Role of zinc in inducing resistance in rice to whitebacked planthopper (Sogatella furcifera) under field conditions

SEEMA TRIPATHY* and LADU KISHORE RATH

Odisha University of Agriculture and Technology, Bhubaneswar, Odisha 751 003, India

Received: 05 September 2018; Accepted: 11 September 2019

Key words: Rice, WBPH, Zn EDTA, ZnSO₄

Rice is the staple food for nearly half of the world’s population. In India, the rice area is around 43.79 million ha with an annual production of 112.91 million MT (USDA 2017-18). Both biotic and abiotic stresses reduce the targeted yield as per its genetic potential. Insect pests are the major biotic stress to the rice production in India accounting for 31.1-86.0% yield loss (Gunathilagaraj and Kumar 1997).

Plant hoppers especially the brown planthopper [Sogatella furcifera (Horvath)] and leaf hoppers are of economic concern in India (Atwal et al. 1967). Serious damage usually occurs during the early stage of plant growth with symptoms of hopperburn due to intensive sucking by the WBPH (Dale 1994). Unfortunately neither the insecticides are no longer fruitful nor there are resistant varieties developed in rice against this insect so far. Thus, the alternate approach is to manage this pest through induction of resistance in the crop plant through application of various micro-nutrients. Zinc is one such micro-nutrient which can induce defence mechanism in rice against the sucking pest (Rath and Misra 1998, Rath 2004, 2006). Keeping this in mind, field trials were conducted during kharif 2016, summer 2016-17 and kharif 2017 to evaluate the influence of zinc applied through various sources in inducing defence in rice against WBPH.

The rice variety TN 1 (susceptible) was grown in nursery bed in three different seasons following the local agronomic recommendations. In all the seasons, 21days old seedlings were transplanted in plot sizes of (5 × 4) m² each with the spacing of 15 cm × 10 cm. A total of nine treatments including a control were allocated randomly following randomized block design (RBD) with three replications in all seasons and the data was subjected to necessary transformation. Grain yield per plot was also recorded from each plot leaving two border rows and converted to q/ha and all the data were analysed as per RBD procedure (Gomez and Gomez 1984).

It can be observed from the (Table 1) that, over three seasons at 60 DAT (81 days-crop age) there was peak activity of WBPH. The data on the incidence of WBPH during kharif 2016 revealed that at 60 DAT, the control treatment registered 44.66 insect/hill, which was significantly higher from rest of the treatments. The treatment T₆ supported lowest WBPH (19.67/hill) which remained at par with T₇ (23.43 insects/hill) and T₈ (27.72 nymphs/hill). During Summer 2016-17, at 60 DAT, T₆ had 5.24 insect/hill, which was at par with T₇, T₈, T₉ and T₅. The treatment T₆ and T₇ had relatively higher WBPH population (8.19-8.37/hill). During kharif 2017, at 60 DAT, the treatment T₆ exhibited its superiority over rest of the treatments by supporting least numbers of WBPH/hill (9.21) that remained statistically at par with T₇ (10.53), T₈ (10.98), T₉ (11.22), T₄ (11.92) and T₃ (12.85 insects/hill). At this stage, the control treatment supported highest number of WBPH/hill (24.18) and remained significantly different from all other treatment.

The pooled data of WBPH population (Table 2) revealed that, at 60 DAT, T₆ supporting an average of 11.37 insects/hill was found equally effective to T₇ (13.23 insects/hill) in containing the WBPH as compared to rest of the treatments and the control (27.66 insects/hill).

During kharif 2016, the grain yield was highest in T₅ (36.70 q/ha), which was at par with T₆ and T₇ in which the yield ranged from 34.56-36.50 q/ha (Table 2). During summer 2016-17, T₆ produced highest grain yield (42.51 q/ha), which was at par with only T₇ (40.15 q/ha). In kharif 2017, T₆ resulted in highest grain yield (39.90 q/ha), which remained at par with the same T₇ (39.15 q/ha). Pooled mean revealed that, T₆ produced highest mean grain yield as per its genetic potential. Insect pests are the major biotic stress to the rice production in India accounting for 31.1-86.0% yield loss (Gunathilagaraj and Kumar 1997).
Treatment	Mean WBPH population (numbers/hill)	Kharif 2016	Summer 2016-17	Kharif 2017	40 DAT	50 DAT	60 DAT	70 DAT	80 DAT	40 DAT	50 DAT	60 DAT	70 DAT	80 DAT	
T1: ZnSO₄ basal (25 kg/ha)	3.20 (1.91)b	14.93 (5.36)b	28.42 (4.28)b	7.90 (3.06)b	0.90 (1.18)b	4.20 (2.28)b	8.19 (2.95)b	5.94 (2.53)b	0.89 (1.17)cd	6.08 (2.56)b	13.80 (3.77)b	14.21 (3.82)b	6.02 (2.54)b	2.05 (1.59)b	
T2: ZnEDTA basal (40 kg/ha)	3.43 (1.98)b	14.75 (5.30)b	27.72 (4.50)b	9.26 (3.10)b	0.95 (1.20)b	4.97 (2.97)b	8.37 (2.53)b	5.97 (1.27)b	1.14 (2.28)b	6.21 (2.58)b	12.99 (3.66)b	16.44 (4.11)b	5.13 (2.37)b	2.11 (1.59)b	
T3: ZnSO₄ FS (0.5%) (30 & 45 DAT)	3.13 (1.90)b	13.26 (5.84)b	33.93 (4.16)b	17.06 (2.88)b	0.86 (1.17)b	4.56 (2.25)b	7.46 (2.30)b	4.85 (2.18)b	0.45 (0.97)de	5.36 (2.33)b	10.76 (3.26)b	11.92 (3.52)b	4.95 (2.23)b	1.13 (1.63)b	
T4: ZnEDTA FS (0.8%) (30 & 45 DAT)	2.93 (1.81)b	13.20 (5.72)b	33.00 (4.00)b	15.56 (2.66)b	0.80 (1.14)b	4.52 (2.23)b	7.19 (2.18)b	4.05 (0.97)cd	0.45 (0.97)de	5.11 (2.33)b	10.15 (3.26)b	12.85 (3.65)b	4.95 (2.23)b	1.13 (1.63)b	
T5: T1 + T3	2.76 (1.79)b	11.46 (5.64)b	31.60 (3.93)b	15.23 (2.52)b	0.78 (1.13)b	4.21 (2.16)b	6.84 (2.14)b	4.10 (1.27)b	1.11 (1.27)b	4.01 (2.10)b	8.53 (3.00)b	11.22 (3.41)b	3.61 (2.02)bc	1.21 (1.30)cde	
T6: T2 + T4	2.26 (1.66)b	7.12 (4.48)b	19.67 (3.61)b	12.53 (2.00)b	0.74 (1.11)b	3.38 (2.34)b	5.24 (1.86)b	2.97 (1.23)b	1.02 (1.23)b	2.23 (1.63)d	5.68 (2.47)f	9.21 (3.09)d	2.15 (1.61)bc	0.70 (1.09)d	
T7: T1 + T4	2.40 (1.67)b	8.70 (4.88)b	23.43 (3.74)b	13.60 (2.25)b	0.76 (1.12)b	3.75 (2.40)b	5.73 (2.07)b	3.81 (0.88)bc	0.17 (0.88)bc	2.98 (1.80)cd	6.09 (2.55)f	10.53 (3.31)bc	2.93 (1.84)bc	1.32 (1.35)bcd	
T8: T2 + T3	2.41 (1.70)b	8.90 (5.48)b	29.86 (3.81)b	14.13 (2.35)b	0.76 (1.12)b	3.94 (2.10)b	6.40 (2.09)b	3.99 (1.23)b	1.01 (1.23)b	3.46 (1.98)b	6.89 (2.72)f	10.98 (3.38)b	4.14 (2.15)bcd	1.55 (1.42)bc	
T9: Control	5.96 (2.54)a	26.13 (5.16)a	44.66 (6.72)a	32.06 (5.68)a	2.76 (1.80)a	9.20 (3.08)a	14.13 (3.81)a	9.71 (3.19)a	5.47 (2.44)a	9.41 (3.13)a	19.73 (4.48)a	24.18 (4.93)a	9.52 (3.16)bc	4.73 (2.28)a	
SE_m(±)	0.128 (0.38)	0.178 (0.53)	0.277 (0.83)	0.256 (0.77)	0.220 (0.66)	0.057 (0.17)	0.135 (0.40)	0.187 (0.56)	0.161 (0.48)	0.066 (0.20)	0.203 (0.61)	0.195 (0.58)	0.241 (0.72)	0.143 (0.43)	0.104 (0.31)
CD (5%)	0.38 (0.38)	0.53 (0.53)	0.83 (0.83)	0.77 (0.77)	0.66 (0.66)	0.17 (0.17)	0.40 (0.40)	0.56 (0.56)	0.48 (0.48)	0.20 (0.20)	0.61 (0.61)	0.58 (0.58)	0.72 (0.72)	0.43 (0.43)	0.31 (0.31)

Figures in parenthesis are $\sqrt{x+0.5}$ transformed values, FS- foliar spray, DAT- days after transplanting. Means followed by the same letter are not significantly different from each other.
yield of 39.40 q/ha. The grain yield was nearly 68% higher in T₆ as compared to control, while, T₇ accounted for 65% yield advantage over control. Hence, it can be inferred that, Zn had a positive role in enhancing the grain yield. Sudha and Stalin (2015) have reported that the application of zinc significantly increased the grain yield in rice due to increase in number of productive tillers/m² and number of filled grains per panicle. Prakash et al. (2017) have also observed a similar phenomenon.

Application of zinc to the rice crop was instrumental in curbing the WBPH population as compared to control in all the test seasons. Among various treatments, T₆ was the best treatment that could reduce WBPH number by 66.15% which was outstanding. Closely followed by T₇, the treatment T₇ caused 60.84% elimination of the target pest. Earlier workers like Panda (1976), Padhee and Mishra (1993) have also studied the induced defence effect of Zn against yellow stem borer and leaf folder in rice respectively. Hence, our finding derives ample support from the above findings. However, the field observation should be substantiated with further study of mechanism of induced resistance.

SUMMARY

The study on influence of Zn applied in forms of fertilizer formulations was carried out against whitebacked planthopper (WBPH) *[Sogatella furcifera* (Horvath)] infesting rice under field conditions during kharif 2016, summer 2016-17 and *kharif* 2017 in the Central Research Farm, College of Agriculture, Odisha University of Agriculture and Technology, Bhubaneswar. It was revealed that application of zinc to rice crop was instrumental in curbing the WBPH population. Basal application of Zn EDTA @ 40 kg/ha along with its foliar spray @ 0.8%, twice at 30 and 45 days after transplanting (DAT) (T₆) was the best treatment in reducing the number of WBPH population over seasons as well as in increasing the grain yield. The next better treatment was T₇ (ZnSO₄ basal @ 25 kg/ha + Zn EDTA foliar spray @ 0.8% twice at 30 and 45 DAT) which also reduced the WBPH population substantially. From the entire study, it was inferred that reduction in WBPH population in various Zn supplementations as compared to control may be attributed to influence of Zn on rice plant physiology. Uptake of zinc definitely altered the nutritional status of rice plant as a result of which the population build up of WBPH on rice was minimized.

ACKNOWLEDGEMENTS

Financial assistance provided by Department of Science and Technology (DST) (Govt. of India), New Delhi as...
INSPIRE Fellowship for this research work is gratefully acknowledged.

REFERENCES

