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ABSTRACT

Time series analysis and forecasting is one of the challenging issues of statistical modelling. Modelling of price and
forecasting is a vital matter of concern for both the farming community and policy makers, especially in agriculture.
Many practical agricultural data, principally commodity price data shows the typical feature of long memory process
or long range dependency. For capturing the long memory behavior of the data Autoregressive Fractionally Integrated
Moving Average (ARFIMA) model is generally used. Sometimes, in time series data besides the original series, data
on some auxiliary or exogenous variables may be available or can be made available with a lower cost; like besides
the market prices of commodities, market arrivals for that commodity may be available and it affects the market
price of commodities. This type of exogenous variable may be incorporated in existing model to improve the model
performance and forecasting accuracy, like Autoregressive Fractionally Integrated Moving Average with exogenous
variables (ARFIMAX) model. In the present study undertaken at ICAR-IASRI, New Delhi during 2019, daily maximum
and modal price of potato of Agra market of UP, India are taken along with daily market arrival. Both the ARFIMA
and ARFIMAX model with market arrival as exogenous variable are applied for the data under study. Comparative
studies of the fitted models are employed by using the Relative Mean Absolute Percentage Error (RMAPE) and Root
Mean Square Error (RMSE) criteria. We could establish superiority of the ARFIMAX model over the ARFIMA model

in terms of modeling and forecasting efficiency.
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India is largely an agriculture based country where
almost 118.7 million people are belong to farming
community (according to Census Report 2011). This
population consists of 79% of small and medium farmers
and 14% of landless farmers. The farmer’s welfare depends
completely upon the economy of the agricultural sector.
Some of the related factors controlling the economy include
the availability and the price of the commodities. In this
respect time series forecasting is an important and valuable
area. It is important in the sense there are so many problems
regarding forecasting that involve a time component.
There are some practical instances where current value of
a variable depends upon the distant past, is the possible
indication of long range dependency. Under this dependency
instead of Box-Jenkin’s ARIMA model, the ARFIMA model
(Granger and Joyeux 1980) is used to capture this type of
long range dependency as well as for forecasting. Again
the ARFIMA model can be improved by incorporating one
more exogenous variables in the existing models.

Potato is a chief vegetable crop in India and in recent
times there is a huge fluctuation of its market arrival and
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price. In case of potato market arrival largely be influenced
by on the availability of cold storage facility. Often a good
harvest of potato may be exposed lower price. It has been
seen that potato prices are high during the September-
December and low during the month of January-August.
So, it is necessary to give a good forecast of its price so
that farmers which constitute nearly 82% of the population
of India, can decide when to sale, where to sale, how much
to sale for getting better market price.

MATERIALS AND METHODS

Keeping the objectives of the present investigation
potato market price and arrival data are collected from
National Horticultural Research and Development
Foundation (NHRDF) and analyzed at ICAR-IASRI, New
Delhi-110012 during 2019. The ARFIMA and ARFIMAX
models are fitted in the data set, a details description of
the models is given below. Parameters of the models are
estimated by Maximum Likelihood Estimation (MLE)
technique.

ARFIMA model
The ARFIMA model is generally used for modeling
the long memory time series data, because generally used
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ARIMA model cannot model the long memory behavior of
the time series. In ARIMA model differencing parameter
takes only integer value, but ARFIMA model allows d to
take fractional value in the range of — 0.5 < d < 0.5. For
d = 0, the process is stationary and for 0 < d < 0.5, the
process is said to be stationary and having long memory.
Lety; (t=1, 2 ..., n) is a stationary process with mean
u and variance 2. Then the ARFIMA model of order (p,
d, q), denoted by ARFIMA (p, d, q) can be represented as
(Granger and Joyeux 1980)

(P(L) (1 - L)dyt =6 (L)e[

where e, is an i.i.d random variable having zero mean and

constant variance 2. L is the lag operator, d is the fractional

difference operator known as long memory parameter, ¢(L)

and 6(L) are the finite Autoregressive (AR) and Moving

Average (MA) polynomials of order p and q respectively.

The model has total p + q + 3 parameters u, o2, d, ¢ =

(@, ©pseees cpp) and 6= (0, 0, ..., eq)'. The parameters are

restricted in RP™9*3 dimensional space in such a way that

following conditions are satisfied (Durham et al. 2019)

i.  The roots of @(L) and 8(L) are strictly outside the unit
circle.

.. 1

1. |d | "=

2
iii. (L) has no repeated roots and 0, * 0

iv. 02>0

The parameter of this model is estimated by maximum
likelihood estimation (MLE) technique. The exact likelihood
function based on n observations y, = (v, ¥, ..., ¥,)' 18
given by:

— p— v _l —
f(yn /T] :(271,0_2)7n/2|Vn|’1/2 exp (y;'/ Nln)Vn (yr/ :uln)

where, N = (¢,0, d, u, 6%) is the vector of dimension (p + q
+3)) and 52Vn is the variance covariance matrix of Y . ML
estimates are obtained by maximizing the above likelihood
or log likelihood function.

ARFIMAX model

As already discussed ARFIMA model is suitable
for long memory time series and exogenous variable
can be incorporated in the time series model for better
performance of the model. These exogenous variables cab
also be incorporated in ARFIMA model which results in
Autoregressive Fractionally Integrated Moving Average
Model with Exogenous variable (ARFIMAX). Time series
model with exogenous variable was initially introduced by
Bierens in 1987 by incorporating exogenous variable in
ARMA structure (Bierens, 1987). Following Degiannakis,
2008, the ARFIMAX model with k exogenous variable cab
be written as (Degiannakis 2008)

@) (1 =Ly (v, - ux',B) = 0 (Le,

where, the notations are same as of ARFIMA model and
satisfying the conditions given by Durham et al. Here x, is
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the vector of k exogenous variables at time ¢,  is the vector
of coefficients corresponding to k exogenous variables.
The model has total of p + q + k + 3 parameters y, 62, d,
? = (91, Pyy oo (pp)' =(0,, 0,,..., 69)" and B = (B}, B,,....0,)"-

The likelihood function based on the n observations on
study variable y,y, = (¥}, ,,...,),)' and on each k exogenous
variable x,, x,,..., x; is given by:

L(y,/n") = Qra?y "2y,

_(Yn_uln _Xﬂ)rvn_](Yn_:uln _Xﬂ)
262

exp

where, n* = (¢, 0, u, d, B, 62) be a vector of (p + ¢ + k
+ 3) parameters, X is n X k matrix of covariates, § = (B,
Bs-r By ;) and o2 V, is the variance covariance matrix of
the sample observations.

Before fitting the models stationarity of the data have
to check. Augmented Dickey-Fuller (Dickey and Fuller
1979) test and Phillips-Perron (Phillips and Perron 1988)
test are employed for the present study.

ADF test

The ADF test based on the ARMA structure of the data
set. In this test hypothesis null hypothesis of non-stationarity
is tested against the alternative of stationarity. The test
regression model for this test is given by

)4
Ay, =bx, +ay,_;+ E ﬂiyt—i +é&
i=1

where, A is the differencing operator, x, is the vector of
deterministic terms and p is the lag order. The value of p is
chosen in such a way that the error terms €, become serially
uncorrelated. Under the null hypothesis, the ADF t-statistic
become equivalent to usual t-statistic for testing o = 0.

PP test

The null and alternative hypothesis under PP test are
same as of ADF test. The test regression model for this
“test is given by

Ay, =bx, + 0y, + €

where, €, is an white noise process. Asymptotic distribution
of PP test statistic under null hypothesis is same as of
ADF test statistic. PP test is generally preferred over ADF
test due to its robustness and PP test also works under
heteroscedastic error and it does not necessitates the lag
length in test regression.

Stationarity is checked for both the data under interest
as well as exogenous variable. Then the long memory
property of the data is checked using ACF and well known
Sperio test (Reisen 1994). The analysis has been carried
out in R 3.5 software.

RESULTS AND DISCUSSION

For the present study the daily maximum and modal
price (%/q) data of potato of Agra market of Uttar Pradesh,



1304 SARKAR ET AL.

Arrival (q)

50000
40000
30000
20000
10000

0

@@@@@vﬁ@&&@

& \\cb N
B
PP FFFFFE PSS

(A)
Maximum price (/q)
2500
2000
1500
1000
500

: N B A WD WO
\Q@ Q QQ: \Qq rzg\\o (g\ \,3, &.{b o \.(o <® f\(b\,\%{b\,\
qu q)b q/\B q>§ qp q>§ q,\) (7/\5 Qp Qp q/\b Qp qp Qp

(B)
Modal price (/q)
2500
2000
1500
1000
508
Q > Q)
@@&@vv&ﬁv@@§§x
q/\B q>§ q>§ Qq/\B q/\) q)b q/\B q/\B q/\ﬁ (7,\5 q/\B q/\b \5 q,\b

©)

Fig 1 Time plot of potato market arrival (A), maximum (B)and
modal (C) price series.

India for the period of January 2006 to June, 2019 are taken
from National Horticultural Research and Development
Foundation (http://nhrdf.org/en-us/). The daily market
arrival (q) has also been taken for the same time period as
exogenous variable. The data series consists of 3486 data
points from where last 60 observations are used for model
validation purpose. Time plots for the series under study are
plotted and shown in Fig 1. For checking the stationarity
ADF and PP test have been employed and it has found
that all the series are stationary. The correlation between
maximum price and arrival data are calculated and it is
found to be -0.04 (p value 0.02) and that for modal price
is -0.05 (p value 0.001) indicating that both the correlations
are statistically significant.

The long range dependency of the data series is
visualized by plotting ACF of the data series and it has
found that autocorrelations up to 120 lags are significant.
Long memory parameter is tested by Sperio test and the
estimated value of long memory parameter d is 0.41 and
0.46 for maximum and modal price series respectively,
indicating presence of persistence long memory in both
the data series.

After confirming the presence of long memory in the
data set ARFIMA model ARFIMAX model with arrival
as exogenous variable is fitted using MLE technique. The
parameter estimates, their standard errors and significant p
value for the best fitted ARFIMA and ARFIMAX models
are given in Table 1 and Table 2 respectively .The AIC

[Indian Journal of Agricultural Sciences 90 (7)

Table 1 Parameter estimates of ARFIMA model
Parameter Estimate Std. error p-Value
Maximum Series (2,d,1)

Constant 730.15 331.96 0.027
AR 1 0.839 0.027 <0.001
AR 2 0.146 0.025 <0.001
d 0.349 0.048 <0.001
MA 1 0.701 0.034 <0.001
Modal Series (1,d,1)

Constant 682.59 251.05 0.006
AR 1 0.991 0.003 <0.001
d 0.248 0.003 <0.001
MA 1 0.657 0.029 <0.001

Table 2 Parameter estimates of ARFIMAX model

Parameter Estimate Std. error p Value
Maximum price series (2,d,1)

Constant 759.54 331.81 0.022

AR 1 0.834 0.027 <0.001
AR 2 0.150 0.025 <0.001
d 0.346 0.047 <0.001
MA 1 0.705 0.033 <0.001
Arrival -0.0031 0.0004 <0.001
Modal price series(2,d,1)

Constant 722.49 397.11 0.068

AR 1 0.825 0.027 <0.001
AR 2 0.158 0.025 <0.001
d 0.381 0.051 <0.001
MA 1 0.696 0.036 <0.001
Arrival -0.0028 0.0004 <0.001

and BIC values for the models are calculated for checking
the well-fitting of model and it has found that ARFIMAX
model better fitted than the ARFIMA model.

For validation and comparison of ARFIMA with
ARFIMAX, Root Mean Absolute Percentage Error
(RMAPE) and Root Mean Squared Error (RMSE) values are
calculated for the last 20 observations and given in Table 3.
The results show that the ARFIMAX model perform better
over ARFIMA model for both the data set.

For checking the predictive accuracy of the fitted
models Diebold-Mariano (DM) test is performed and the
test results indicate the superiority of ARFIMAX model over
ARFIMA model in terms of predictive accuracy. Residuals
for all the models are tested using Ljung Box Test (1978)
and it has found that there is no serial autocorrelation for
all the models.

From fitting ARFIMA and ARFIMAX models for the
data set under study, it has seen that most of the parameters
are statistically significant. The exogenous variable market
arrival is also significant in ARFIMAX models indicating
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Table 3 RMAPE and RMSE values for the fitted models

) RMAPE (%) RMSE
Data series
ARFIMA ARFIMAX ARFIMA ARFIMAX
Maximum series 21.10 20.70 217.18 212.58
Modal series 20.80 20.10 186.55 178.13

positive indication of incorporation of this variable in
the model. From AIC and BIC values it has found that
ARFIMAX model better fitted than the ARFIMA model
for both the data set. The RMAPE and RMSE values
are also less in ARFIMAX model than ARFIMA model
indicating enhanced forecasting accuracy of ARFIMAX
model than ARFIMA model. DM test results also suggest
that ARFIMAX model has better predictive accuracy over
ARFIMA model. The Ljung Box test confirmed the absence
of autocorrelation in the residuals, which indicates the proper
specification of the model for forecasting of potato price.
This study can be extended to other datasets possessing
long memory property.
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