

Table 2 Fruit traits for different pomegranate genotypes grown under saline conditions

| Genotype    | Peel color        | Aril color | Taste      | Seed<br>hardiness |
|-------------|-------------------|------------|------------|-------------------|
| Jaipur 1    | Yellowish         | White      | Sweet      | Soft              |
| Jaipur 2    | Greenish Red      | Pink       | Sweet-Sour | Hard              |
| Jaipur 3    | Yellowish         | White      | Sweet-Sour | Hard              |
| Ajmer 1     | Yellowish         | White      | Sweet      | Soft              |
| Ajmer 3     | Yellowish         | White      | Sweet      | Soft              |
| Rajasmand 1 | Yellowish         | Light Pink | Sweet-Sour | Hard              |
| Udaipur 2   | Yellowish         | White      | Sweet      | Soft              |
| Rajasmand 3 | Yellowish         | Light Pink | Sweet-Sour | Soft              |
| Rajasmand 4 | Yellowish         | White      | Sweet      | Soft              |
| Udaipur 3   | Reddish<br>Yellow | White      | Sweet      | Soft              |
| Pali 1      | Greenish Red      | Pink       | Sweet-Sour | Hard              |
| Jodhpur 1   | Reddish<br>Yellow | White      | Sweet      | Soft              |
| Nagour 1    | Reddish<br>Yellow | Light Pink | Sweet-Sour | Hard              |
| Ganesh      | Reddish<br>Yellow | White      | Sweet      | Soft              |
| Bhagwa      | Reddish           | Red        | Sweet      | Soft              |

Pearson's correlation was used to investigate the relationship among all these fruit parameters. It was found that fruit length, volume, width, weight and weight of arils had significant positive correlation with  $r^2$  value > 0.85. Fruit length had a significant positive correlation with fruit width ( $r^2 = 0.882$ ) and weight ( $r^2 = 0.897$ ); fruit volume with fruit width ( $r^2 = 0.899$ ), weight ( $r^2 = 0.960$ ) and weight of arils per fruit ( $r^2 = 0.885$ ); fruit width with fruit weight ( $r^2 = 0.930$ ); fruit weight with weight of arils per fruit ( $r^2 = 0.923$ ) and number of arils with weight of arils per fruit ( $r^2 = 0.862$ ). In contrast, significant negative correlation was observed between density of fruits and fruit volume ( $r^2 = 0.633*$ ) for all the genotypes.

Based on these findings, it is concluded that fruit quality traits, viz. fruit length, width, weight, volume, density, juice percentage, number of arils, weight of arils, weight of 100 arils, rind thickness, TSS (°B), color of fruit, color of aril and softness of aril could be used as criteria for selecting promising pomegranate genotypes for salt affected soils and may also be useful for the genetic characterization of pomegranate germplasm. Results showed considerable variation in the plant growth and fruit quality traits of the pomegranate genotypes. Overall, genotypes Udaipur 2, Udaipur 3, Rajasmand 4 and Jaipur 1 have more capacity to sustain the injurious effects of salinity than other genotypes and thus have potential for cultivation in saline soils

## **ACKNOWLEGMENTS**

The authors are grateful to the Director, ICAR-CSSRI,

Karnal for providing the necessary logistic support for carrying out this experiment.

## REFERENCES

- Akbarpour V, Hemmati K and Sharifani M. 2009. Physical and chemical properties of pomegranate (*Punica granatum* L.) fruit in maturation stage. *American-Eurasian Journal of Agricultural and Environmental Sciences* **6**(4): 411–16
- Amri E, Mohammad M, Majid M and Zare K. 2011. The effects of spermidine and putrescine polyamines on growth of pomegranate (*Punica granatum* L. cv 'Rabbab') in salinity circumstance. *International Journal of Plant Physiology and Biochemistry* 3(3): 43–49.
- Arora N K, Chaudhari S K, Farooqi J A and Basak N. 2012. Effect of poor quality water on the chemical properties of the salt affected soils and performance of rice. *Journal of Soil Salinity and Water Quality* **4**: 114–21.
- Bhantana P and Lazarovitch N. 2010. Evapotranspiration, crop coefficient and growth of two young pomegranate (*Punica granatum* L.) varieties under salt stress. *Agricultural Water Management* 97(5): 715–22.
- Blasco J, Cubero S, Gomez-Sanchis J, Mira P and Molto E. 2009. Development of a machine for the automatic sorting of pomegranate (*Punica granatum*) arils based on computer vision. *Journal of Food Engineering* **90**: 27–34.
- Borochov-Neori H, Judeinstein S, Tripler E, Holland D and Lazarovitch N. 2014. Salinity effects on colour and health traits in the pomegranate (*Punica granatum* L.) fruit peel. *International Journal of Postharvest Technology and Innovation* 4(1):54–68.
- Caliskan O and Bayazıt S. 2013. Morpho-pomological and chemical diversity of pomegranate accessions grown in eastern Mediterranean region of turkey. *Journal of Agricultural Science and Technology* **15**: 1449–60
- Chandra R, Jadhav V T and Sharma J. 2010. Global scenario of pomegranate (*Punica granatum* L.) culture with special reference to India. *Fruit, Vegetable and Cereal Science and Biotechnology* **4**:7–18.
- Chobe R S. 1999. 'Studies on extraction, clarification, preservation and storage of pomegranate (*Punica granatum* L.) Juice'. M. Tech. thesis, MPAU, Rahuri (Maharashtra), India.
- Costa Y and Melgarejo P. 2000. A study of the production costs of two pomegranate varieties grown in poor quality soils. (*In*) *Production, processing and marketing of pomegranate in the Mediterranean region: Advances in research and technology,* Zaragoza, Spain: *CIHEAM*, pp 49-53.
- Dafny-Yalin M, Glazer I, Bar-Ilan I, Kerem Z, Holland D and Amir R. 2010. Color, sugars and organic acid composition in aril juices and peel homogenates prepared from different pomegranate accessions. *Journal of Agricultural and Food Chemistry* 58: 4 342–52.
- Fawole O A and Opara U L. 2013. Effects of storage temperature and duration on physiological responses of pomegranate fruit. *Industrial Crops and Products* **47**: 300–09.
- Garcia-Sanchez F and Martinez V. 2000. Salinity and water effects on yield, fruit quality, and mineral composition of 'Fino 49' lemon. (*In*) Proceedings of the International Society of Viticulture IX Congress, pp 527–31.
- Grieve A M, Prior L D and Bevington K B. 2007. Long-term effects of saline irrigation water on growth, yield, and fruit quality of 'Valencia' orange trees. *Australian Journal of Agricultural Research* **58**(4): 342–48.

- Jalikop S H, Rawal R D, Laxman R H, Kumar R. 2003. Scope for gene exchange between cultivated and decorative pomegranates. (In) Proceedings of National Seminar on Advances in Genetics and Plant Breeding—Impact of DNA Revolution, University of Agricultural Sciences, Dhrawad, October 30-31, p 103.
- Jalikop S H, Rawal R D and Kumar R. 2005. Exploitation of sub-temperate pomegranate Daru in breeding tropical varieties. *Acta Horticulturae* 696: 107–112.
- Karimi H R and Hasanpour Z. 2014. Effects of salinity and water stress on growth and macro nutrients concentration of pomegranate (*Punica granatum* L.). *Journal of Plant Nutrition* 37(12): 1937–51.
- Khayyat M, Tehranifar A, Davarynejad G H and Sayyari-Zahan M H. 2014. Vegetative growth, compatible solute accumulation, ion partitioning and chlorophyll fluorescence of 'Malas-e-Saveh' and 'Shishe-Kab' pomegranates in response to salinity stress. *Photosynthetica* 5: 301–12.
- Lal S, Ahmed N and Verma M K. 2013. Fruit size contributing traits in pomegranate (*Punica granatum*) cv. Dholka under temperate condition. *Indian Journal of Agricultural Sciences* 83(5): 66–72.
- Leon L, Martin L M and Rallo L. 2004. Phenotypic correlations among agronomic traits in olive progenies. *Journal of American Society of Horticultural Science* 129: 271–76.
- Levin G M. 2006a. *Pomegranate* 1st Edn. Third Millennium Publishing, East Libra Drive Tempe, AZ, pp 1-129.
- MAFW. 2017. Horticultural Statistics at a Glance 2017. Department of Agriculture, Cooperation & Farmers Welfare. Ministry of Agriculture & Farmers Welfare, Government of India.
- Naeini M R, Khoshgoftarmanesh A H and Fallahi E. 2006. Partitioning of chlorine, sodium, and potassium and shoot growth of three pomegranate cultivars under different levels of salinity. *Journal of Plant Nutrition* **29**(10): 1835–43.
- Nieves M, Garcia A and Cerda A. 1991. Effects of salinity and rootstock on lemon fruit quality. *Journal of Horticultural Sciences* 66: 127–30.
- NIPHM. 2014. *AESA based IPM package for Pomegranate*, p 38. National Institute of Plant Health Management, Hyderabad.
- Okhovatian-Ardakani A R, Mehrabanian M, Dehghani F and Akbarzadeh A. 2010. Salt tolerance evaluation and relative comparison in cuttings of different pomegranate cultivars. *Plant, Soil and Environment* **56**(4): 176–85.
- Rajkumar, Gora J S, Kumar R, Singh A, Kumar A and Gajender. 2016. Establishment, survival and growth of pomegranate cuttings with different concentrations of indole butyric acid and rooting substrates. *Ecology, Environment and Conservation* 22: 321–27.
- Rajkumar, Singh A, Yadav R K, Mann A, Meena M D and Sharma D K. 2017. Performance of pomegranate genotypes in saline soils. (*In*) Proceedings of 5<sup>th</sup> National Seminar Climate Resilient Saline Agriculture: Sustaining Livelihood Security, SKRAU, Bikaner, Rajasthan, 21-23 January, pp 80-81.
- Saito T, Fukuda N and Nishimura S. 2006. Effects of salinity treatment duration and planting density on size and sugar content of hydroponically grown tomato fruits. *Journal of the Japanese Society for Horticultural Science* **75**: 392–398.
- SAS Institute. 2011. SAS enterprise guide, Version 9.2. SAS Inst., Cary, NC, USA, York.
- Sharma D P, Singh K N and Kumbhare P S. 2005. Response of sunflower to conjunctive use of saline drainage water and non-saline canal water irrigation. *Archives of Agronomy and Soil Science* **51**: 91–100.

- Sinclair W B.1984. *The Biochemistry and Physiology of the Lemon and other citrus fruits.* Berkeley, California, USA.
- Singh A, Kumar A, Datta A and Yadav R K. 2018. Evaluation of guava (*Psidium guajava*) and bael (*Aegle marmelos*) under shallow saline watertable conditions. *Indian Journal of Agricultural Sciences* **88**(5): 720–25.
- Sinha S. 2014. 'Characterization and evaluation of some newly
- introduced pomegranate (*Punica granatum* L.) germplasm accessions'. M Sc thesis, Dr Yashwant Singh Parmar University of Horticulture and Forestry, Nauni, Solan, Himachal Pradesh.
- Wetzstein H Y, Zhang Z, Ravid N and Wetzstein M E. 2011. Characterization of attributes related to fruit size in Pomegranate. *Hort Science* **46**(6): 908–12.