
126

*Corresponding author e-mail: bpmondal1@gmail.com

Indian Journal of Agricultural Sciences 90 (6): 1170–5, June 2020/Article

Spatial variability assessment of soil available phosphorus using 
geostatistical approach

Bhabani Prasad Mondal*, Bharpoor Singh Sekhon, Rahul Sadhukhan, 
Rajiv Kumar Singh, Mohammad Hasanain, Nilimesh Mridha, Bappa Das, 

Arghya Chattopadhyay and Koushik Banerjee

ICAR-Indian Agricultural Research Institute, New Delhi 110  012, India

Received: 28 August 2019; Accepted: 27 September 2019

ABSTRACT

Soil available phosphorus (P), a major plant nutrient, exhibits a high degree of spatial variability. Spatial 
variability assessment of P is necessary for its precise management using geostatistics. Therefore, the present study 
was conducted in an intensely cropped region of Ladian village of Ludhiana, Punjab during 2014-2016 to assess the 
spatial variability status of P under three prevalent land use systems, viz. berseem-based land use, rice-wheat system 
and poplar-wheat based agroforestry system. The classical statistics showed the variability of available-P in terms 
of percent coefficient of variation (%CV), but unable to distinguish variability between rice-wheat (CV=38.79%) 
and poplar-wheat system (CV=38.58%). Lower variability was observed in berseem-based land use (CV=15.21%), 
though the mean available-P content (46 kg/ha) was higher in this land use. However, the geostatistical techniques 
successfully demonstrated the spatial dependence of P within and in between land uses using nugget-sill (NS) ratio. 
Gaussian model was found suitable for describing the spatial structure of available-P under berseem-based land use; 
while, Exponential models were found suitable for rice-wheat and poplar-wheat systems. The value of NS ratio of 
available-P was 0.17 for poplar-wheat based land use, suggesting strong spatial dependence, whereas the rest other 
land uses exhibited moderate (NS=0.74) to weak (NS=0.82) spatial dependence of available P. The spatial variability 
maps of P were generated using ordinary kriging technique, demonstrated significantly the higher variability of P in 
poplar-wheat system than other systems. This variability should be considered before applying phosphatic fertilizers 
to this land use to get optimum response. The generated maps would assist the farmers for site-specific P management 
in the study area. 
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Soil available phosphorus (P) is a major nutrient, 
enhancing root growth, and crop productivity. But higher 
fixation of soil P reduces its availability and also induces 
variability in P status of soil (Singh and Giand 2019). 
Actually, various intrinsic and extrinsic factors cause 
spatial variability of available P. Intrinsic factors include 
pedologic and geologic soil forming factors such as 
parent material, climate, dominant flora and fauna etc.; 
whereas extrinsic factors include different agronomic 
interventions like tillage, fertilizer application, irrigation 
water management etc. (Liu et al. 2015). Blanket P fertilizer 
application without considering spatial variation leads to 
higher economic investment, soil quality deterioration 
and environmental pollution like eutrophication (Bhunia 
et al. 2018). Sustainable and site-specific P management 
can only mitigate such problems and thereby, improving P 

use efficiency. Thus, spatial variability assessment of P is 
essential prior to its application to crop field.

Both classical and geostatistical techniques are available 
for assessing spatial variability of available P. But the 
classical statistics cannot reveal the continuous variability 
in the presence of spatial autocorrelation between the 
sampling points. However, the geostatistical techniques can 
quantify such spatial autocorrelation using semivariograms, 
auto-correlograms etc. (Martin et al. 2016). Kriging is a 
statistical interpolation technique that can be used to map 
the continuous spatial variability of soil properties. Several 
researchers used various interpolation techniques to map 
soil organic carbon (SOC), soil available nitrogen (N), 
phosphorus (P), potassium (K) and other soil properties 
(Patil et al. 2011, Vasu et al. 2017). 

The study region belongs to a highly productive 
region consisting of various land uses and it supports a 
high cropping intensity (205%) and induces variability. 
Generally, this record productivity is obtained by excessive 
application of NPK without considering their bad impacts 
on environment. Therefore, precise nutrient management 
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with considering spatial variation is necessary for this 
region. However, till now no systematic study has been 
reported to characterize the effect of various land uses on 
the spatial variability of available-P employing geostatistics. 
Therefore, the objective of the study was to determine 
the spatial variability of available P using geostatistics in 
various land uses. 

MATERIALS AND METHODS
The present investigation was carried out in an intensively 

cropped region of Ladian village of Ludhiana, Punjab 
(30.89oN and 75.86oE) during 2014-16. Geomorphologically 
the study site has a flat topography with gentle slope, 
receiving average annual rainfall of 600 mm. The study was 
conducted in three prevalent land use types of that region, 
i.e. berseem-based land use, rice-wheat cropping system and 
poplar-wheat based agroforestry system. A total number of 
144 georeferenced surface soil samples (48 from each land 
use type) were collected by following a 7 m × 14 m grid 
pattern. The collected soil samples were properly air dried 
under shade, crushed in a wooden log to break the visible 
clods and passed through 2 mm sieve. Then the prepared 
soil samples were used for physico-chemical analysis. Soil 
available P was determined by following the Olsen method 
(Olsen et al. 1954). The 0.5 M NaHCO3 buffered to pH 8.5 
was used to extract the soil available P. Soil pH and electrical 
conductivity (EC) were measured in 1:2 soil: distilled water 
suspension following standard protocols (Jackson 1973).  
International pipetted method (G W Robinson 1922) was 
used to determine the soil texture. 

The classical statistical analysis for the soil parameters 
was done with SAS 9.3 (SAS 2013, Institute Inc. Cary, 
NC, USA). The percent coefficient of variations (% CV), 
was calculated to characterize the variability of the studied 
properties. A classification criterion based on CV value was 
used here to classify the variable into low (CV <15%), 
medium (CV = 15-35 %) and high (CV > 35%) variable 
classes (Wilding 1985).The spatial variability analysis of 
soil available-P was conducted using geostatistical tools in 

ArcGIS 10.4.1 software. Variography analysis was done 
by constructing semivariograms. A semivariogram is a 
mathematical model and it can be expressed as (Schoning 
et al. 2006);
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where, γ(h) indicates the extent of separation distance 
(sometimes referred to as lag distance, denoted as h), n(h) 
refers to the total number of observed pair at separation 
distance (h) and Z(xi+h) is the value of a regionalized or 
studied variable at a point (xi+h). The three basic parameters 
of a semivariogram model are nugget (C0), sill (C0+C) and 
range (a). The nugget value refers to the local variance 
that occurs due to sampling errors or measurement error. 
Sill value indicates the total variance associated with the 
measurement. The range is the separation distance of spatial 
dependence. The nugget: sill ratio (NS ratio) was used 
here to measure the spatial dependency of the studied soil 
parameter in those land uses. Camberdella et al. (1994) 
gave a criterion based on NS ratio to estimate the spatial 
dependence of soil properties. This criterion was used to 
classify the parameter into high (NS ratio<0.25), medium 
(NS ratio=0.25-0.75) and low (NS ratio >0.75) degree of 
spatial dependence. Experimental semivariogram models 
such as Gaussian, Exponential, Spherical models were 
selected to describe the spatial variability soil available-P 
and other soil properties based on the least root mean 
square error (RMSE) value. A RMSE value close to zero 
indicated the accuracy of prediction through semivariogram 
models. The semivariogram model should pass through the 
center of the cloud of binned values (red dots) and also 
pass through the averaged values (blue crosses) closely 
as much as possible to get best fit during the fitting of a 
particular model (Fig 1). Ordinary kriging (OK) technique 
was employed to produce the spatial variability maps of 
soil available-P for three different land uses. OK is the 
most widely used technique to estimate the value of a soil 
property at unsampled location using the structural property 

Fig 1	S patial variability maps of available-P in (A) berseem-based, (B) rice-wheat, and (C) poplar-wheat land use systems.
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of a semivariogram.

RESULTS AND DISCUSSION
Classical statistical analysis of soil available-P and 

other properties: The data obtained from classical statistical 
analysis revealed considerable amount of variability of 
soil P and other properties in terms of percent CV under 
various land use systems (Table 1). The analysis of particle 
size distribution confirmed the presence of clay to clay-
loam texture in the studied land uses. All land use systems 
exhibited neutral to alkaline pH and the variability of pH 
was lower (CV<15%) as compared to other soil properties. 
Similar type of result was also found by Bhunia et al. 
(2018). The slightly alkaline pH might be attributed to the 
presence of sufficient number of exchangeable bases and 
calcium carbonate (CaCO3) in the study area. Several other 
workers (Shukla et al. 2016, Reza et al. 2017) also reported 
lower variability of pH and it could be attributed to the 
existence of inherent soil buffering capacity that resisted 
the abrupt change.

In berseem-based land use, EC values varied from 0.38 
to 0.71 dS/m with a mean value of 0.53 dS/m and 15.10 % 
CV. The EC values in rice-wheat cropping system ranged 
from 0.21 to 0.75 dS/m with a mean value of 0.47 dS/m 
and 27.66 % CV. The poplar-wheat system exhibited an 
average EC value of 0.42 dS/m and it varied from 0.21 to 
0.58 dS/m. The mean EC value was higher for berseem-
based land use indicating the presence of certain salinity 

hotspots that might have been arisen from depressions in 
the field. A moderately high variability of EC values was 
observed for rice-wheat field followed by poplar-wheat and 
berseem field in terms of percent CV values (CV > 15%) 
due to different level of agronomic management practices 
followed (Shukla et al. 2016, Bhunia et al. 2018). Soil 
available phosphorus (available-P) content followed the 
order of berseem>rice-wheat>poplar-wheat. Berseem field 
exhibited higher amount of available-P content that ranged 
from 33 to 56 kg/ha with a mean value of 46 kg/ha and 
a CV of 15.21%. In rice-wheat sequence, the available-P 
content varied from 12-58 kg/ha with a mean value of 30 
kg/ha and with a moderate variability of 38.79%. Highest 
amount of mean available-P was recorded for berseem-based 
land use and it could be ascribed to dense population of 
berseem and the associated root biomass of this leguminous 
fodder crop. However, poplar-wheat agro-forestry system 
exhibited comparatively lower mean available-P content (16 
kg/ha) than other land use types system due to the formation 
of Ca-P complex in the presence of calcium carbonate 
(Bhattacharyya et al. 2007). However, poplar-wheat system 
showed moderately higher P variability than rice-wheat 
and berseem-based land uses. Non-uniform management 
interventions of those land uses were also responsible for 
this variation. This finding was in the close conformity with 
the other studies done by several coworkers (Shukla et al. 
2016, Reza et al. 2017, Bhunia et al. 2018).

Geostatistical analysis of soil available-P and other 

Table 1 D escriptive statistics of selected soil properties for different land use systems

Berseem-based land use
Parameter Mean Minimum Maximum Median %CV Skewness Kurtosis
Sand (%) 45.00 40.00 48.00 45.00 4.90 -0.41 -0.84
Silt (%) 26.00 14.00 37.00 26.00 24.00  0.03 -0.81
Clay (%) 40.00 30.00 48.00 40.00 13.00 -0.43 -0.56
pH 7.81 7.48 7.99 7.83 1.66 -1.18 1.02
EC (dS/m) 0.53 0.38 0.71 0.54 15.10   0.13 -0.62
Available P (kg/ha) 46.00 33.00 56.00 47.00 15.21  -0.28 -1.21
Rice-wheat system
Sand (%) 34.00 28.00 39.00 33.00 7.35 0.64 0.30
Silt (%) 25.00 13.00 35.00 24.00 19.40 -0.21 0.09
Clay (%) 43.00 30.00 49.00 44.00 11.24 -0.88 -0.08
pH 8.19 7.73 8.63 8.21 1.95 -0.43 2.37
EC (dS/m) 0.47 0.21 0.75 0.47 27.66 0.21 0.09
Available P(kg/ha) 30.00 12.00 58.00 27.00 38.79 0.69 -0.27
Poplar-wheat system
Sand (%) 37.00 31.00 48.00 37.00 9.89 1.09 1.08
Silt (%) 19.00 9.00 30.00 19.00 22.63 -0.02 0.72
Clay (%) 42.00 35.00 49.00 43.00 9.23 -0.18 -1.03
pH 7.99 7.65 8.47 7.98 1.88 0.39 1.33
EC (dS/m) 0.42 0.21 0.58 0.43 19.05 -0.47 0.99
Available P(kg/ha) 16.00 9.00 35.00 14.00 38.58 1.58 2.36
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properties: The spatial variability of soil available P and 
other properties were analyzed through geostatistical 
techniques. The structural properties of the semivariogram 
models such as nugget, sill and their ratio, were calculated 
for each soil parameter to describe their spatial variability 
(Table 2). Gaussian, Exponential and Spherical models 
were found suitable for various soil properties. The best 
semivariogram models were selected based on lower RMSE 
values. Among the physical properties, percent clay content 
was better described by the Exponential model for all three 
land uses. Gaussian model was found as suitable for pH 
in maximum land uses. Reza et al. (2017) also showed 
the suitability of Gaussian model for characterizing the 
variability of pH. Whereas, the Spherical model was found 
appropriate for revealing the spatial variability of EC. 
Exponential model successfully described the spatial trend 
of soil available-P in rice-wheat and poplar-wheat systems. 
However, in berseem-based land use, Gaussian model 
performed well in disclosing the spatial variability trend of 
soil available-P. Several other researchers also reported these 
semivariogram models like Spherical model (Fu et al. 2010, 
Reza et al. 2017), Gaussian, Spherical and Circular (Vasu et 
al. 2017) and Exponential model (Bhunia et al. 2018), for 
portraying the spatial variability of soil available P under 
different soil conditions.  Thus, the outcome of our study 
maintained a good conformity with their findings. The nugget 
value was used to indicate the field level micro variability. 

The highest nugget (C0=112.204) value was observed for 
P under rice-wheat land use and lowest (C0=7.242) for 
poplar-wheat based land use. A higher sill value of soil P 
for all land uses indicated high total variability of P. The 
nugget-sill ratio (NS ratio) was utilized for determining 
the spatial dependence of each soil parameter. The studied 
physicochemical parameters showed variety of spatial 
dependence ranging from weak to strong spatial dependence 
according to the classification criteria based on NS ratio, 
provided by Camberdella et al. (1994). However, P exhibited 
different degrees of spatial variability and spatial dependence 
for all three land uses. The NS ratios were 0.82, 0.74 and 
0.17 indicated weak (>0.75), moderate (NS= 0.25-0.75) and 
strong (<0.25) spatial dependence for available-P in berseem, 
rice-wheat and poplar-wheat systems respectively. Strong 
spatial dependence of available-P in poplar-wheat system 
could be ascribed to the intrinsic variations of native soil 
P, related to pedologic and geologic soil forming factors 
and higher microbial activity. On the other hand, berseem-
based land use and rice-wheat system exhibited weak spatial 
dependence of soil available-P probably due to non-uniform 
management interventions (Bhunia et al. 2018). 

The spatial variability maps of available-P for various 
land uses were generated through OK in Fig 1 (A= berseem-
based land use, B= rice-wheat system, and C= poplar-wheat 
systems). 

OK is a statistically optimal and unbiased estimator 
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Table 2  Semivariogram parameters of soil attributes in different land use systems

Berseem-based land use
Parameter Model Nugget  

(C0)
Partial sill  

(C)
Sill  

(C0+C)
Nugget/sill  
(NS ratio)

Spatial 
dependence

RMSE

Sand Gaussian 5.943 0.932 6.875 0.86 Weak 1.043
Silt Exponential 17.495 3.252 20.747 0.84 Weak 0.967
Clay Exponential 3.135 13.412 16.547 0.19 Strong 0.965
pH Spherical 0.004 0.007 0.011 0.36 Moderate 0.990
EC Spherical 0.014 0.005 0.019 0.74 Moderate 0.941
P Gaussian 44.55 9.33 53.88 0.82 Weak 0.987
Rice-wheat system
Sand Spherical 2.848 1.431 4.279 0.66 Moderate 0.947
Silt Gaussian 9.031 6.181 15.212 0.59 Moderate 1.037
Clay Exponential 10.585 1.611 12.196 0.87 Weak 1.024
pH Gaussian 0.014 0.006 0.020 0.70 Moderate 0.127
EC Spherical 0.012 0.002 0.014 0.86 Weak 1.014
P Exponential 112.204 39.556 151.771 0.74 Moderate 1.092
Poplar-wheat system
Sand Gaussian 2.593 3.861 6.454 0.40 Moderate 0.979
Silt Exponential 6.827 11.739 18.566 0.37 Moderate 0.969
Clay Exponential 5.391 1.483 6.874 0.78 Weak 0.954
pH Gaussian 0.012 0.010 0.022 0.54 Moderate 0.866
EC Spherical 0.015 0.714 0.729 0.02 Strong 0.942
P Exponential 7.242 35.048 42.289 0.17 Strong 1.023
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that can predict the value of a soil property at unsampled 
locations and it also ascertains the extent of uncertainty 
associated with this prediction (González et al. 2014). The 
spatial distribution maps showed the variable concentration 
of available P throughout the field of various land uses. 
In berseem-based land use, the available-P content was 
comparatively lower throughout the eastern side of this 
land use (36 kg/ha) as compared to other portions such as 
central and northern portions (50 kg/ha) of this land use. 
In rice-wheat system, higher amount of available-P (45 kg/
ha) were observed in the northern and central part of this 
land use. The available-P varied from low range, i.e. 8-9 
kg/ha at slightly above the south west position of the land 
use to high range, i.e. 35 kg/ha at eastern, south east and 
also the north east side of the agroforestry-based land use 
system. The spatial distribution maps of berseem and rice-
wheat exhibited less variation of available P as compared 
to poplar-wheat system. Higher P variability and also strong 
spatial dependence in poplar-wheat system indicated the 
potential of agroforestry system for enhancing the growth 
of beneficial microbial population especially P solubilizing 
microorganisms and their activity through adding leaf-
litters (organic input). Because higher microbial activity 
can promote a good spatial pattern of soil properties and 
increase the availability of nutrients like NPK, thus uptake 
of nutrients (Donoghue et al. 2019). The similar scattered 
distribution pattern of soil available-P was also portrayed 
by Reza et al. (2017).  Although, in our study, available P 
content was less in poplar-wheat system due to relying only 
on native P and organic leaf litter input as nutrient sources. 
It is a well-known fact that the organic matter contains 
almost all nutrients but in little amount. Therefore, our study 
suggested applying adequate amount of phosphatic fertilizers 
particularly to those quadrants of the poplar-wheat field, 
lower at P content with due considering the P variability. 
On the other hand, excessive P fertilization has increased 
the P concentration in rest two land uses. Therefore, it is 
recommended to apply less or no phosphatic fertilizers to 
those land uses. Otherwise, economic investment will be 
more.

Thus, the present study provides a better insight about 
the spatial variability of soil available P within the field 
scale of different land uses for its better management. 
Geostatistics proved its superiority to classical statistics 
in accurate quantification of spatial variability of soil 
P in various land uses because geostatistics traced out 
significantly higher variability of available-P in poplar-
wheat system as compared to other two systems; whereas, 
the classical statistics could not. Strong spatial variability 
of available P in poplar-wheat system hinted the careful 
examination of spatial variation before phosphatic fertilizer 
application. The study recommends point based application 
of adequate P fertilizer to poplar-wheat system and less 
or no P fertilizer application to berseem and rice-wheat 
fields, based on the respective spatial variability maps of P. 
Therefore, these spatial variability maps could be used for 
site-specific available-P management and to optimize the 

cost of cultivation. However, this study could be extended 
to other important nutrients for precise nutrient management 
of the study area.
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