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ABSTRACT

Time series analysis and forecasting is one of the challenging issues of statistical modelling. Modelling of price and 
forecasting is a vital matter of concern for both the farming community and policy makers, especially in agriculture. 
Many practical agricultural data, principally commodity price data shows the typical feature of long memory process 
or long range dependency. For capturing the long memory behavior of the data Autoregressive Fractionally Integrated 
Moving Average (ARFIMA) model is generally used. Sometimes, in time series data besides the original series, data 
on some auxiliary or exogenous variables may be available or can be made available with a lower cost; like besides 
the market prices of commodities, market arrivals for that commodity may be available and it affects the market 
price of commodities. This type of exogenous variable may be incorporated in existing model to improve the model 
performance and forecasting accuracy, like Autoregressive Fractionally Integrated Moving Average with exogenous 
variables (ARFIMAX) model. In the present study undertaken at ICAR-IASRI, New Delhi during 2019, daily maximum 
and modal price of potato of Agra market of UP, India are taken along with daily market arrival. Both the ARFIMA 
and ARFIMAX model with market arrival as exogenous variable are applied for the data under study. Comparative 
studies of the fitted models are employed by using the Relative Mean Absolute Percentage Error (RMAPE) and Root 
Mean Square Error (RMSE) criteria. We could establish superiority of the ARFIMAX model over the ARFIMA model 
in terms of modeling and forecasting efficiency.
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India is largely an agriculture based country where 
almost 118.7 million people are belong to farming 
community (according to Census Report 2011). This 
population consists of 79% of small and medium farmers 
and 14% of landless farmers. The farmer’s welfare depends 
completely upon the economy of the agricultural sector. 
Some of the related factors controlling the economy include 
the availability and the price of the commodities. In this 
respect time series forecasting is an important and valuable 
area. It is important in the sense there are so many problems 
regarding forecasting that involve a time component. 
There are some practical instances where current value of 
a variable depends upon the distant past, is the possible 
indication of long range dependency. Under this dependency 
instead of Box-Jenkin’s ARIMA model, the ARFIMA model 
(Granger and Joyeux 1980) is used to capture this type of 
long range dependency as well as for forecasting. Again 
the ARFIMA model can be improved by incorporating one 
more exogenous variables in the existing models.

Potato is a chief vegetable crop in India and in recent 
times there is a huge fluctuation of its market arrival and 

price. In case of potato market arrival largely be influenced 
by on the availability of cold storage facility. Often a good 
harvest of potato may be exposed lower price. It has been 
seen that potato prices are high during the September- 
December and low during the month of January-August. 
So, it is necessary to give a good forecast of its price so 
that farmers which constitute nearly 82% of the population 
of India, can decide when to sale, where to sale, how much 
to sale for getting better market price.

MATeRIALS AND METHODS
Keeping the objectives of the present investigation 

potato market price and arrival data are collected from 
National Horticultural Research and Development 
Foundation (NHRDF) and analyzed at ICAR-IASRI, New 
Delhi-110012 during 2019. The ARFIMA and ARFIMAX 
models are fitted in the data set, a details description of 
the models is given below. Parameters of the models are 
estimated by Maximum Likelihood Estimation (MLE) 
technique.

ARFIMA model
The ARFIMA model is generally used for modeling 

the long memory time series data, because generally used 
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ARIMA model cannot model the long memory behavior of 
the time series. In ARIMA model differencing parameter 
takes only integer value, but ARFIMA model allows d to 
take fractional value in the range of – 0.5 ≤ d ≤ 0.5. For 
d = 0, the process is stationary and for 0 < d ≤ 0.5, the 
process is said to be stationary and having long memory. 
Let yt; (t = 1, 2 ..., n) is a stationary process with mean 
m and variance s2. Then the ARFIMA model of order (p, 
d, q), denoted by ARFIMA (p, d, q) can be represented as 
(Granger and Joyeux 1980)

ϕ(L) (1 – L)dyt = q (L)et

where et is an i.i.d random variable having zero mean and 
constant variance s2. L is the lag operator, d is the fractional 
difference operator known as long memory parameter, ϕ(L) 
and q(L) are the finite Autoregressive (AR) and Moving 
Average (MA) polynomials of order p and q respectively.
The model has total p + q + 3 parameters m, s2, d, ϕ = 
(ϕ1, ϕ2,..., ϕp) and q = (q1, q2, ..., qq)'. The parameters are 
restricted in Rp+q+3 dimensional space in such a way that 
following conditions are satisfied (Durham et al. 2019)
i.	T he roots of ϕ(L) and q(L) are strictly outside the unit 

circle.

ii.	 d ″
1

2

iii.	 ϕ(L) has no repeated roots and ϕp ≠ 0
iv.	 q2 > 0

The parameter of this model is estimated by maximum 
likelihood estimation (MLE) technique. The exact likelihood 
function based on n observations yn = (y1, y2, ..., yn)' is 
given by:
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where, η = (ϕ,q, d, m, s2) is the vector of dimension (p + q 
+ 3)) and s2Vn is the variance covariance matrix of Yn. ML 
estimates are obtained by maximizing the above likelihood 
or log likelihood function. 

ARFIMAX model
As already discussed ARFIMA model is suitable 

for long memory time series and exogenous variable 
can be incorporated in the time series model for better 
performance of the model. These exogenous variables cab 
also be incorporated in ARFIMA model which results in 
Autoregressive Fractionally Integrated Moving Average 
Model with Exogenous variable (ARFIMAX). Time series 
model with exogenous variable was initially introduced by 
Bierens in 1987 by incorporating exogenous variable in 
ARMA structure (Bierens, 1987). Following Degiannakis, 
2008, the ARFIMAX model with k exogenous variable cab 
be written as (Degiannakis 2008)

ϕ(L) (1 – L)d (yt - m x't b) = q (L)et

where, the notations are same as of ARFIMA model and 
satisfying the conditions given by Durham et al. Here xt is 

the vector of k exogenous variables at time t, b is the vector 
of coefficients corresponding to k exogenous variables. 
The model has total of p + q + k + 3 parameters m, s2, d, 
ϕ = (ϕ1, ϕ2, ..., ϕp)' = (q1, q2,..., qq)' and b = (b1, b2,...,bk)'. 

The likelihood function based on the n observations on 
study variable y, yn = (y1, y2,..., yn)' and on each k exogenous 
variable x1, x2,..., xk is given by:
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where, η* = (ϕ, q, m, d, b, s2) be a vector of (p + q + k 
+ 3) parameters, X is n × k matrix of covariates, b = (b0, 
b1,..., bk-1)' and s2Vn is the variance covariance matrix of 
the sample observations.

Before fitting the models stationarity of the data have 
to check. Augmented Dickey-Fuller (Dickey and Fuller 
1979) test and Phillips-Perron (Phillips and Perron 1988) 
test are employed for the present study. 

ADF test
The ADF test based on the ARMA structure of the data 

set. In this test hypothesis null hypothesis of non-stationarity 
is tested against the alternative of stationarity. The test 
regression model for this test is given by

∆y y yt t t
i

p

i t i t= + + +−
=

−∑b x' α β ε
1

1

where, ∆ is the differencing operator, xt is the vector of 
deterministic terms and p is the lag order. The value of p is 
chosen in such a way that the error terms et become serially 
uncorrelated. Under the null hypothesis, the ADF t-statistic 
become equivalent to usual t-statistic for testing a = 0.

PP test
The null and alternative hypothesis under PP test are 

same as of ADF test. The test regression model for this 
`test is given by

∆yt = b'xt + ayt-1 + et

where, et is an white noise process. Asymptotic distribution 
of PP test statistic under null hypothesis is same as of 
ADF test statistic. PP test is generally preferred over ADF 
test due to its robustness and PP test also works under 
heteroscedastic error and it does not necessitates the lag 
length in test regression.

Stationarity is checked for both the data under interest 
as well as exogenous variable. Then the long memory 
property of the data is checked using ACF and well known 
Sperio test (Reisen 1994). The analysis has been carried 
out in R 3.5 software.

RESULTS AND DISCUSSION
For the present study the daily maximum and modal 

price (`/q) data of potato of Agra market of Uttar Pradesh, 
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India for the period of January 2006 to June, 2019 are taken 
from National Horticultural Research and Development 
Foundation (http://nhrdf.org/en-us/). The daily market 
arrival (q) has also been taken for the same time period as 
exogenous variable. The data series consists of 3486 data 
points from where last 60 observations are used for model 
validation purpose. Time plots for the series under study are 
plotted and shown in Fig 1. For checking the stationarity 
ADF and PP test have been employed and it has found 
that all the series are stationary. The correlation between 
maximum price and arrival data are calculated and it is 
found to be -0.04 (p value 0.02) and that for modal price 
is -0.05 (p value 0.001) indicating that both the correlations 
are statistically significant. 

The long range dependency of the data series is 
visualized by plotting ACF of the data series and it has 
found that autocorrelations up to 120 lags are significant. 
Long memory parameter is tested by Sperio test and the 
estimated value of long memory parameter d is 0.41 and 
0.46 for maximum and modal price series respectively, 
indicating presence of persistence long memory in both 
the data series.

After confirming the presence of long memory in the 
data set ARFIMA model ARFIMAX model with arrival 
as exogenous variable is fitted using MLE technique. The 
parameter estimates, their standard errors and significant p 
value for the best fitted ARFIMA and ARFIMAX models 
are given in Table 1 and Table 2 respectively .The AIC 

and BIC values for the models are calculated for checking 
the well-fitting of model and it has found that ARFIMAX 
model better fitted than the ARFIMA model.

For validation and comparison of ARFIMA with 
ARFIMAX, Root Mean Absolute Percentage Error 
(RMAPE) and Root Mean Squared Error (RMSE) values are 
calculated for the last 20 observations and given in Table 3. 
The results show that the ARFIMAX model perform better 
over ARFIMA model for both the data set.

For checking the predictive accuracy of the fitted 
models Diebold-Mariano (DM) test is performed and the 
test results indicate the superiority of ARFIMAX model over 
ARFIMA model in terms of predictive accuracy. Residuals 
for all the models are tested using Ljung Box Test (1978) 
and it has found that there is no serial autocorrelation for 
all the models.

From fitting ARFIMA and ARFIMAX models for the 
data set under study, it has seen that most of the parameters 
are statistically significant. The exogenous variable market 
arrival is also significant in ARFIMAX models indicating 
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Fig 1	T ime plot of potato market arrival (A), maximum (B)and 
modal (C) price series.

Table 1  Parameter estimates of ARFIMA model 

Parameter Estimate Std. error p-Value
Maximum Series (2,d,1)
Constant 730.15 331.96 0.027
AR 1 0.839 0.027 <0.001
AR 2 0.146 0.025 <0.001
d 0.349 0.048 <0.001
MA 1 0.701 0.034 <0.001
Modal Series (1,d,1)
Constant 682.59 251.05 0.006
AR 1 0.991 0.003 <0.001
d 0.248 0.003 <0.001
MA 1 0.657 0.029 <0.001

Table 2  Parameter estimates of ARFIMAX model

Parameter Estimate Std. error p Value
Maximum price series (2,d,1)
Constant 759.54 331.81 0.022
AR 1 0.834 0.027 <0.001
AR 2 0.150 0.025 <0.001
d 0.346 0.047 <0.001
MA 1 0.705 0.033 <0.001
Arrival -0.0031 0.0004 <0.001
Modal price series(2,d,1)
Constant 722.49 397.11 0.068
AR 1 0.825 0.027 <0.001
AR 2 0.158 0.025 <0.001
d 0.381 0.051 <0.001
MA 1 0.696 0.036 <0.001
Arrival -0.0028 0.0004 <0.001
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positive indication of incorporation of this variable in 
the model. From AIC and BIC values it has found that 
ARFIMAX model better fitted than the ARFIMA model 
for both the data set. The RMAPE and RMSE values 
are also less in ARFIMAX model than ARFIMA model 
indicating enhanced forecasting accuracy of ARFIMAX 
model than ARFIMA model. DM test results also suggest 
that ARFIMAX model has better predictive accuracy over 
ARFIMA model. The Ljung Box test confirmed the absence 
of autocorrelation in the residuals, which indicates the proper 
specification of the model for forecasting of potato price. 
This study can be extended to other datasets possessing 
long memory property.
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