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ABSTRACT

Soil available phosphorus (P), a major plant nutrient, exhibits a high degree of spatial variability. Spatial
variability assessment of P is necessary for its precise management using geostatistics. Therefore, the present study
was conducted in an intensely cropped region of Ladian village of Ludhiana, Punjab during 2014-2016 to assess the
spatial variability status of P under three prevalent land use systems, viz. berseem-based land use, rice-wheat system
and poplar-wheat based agroforestry system. The classical statistics showed the variability of available-P in terms
of percent coefficient of variation (%CV), but unable to distinguish variability between rice-wheat (CV=38.79%)
and poplar-wheat system (CV=38.58%). Lower variability was observed in berseem-based land use (CV=15.21%),
though the mean available-P content (46 kg/ha) was higher in this land use. However, the geostatistical techniques
successfully demonstrated the spatial dependence of P within and in between land uses using nugget-sill (NS) ratio.
Gaussian model was found suitable for describing the spatial structure of available-P under berseem-based land use;
while, Exponential models were found suitable for rice-wheat and poplar-wheat systems. The value of NS ratio of
available-P was 0.17 for poplar-wheat based land use, suggesting strong spatial dependence, whereas the rest other
land uses exhibited moderate (NS=0.74) to weak (NS=0.82) spatial dependence of available P. The spatial variability
maps of P were generated using ordinary kriging technique, demonstrated significantly the higher variability of P in
poplar-wheat system than other systems. This variability should be considered before applying phosphatic fertilizers
to this land use to get optimum response. The generated maps would assist the farmers for site-specific P management
in the study area.
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Soil available phosphorus (P) is a major nutrient,
enhancing root growth, and crop productivity. But higher
fixation of soil P reduces its availability and also induces
variability in P status of soil (Singh and Giand 2019).
Actually, various intrinsic and extrinsic factors cause
spatial variability of available P. Intrinsic factors include
pedologic and geologic soil forming factors such as
parent material, climate, dominant flora and fauna etc.;
whereas extrinsic factors include different agronomic
interventions like tillage, fertilizer application, irrigation
water management etc. (Liu ef al. 2015). Blanket P fertilizer
application without considering spatial variation leads to
higher economic investment, soil quality deterioration
and environmental pollution like eutrophication (Bhunia
et al. 2018). Sustainable and site-specific P management
can only mitigate such problems and thereby, improving P
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use efficiency. Thus, spatial variability assessment of P is
essential prior to its application to crop field.

Both classical and geostatistical techniques are available
for assessing spatial variability of available P. But the
classical statistics cannot reveal the continuous variability
in the presence of spatial autocorrelation between the
sampling points. However, the geostatistical techniques can
quantify such spatial autocorrelation using semivariograms,
auto-correlograms etc. (Martin ef al. 2016). Kriging is a
statistical interpolation technique that can be used to map
the continuous spatial variability of soil properties. Several
researchers used various interpolation techniques to map
soil organic carbon (SOC), soil available nitrogen (N),
phosphorus (P), potassium (K) and other soil properties
(Patil et al. 2011, Vasu et al. 2017).

The study region belongs to a highly productive
region consisting of various land uses and it supports a
high cropping intensity (205%) and induces variability.
Generally, this record productivity is obtained by excessive
application of NPK without considering their bad impacts
on environment. Therefore, precise nutrient management
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with considering spatial variation is necessary for this
region. However, till now no systematic study has been
reported to characterize the effect of various land uses on
the spatial variability of available-P employing geostatistics.
Therefore, the objective of the study was to determine
the spatial variability of available P using geostatistics in
various land uses.

MATERIALS AND METHODS

The present investigation was carried out in an intensively
cropped region of Ladian village of Ludhiana, Punjab
(30.89°N and 75.86°E) during 2014-16. Geomorphologically
the study site has a flat topography with gentle slope,
receiving average annual rainfall of 600 mm. The study was
conducted in three prevalent land use types of that region,
i.e. berseem-based land use, rice-wheat cropping system and
poplar-wheat based agroforestry system. A total number of
144 georeferenced surface soil samples (48 from each land
use type) were collected by following a 7 m X 14 m grid
pattern. The collected soil samples were properly air dried
under shade, crushed in a wooden log to break the visible
clods and passed through 2 mm sieve. Then the prepared
soil samples were used for physico-chemical analysis. Soil
available P was determined by following the Olsen method
(Olsen et al. 1954). The 0.5 M NaHCO; buffered to pH 8.5
was used to extract the soil available P. Soil pH and electrical
conductivity (EC) were measured in 1:2 soil: distilled water
suspension following standard protocols (Jackson 1973).
International pipetted method (G W Robinson 1922) was
used to determine the soil texture.

The classical statistical analysis for the soil parameters
was done with SAS 9.3 (SAS 2013, Institute Inc. Cary,
NC, USA). The percent coefficient of variations (% CV),
was calculated to characterize the variability of the studied
properties. A classification criterion based on CV value was
used here to classify the variable into low (CV <15%),
medium (CV = 15-35 %) and high (CV > 35%) variable
classes (Wilding 1985).The spatial variability analysis of
soil available-P was conducted using geostatistical tools in
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ArcGIS 10.4.1 software. Variography analysis was done
by constructing semivariograms. A semivariogram is a
mathematical model and it can be expressed as (Schoning
et al. 2006);

7 =— 3"z ) - Z(x0) P

n(h)
where, y(h) indicates the extent of separation distance
(sometimes referred to as lag distance, denoted as h), n(h)
refers to the total number of observed pair at separation
distance (h) and Z(xi+h) is the value of a regionalized or
studied variable at a point (xi+h). The three basic parameters
of a semivariogram model are nugget (C,), sill (C,+C) and
range (a). The nugget value refers to the local variance
that occurs due to sampling errors or measurement error.
Sill value indicates the total variance associated with the
measurement. The range is the separation distance of spatial
dependence. The nugget: sill ratio (NS ratio) was used
here to measure the spatial dependency of the studied soil
parameter in those land uses. Camberdella ef al. (1994)
gave a criterion based on NS ratio to estimate the spatial
dependence of soil properties. This criterion was used to
classify the parameter into high (NS ratio<0.25), medium
(NS ratio=0.25-0.75) and low (NS ratio >0.75) degree of
spatial dependence. Experimental semivariogram models
such as Gaussian, Exponential, Spherical models were
selected to describe the spatial variability soil available-P
and other soil properties based on the least root mean
square error (RMSE) value. A RMSE value close to zero
indicated the accuracy of prediction through semivariogram
models. The semivariogram model should pass through the
center of the cloud of binned values (red dots) and also
pass through the averaged values (blue crosses) closely
as much as possible to get best fit during the fitting of a
particular model (Fig 1). Ordinary kriging (OK) technique
was employed to produce the spatial variability maps of
soil available-P for three different land uses. OK is the
most widely used technique to estimate the value of a soil
property at unsampled location using the structural property
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Fig 1 Spatial variability maps of available-P in (A) berseem-based, (B) rice-wheat, and (C) poplar-wheat land use systems.
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of a semivariogram.

RESULTS AND DISCUSSION

Classical statistical analysis of soil available-P and
other properties: The data obtained from classical statistical
analysis revealed considerable amount of variability of
soil P and other properties in terms of percent CV under
various land use systems (Table 1). The analysis of particle
size distribution confirmed the presence of clay to clay-
loam texture in the studied land uses. All land use systems
exhibited neutral to alkaline pH and the variability of pH
was lower (CV<15%) as compared to other soil properties.
Similar type of result was also found by Bhunia et al.
(2018). The slightly alkaline pH might be attributed to the
presence of sufficient number of exchangeable bases and
calcium carbonate (CaCOs) in the study area. Several other
workers (Shukla e al. 2016, Reza et al. 2017) also reported
lower variability of pH and it could be attributed to the
existence of inherent soil buffering capacity that resisted
the abrupt change.

In berseem-based land use, EC values varied from 0.38
to 0.71 dS/m with a mean value of 0.53 dS/m and 15.10 %
CV. The EC values in rice-wheat cropping system ranged
from 0.21 to 0.75 dS/m with a mean value of 0.47 dS/m
and 27.66 % CV. The poplar-wheat system exhibited an
average EC value of 0.42 dS/m and it varied from 0.21 to
0.58 dS/m. The mean EC value was higher for berseem-
based land use indicating the presence of certain salinity

Table 1
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hotspots that might have been arisen from depressions in
the field. A moderately high variability of EC values was
observed for rice-wheat field followed by poplar-wheat and
berseem field in terms of percent CV values (CV > 15%)
due to different level of agronomic management practices
followed (Shukla et al. 2016, Bhunia et al. 2018). Soil
available phosphorus (available-P) content followed the
order of berseem>rice-wheat>poplar-wheat. Berseem field
exhibited higher amount of available-P content that ranged
from 33 to 56 kg/ha with a mean value of 46 kg/ha and
a CV of 15.21%. In rice-wheat sequence, the available-P
content varied from 12-58 kg/ha with a mean value of 30
kg/ha and with a moderate variability of 38.79%. Highest
amount of mean available-P was recorded for berseem-based
land use and it could be ascribed to dense population of
berseem and the associated root biomass of this leguminous
fodder crop. However, poplar-wheat agro-forestry system
exhibited comparatively lower mean available-P content (16
kg/ha) than other land use types system due to the formation
of Ca-P complex in the presence of calcium carbonate
(Bhattacharyya et al. 2007). However, poplar-wheat system
showed moderately higher P variability than rice-wheat
and berseem-based land uses. Non-uniform management
interventions of those land uses were also responsible for
this variation. This finding was in the close conformity with
the other studies done by several coworkers (Shukla et al.
2016, Reza et al. 2017, Bhunia et al. 2018).
Geostatistical analysis of soil available-P and other

Descriptive statistics of selected soil properties for different land use systems

Berseem-based land use

Parameter Mean Minimum Maximum Median %CV Skewness Kurtosis
Sand (%) 45.00 40.00 48.00 45.00 4.90 -0.41 -0.84
Silt (%) 26.00 14.00 37.00 26.00 24.00 0.03 -0.81
Clay (%) 40.00 30.00 48.00 40.00 13.00 -0.43 -0.56
pH 7.81 7.48 7.99 7.83 1.66 -1.18 1.02
EC (dS/m) 0.53 0.38 0.71 0.54 15.10 0.13 -0.62
Available P (kg/ha) 46.00 33.00 56.00 47.00 15.21 -0.28 -1.21
Rice-wheat system

Sand (%) 34.00 28.00 39.00 33.00 7.35 0.64 0.30
Silt (%) 25.00 13.00 35.00 24.00 19.40 -0.21 0.09
Clay (%) 43.00 30.00 49.00 44.00 11.24 -0.88 -0.08
pH 8.19 7.73 8.63 8.21 1.95 -0.43 2.37
EC (dS/m) 0.47 0.21 0.75 0.47 27.66 0.21 0.09
Available P(kg/ha) 30.00 12.00 58.00 27.00 38.79 0.69 -0.27
Poplar-wheat system

Sand (%) 37.00 31.00 48.00 37.00 9.89 1.09 1.08
Silt (%) 19.00 9.00 30.00 19.00 22.63 -0.02 0.72
Clay (%) 42.00 35.00 49.00 43.00 9.23 -0.18 -1.03
pH 7.99 7.65 8.47 7.98 1.88 0.39 1.33
EC (dS/m) 0.42 0.21 0.58 0.43 19.05 -0.47 0.99
Available P(kg/ha) 16.00 9.00 35.00 14.00 38.58 1.58 2.36
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properties: The spatial variability of soil available P and
other properties were analyzed through geostatistical
techniques. The structural properties of the semivariogram
models such as nugget, sill and their ratio, were calculated
for each soil parameter to describe their spatial variability
(Table 2). Gaussian, Exponential and Spherical models
were found suitable for various soil properties. The best
semivariogram models were selected based on lower RMSE
values. Among the physical properties, percent clay content
was better described by the Exponential model for all three
land uses. Gaussian model was found as suitable for pH
in maximum land uses. Reza ef al. (2017) also showed
the suitability of Gaussian model for characterizing the
variability of pH. Whereas, the Spherical model was found
appropriate for revealing the spatial variability of EC.
Exponential model successfully described the spatial trend
of soil available-P in rice-wheat and poplar-wheat systems.
However, in berseem-based land use, Gaussian model
performed well in disclosing the spatial variability trend of
soil available-P. Several other researchers also reported these
semivariogram models like Spherical model (Fu ez al. 2010,
Reza et al. 2017), Gaussian, Spherical and Circular (Vasu et
al. 2017) and Exponential model (Bhunia et al. 2018), for
portraying the spatial variability of soil available P under
different soil conditions. Thus, the outcome of our study
maintained a good conformity with their findings. The nugget
value was used to indicate the field level micro variability.

GEOSTATISTICAL ASSESSMENT OF SOIL AVAILABLE PHOSPHORUS 1173

The highest nugget (C,=112.204) value was observed for
P under rice-wheat land use and lowest (C,=7.242) for
poplar-wheat based land use. A higher sill value of soil P
for all land uses indicated high total variability of P. The
nugget-sill ratio (NS ratio) was utilized for determining
the spatial dependence of each soil parameter. The studied
physicochemical parameters showed variety of spatial
dependence ranging from weak to strong spatial dependence
according to the classification criteria based on NS ratio,
provided by Camberdella ez al. (1994). However, P exhibited
different degrees of spatial variability and spatial dependence
for all three land uses. The NS ratios were 0.82, 0.74 and
0.17 indicated weak (>0.75), moderate (NS= 0.25-0.75) and
strong (<0.25) spatial dependence for available-P in berseem,
rice-wheat and poplar-wheat systems respectively. Strong
spatial dependence of available-P in poplar-wheat system
could be ascribed to the intrinsic variations of native soil
P, related to pedologic and geologic soil forming factors
and higher microbial activity. On the other hand, berseem-
based land use and rice-wheat system exhibited weak spatial
dependence of soil available-P probably due to non-uniform
management interventions (Bhunia ez al. 2018).

The spatial variability maps of available-P for various
land uses were generated through OK in Fig 1 (A=berseem-
based land use, B=rice-wheat system, and C= poplar-wheat
systems).

OK is a statistically optimal and unbiased estimator

Table 2 Semivariogram parameters of soil attributes in different land use systems

Berseem-based land use

Parameter Model Nugget Partial sill Sill Nugget/sill Spatial RMSE
(Cy (©) (CytC) (NS ratio) dependence
Sand Gaussian 5.943 0.932 6.875 0.86 Weak 1.043
Silt Exponential 17.495 3.252 20.747 0.84 Weak 0.967
Clay Exponential 3.135 13.412 16.547 0.19 Strong 0.965
pH Spherical 0.004 0.007 0.011 0.36 Moderate 0.990
EC Spherical 0.014 0.005 0.019 0.74 Moderate 0.941
P Gaussian 44.55 9.33 53.88 0.82 Weak 0.987
Rice-wheat system
Sand Spherical 2.848 1.431 4.279 0.66 Moderate 0.947
Silt Gaussian 9.031 6.181 15.212 0.59 Moderate 1.037
Clay Exponential 10.585 1.611 12.196 0.87 Weak 1.024
pH Gaussian 0.014 0.006 0.020 0.70 Moderate 0.127
EC Spherical 0.012 0.002 0.014 0.86 Weak 1.014
P Exponential 112.204 39.556 151.771 0.74 Moderate 1.092
Poplar-wheat system
Sand Gaussian 2.593 3.861 6.454 0.40 Moderate 0.979
Silt Exponential 6.827 11.739 18.566 0.37 Moderate 0.969
Clay Exponential 5.391 1.483 6.874 0.78 Weak 0.954
pH Gaussian 0.012 0.010 0.022 0.54 Moderate 0.866
EC Spherical 0.015 0.714 0.729 0.02 Strong 0.942
P Exponential 7.242 35.048 42.289 0.17 Strong 1.023
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that can predict the value of a soil property at unsampled
locations and it also ascertains the extent of uncertainty
associated with this prediction (Gonzalez et al. 2014). The
spatial distribution maps showed the variable concentration
of available P throughout the field of various land uses.
In berseem-based land use, the available-P content was
comparatively lower throughout the eastern side of this
land use (36 kg/ha) as compared to other portions such as
central and northern portions (50 kg/ha) of this land use.
In rice-wheat system, higher amount of available-P (45 kg/
ha) were observed in the northern and central part of this
land use. The available-P varied from low range, i.e. 8-9
kg/ha at slightly above the south west position of the land
use to high range, i.e. 35 kg/ha at eastern, south east and
also the north east side of the agroforestry-based land use
system. The spatial distribution maps of berseem and rice-
wheat exhibited less variation of available P as compared
to poplar-wheat system. Higher P variability and also strong
spatial dependence in poplar-wheat system indicated the
potential of agroforestry system for enhancing the growth
of beneficial microbial population especially P solubilizing
microorganisms and their activity through adding leaf-
litters (organic input). Because higher microbial activity
can promote a good spatial pattern of soil properties and
increase the availability of nutrients like NPK, thus uptake
of nutrients (Donoghue et al. 2019). The similar scattered
distribution pattern of soil available-P was also portrayed
by Reza et al. (2017). Although, in our study, available P
content was less in poplar-wheat system due to relying only
on native P and organic leaf litter input as nutrient sources.
It is a well-known fact that the organic matter contains
almost all nutrients but in little amount. Therefore, our study
suggested applying adequate amount of phosphatic fertilizers
particularly to those quadrants of the poplar-wheat field,
lower at P content with due considering the P variability.
On the other hand, excessive P fertilization has increased
the P concentration in rest two land uses. Therefore, it is
recommended to apply less or no phosphatic fertilizers to
those land uses. Otherwise, economic investment will be
more.

Thus, the present study provides a better insight about
the spatial variability of soil available P within the field
scale of different land uses for its better management.
Geostatistics proved its superiority to classical statistics
in accurate quantification of spatial variability of soil
P in various land uses because geostatistics traced out
significantly higher variability of available-P in poplar-
wheat system as compared to other two systems; whereas,
the classical statistics could not. Strong spatial variability
of available P in poplar-wheat system hinted the careful
examination of spatial variation before phosphatic fertilizer
application. The study recommends point based application
of adequate P fertilizer to poplar-wheat system and less
or no P fertilizer application to berseem and rice-wheat
fields, based on the respective spatial variability maps of P.
Therefore, these spatial variability maps could be used for
site-specific available-P management and to optimize the
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cost of cultivation. However, this study could be extended
to other important nutrients for precise nutrient management
of the study area.
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