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Abstract

The present investigation was designed to identify QTL associated with various traits under aerobic condition using 
F3 and F4 population derived from the cross MASARB25 (aerobic rice) and IB370 (basmati rice). The phenotyping 
was done in both field and net house conditions during the kharif seasons of 2013-14 and 2014-15. The result indicated 
high variation among the population for studied traits and parabolic frequency distribution was recorded for panicle 
length, effective number of tillers/plant, 1000-grain weight while, for grain length/breadth ratio and root thickness, 
frequency distribution curve were skewed toward MASARB25. Composite interval mapping identified total 16 QTLs 
on chromosomes 1, 2, 3, 4, 6, 9, 10 and 12 during both the years. Maximum QTL were detected for grain length-
breadth ratio. LOD score of these QTLs ranged from 2.88 (qENT12.1) to 5.51 (qLB3.1) and explained 61.63% and 
69.04% variance, respectively. The QTL mapped for grain yield/plant (qGYP6.1) on chromosome 6 had LOD score of 
2.90 and explained 28.4% phenotypic variation. The identified QTL in present investigation showed high phenotypic 
variation, hence after validation these QTLs could be used for the improvement of rice under aerobic condition.
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Rice (Oryza sativa L. 2n=24), a member of the family 
Poaceae, is one of the oldest domesticated crops. It takes 
about 3000-5000 liters of water to produce 1 kg of rice. In 
Asia, 17 mha of irrigated rice areas may experience “physical 
water scarcity” and 22 mha “economic water scarcity” by 
2025 (Bouman 2002). An increasing demand for food and 
a looming water crisis, a shortage of both may be on the 
horizon unless innovative technologies are developed for 
rice cultivation. Therefore, there is an urgent necessity to 
develop and implement solutions that have the potential 

of increasing the efficiency, equity, and sustainability of 
water use. 

Aerobic rice is considered to be one of the most 
promising strategies in terms of water-use efficiency (Tuong 
and Bouman 2002). Aerobic rice system is water-saving 
rice production system in which potentially high yielding, 
fertilizer adapted rice varieties are grown in fertile aerobic 
soils that are non-puddled and have no standing water 
(Kreye et al. 2009). Such ‘aerobic rice’ varieties combine the 
aerobic adaption of traditional upland varieties with the input 
responsiveness, yield potential of irrigated varieties (Atlin 
et al. 2006). The genomic locations associated with suitable 
agronomic aerobic traits such as plant height, effective no. 
of tillers, grain yield/plant and root parameters have been 
previously identified in various studies (Vikram et al. 2011; 
Dixit et al. 2012b; Sandhu et al. 2013; Sandhu et al. 2014). 
However, identification of genomic loci associated with 
aerobic conditions along with long grain and aroma of basmati 
rice would be beneficial, therefore keeping this in view, 
present study was conducted to identify genomic locations 
associated with basmati rice under aerobic conditions.

Materials and Methods

Plant material
Total of 60 plants were selected from field for both F3 
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and F4 generations derived from MASARB25 (aerobic rice 
variety) and IB370 (basmati rice) was used in the study. 

Phenotyping
The cultivation practices and phenotyping was done in 

both field and net house conditions as described by Kumar 
et al. (2018) for two seasons, viz. 2013-14 and 2014-15. 
The data were recorded for Plant height (cm), Effective 
number of tillers per plant, Panicle length (cm), Grain 
yield per plant (g), 1000-grain weight (g), Length/Breadth 
ratio, Root length (g), Fresh and dry root weight (g) and 
Root thickness (cm).  Data were subjected to statistical 
analysis using CROPSTAT 7.2 (available at http://bbi.irri.
org/products) and SPAR 2.0.

Genotyping
Genomic DNA was isolated using CTAB method 

of Saghai-Maroof et al. (1984). DNA quantity was 
estimated by ethidium bromide staining on 1% agarose 
gels using a standard containing 100 ng/μl genomic 
DNA. PCR amplification, denaturing polyacrylamide gel 
electrophoresis, and silver staining were essentially carried 
out as described earlier by Jain et al. (2006). A total of 604 
SSR markers widely distributed on 12 rice chromosomes 
were used to find parental polymorphism and 60 were 
found to be polymorphic among the parents, were used to 
genotype the selected F3 and F4 plants. QTL analysis was 
performed using QTL Cartographer v2.5 (Wang et al. 2010). 
Simultaneously, these plants were evaluated for assessing 
the presence/absence of fragrance allele using specific 
primers for betaine aldehyde dehydrogenase 2 (BAD2A) 
genes (Bradbury et al 2005). The population were divided 
into three types based on presence of BAD2A locus: (i) with 
585 and 257 bp alleles, (ii) with 585 and 355 bp alleles and 
(iii) with 585, 355 and 257 bp alleles. The plants having 
positive allele for BAD2A were selected for further analysis.

Results and Discussion

Phenotyping
In the present investigation, experiments were carried 

out to evaluate F3 and F4 populations derived from these 
crosses under direct-seeded water-limited aerobic conditions 
for various physio-morphological traits. Previously, increase 
in performance of aerobic rice under water limited conditions 
were reported by (Sandhu et al. 2012; Promila et al. 2015).

Parents as well as F3 and F4 populations showed high 
variations for all the physio-morphological traits under 
aerobic field conditions (Supplementary file T1). All 
the physio-morphological traits were showing immense 
variation in both seasons. Frequency distribution curves for 
various physio-morphological and root traits of MASARB25 
× IB370 derived F3 population and parental rice genotypes 
are shown (supplementary file Figure S1A and S1B).For 
panicle length, effective number of tillers/plant, 1000-grain 
weight, frequency distribution curves were parabolic while 
for grain length/breadth ratio and root thickness, frequency 

distribution curve were skewed toward MASARB25. 
Frequency distribution curve for grain yield/plant and plant 
height were parabolic and tilted toward IB370. 

In field phenotypic correlation coefficient analysis of 
MASARB25 × IB370 derived F3 and F4 population showed 
grain yield/plant has positive correlation between plant 
height (0.545 and 0.465) and grain length/breadth ratio 
(0.863 and 0.394) during both the seasons however, during 
the crop season 2014-15 grain yield showed significant 
positive correlation with effective number of tillers/plant 
(0.658), 1000-grain weight (0.934), panicle length (0.517) 
and root length (0.476) (Supplementary file T2 and T3). Root 
dry weight showed positive significant correlation with root 
length (0.456 and 0.513) during both the cropping seasons. 
Likewise, fresh root weight showed significantly positive 
correlation with root thickness (0.570 and 0.428) during 
both the crop seasons. During crop season 2015-16 effective 
tillers showed significant positive correlation with root 
length (0.482) and root thickness (0.772) (Supplementary 
file T2 and T3). 

Significant positive correlation between grain yield 
and plant height, panicle number and effective number 
of tillers and thousand grain weights was identified under 
aerobic condition (Mirza et al. 1992; Girish et al. 2006; 
Ramesha et al. 2010; Nagaraju et al. 2013; Reddy et al. 
2013; Ramanjneyulu et al. 2014; Kumar et al. 2014). Plant 
height had registered positive and significant association with 
grain yield per plant (Akhtar et al. 2011; Yadav et al. 2011; 
Seyoum et al. 2012). Significant and positive correlation 
between some root traits (root hair density, and lateral root 
and nodal root number) and grain yield under dry direct-
seeded conditions was also reported (Henry et al. 2011; 
Sandhu et al. 2014; Kumar et al. 2014; Kharb et al. 2016; 
Kumar et al. 2016: Rani et al. 2017; Meena et al. 2018).

Genotyping
In present investigation allelic polymorphism in 

MASARB25 × IB370 F3 populations for SSR markers 
showed 49.1% alleles under field and 53.3% alleles under 
net house were recorded in IB370 and 50.9%  and 46.8% 
alleles were recorded for MASARB25 under field and net 
house, respectively during F3 generation. In F4 generation 
average, 49.6% alleles were from IB370 and 50.4% alleles 
from MASARB25 recorded under field condition while, in 
net house plants, 50.8% alleles were from MASARB25 and 
49.1% were from IB 370 were recorded, respectively. In 
most cases, populations were skewed towards the respective 
aerobic rice parent and which is also clear from frequency 
distribution curves for the majority of agronomic and root 
traits. Clustering of genotypes of basmati variety was in a 
different group than lowland and aerobic indica rice. The 
similar results were also previously reported (Jain et al. 
2004; Kovach et al. 2009; Sandhu et al. 2012). It indicated 
that aerobic rice varieties were developed from different 
indica × upland rice crosses and may have differential 
level of genetic content from the recurrent indica and donor 
upland rice varieties.
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Basmati × aerobic indica derived F3 and F4 populations, 
being segregating populations, showed the presence of either 
two or three fragments, representing the homozygous for 
fragrance (585 and 257 bp alleles) or non-fragrance allele 
(585 and 355 bp alleles) and heterozygous state (585, 355 
and 257 bp alleles), respectively. Under net house and 
field plants has the allelic profile at BAD2A locus in above 
three categories in the ratio 4:2:7 and 4:4:8 in F3 and F4 
generations, respectively (Fig 1, 2 and supplementary file 
S2, S3). It shows perfect co-segregation with the trait of 
fragrance in the mapping population (Sakthivel et al. 2006; 
Kovach et al. 2009; Sandhu et al. 20014). Similarly variation 
for BAD2 locus among fragrance and non-fragrance rice 
was also identified in various studies (Bradbury et al. 
2005; Li et al. 2006; Bourgis et al. 2008; Fitzgerald et 
al. 2008; Kovach et al. 2009; Sandhu et al. 2012; Yeap et 
al. 2013). Plants having positive alleles were selected for 
further SSR marker genotyping for both generations. The 
chromosome wise positions of all of the markers used is 
provided (supplementary file S4).  

Under field condition genetic diversity analyses of 
F3 population were clustered in three groups at similarity 
coefficient of 0.49. All the progenies were placed in the 
same group while both parents were quite distinct and placed 
in different sub group. NTSYS-pc scaling exhibited in F3 
population was interspersed between the two parental lines 
with the distribution of most plants towards MASARB25 
(Fig 3 and supplementary file S5). Likewise, in F4 population 
three major groups were identified with similarity coefficient 
of 0.49. Major group, I consisted of MASARB25 and major 

group III contained IB370 (Fig 4 and supplementary file 
S6). In field house plants genetic relationships and PCA 
scaling among this rice genotype exhibited that F3 and F4 
population was interspersed between the two parental lines 
with distribution of most plants towards MASARB25. While, 
under net house condition F3 and F4 plant were clustered with 
the similarity coefficient of 0.48 and 0.43 and showed three 
and two major groups, respectively. The 13 net house F3 
plants were clustered in three major groups at the similarity 
coefficient of 0.48. Similarly most of the F3 plants twelve 
out of thirteen F3 plants from the net house experiments  
were place in same group other two group had MASARB25 
and IB370 along with  one F3 plants respectively.

QTL analysis
In the present study, though size of four populations was 

small but several QTL were mapped for various agronomic 
traits promoting adaptation for aerobic conditions. These 
QTL should be considered as putative QTL and need to 
be confirmed using the large/stable populations derived 
from the respective crosses. Composite interval mapping 
identified total 16 QTLs on chromosomes 1, 2, 3, 4, 6, 9, 
10 and 12 during both the years (Table 1). 

In F3 generation 10 QTLs were mapped and explained 
1.7 to 72.2% phenotypic variation with the LOD score 
ranging from 2.88 to 5.51 (Fig 5). Two QTL for effective no. 
of tillers/plant were mapped on chromosome 12 (qENT12.1) 
and 4 (qENT4.1), explaining 63.63 % and 61.74% phenotypic 
variation which were linked with markers RM415-RM512 
and RM551-RM3042, respectively. Panicle length was 

Fig 2	 Agarose gel showing allelic status at BAD2A locus of MASARB25 × IB370 60 F4 plants and parental rice varieties. Lane L-100 
bp ladder, P1: IB370, P2: MASARB25, 1-60 F4 progenies.

Fig 1	 Agarose gel showing allelic status at BAD2A locus of MASARB25 x IB370 60 F3 plants and parental rice varieties. Lane L-100 
bp ladder, P1: MASARB25, P2: IB370, 1-60: selected F3 plants.
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Fig 3	 Dendrogram (NTSYS-pc) displaying diversity among 60 F3 plants (MASARB25 × IB370) using allelic diversity data at 59 SSR 
loci.

Fig 4	 Dendrogram (NTSYS-pc) displaying diversity among 60 F4 plants (MASARB25 × IB370) (grown in field) using allelic diversity 
data at 59 SSR loci.
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Table 1	 Identified QTL for physio-morphological traits promoting aerobic adaptation of MASARB25 × IB370 F3 and F4 population 
grown under aerobic conditions

Trait QTL 
name

Chromosome 
number

Position 
(cM)

Flanking
 markers

Position of flanking 
markers (cM)

LOD Additive 
effect

R2 % DPE

F3 generation
Effective no. of tillers/
plant

qENT12.1 12 17.01 RM415-
RM512

0.0-43.2 2.88 -1.6803 61.639 IB

qENT4.1 4 50.31 RM551-
RM3042

20-69.8 4.49 -1.2609 61.744 IB

Panicle length qPL4.1 4 68.11 RM551-
RM3042

20-69.8 4.08 -1.2152 71.045 IB

1000-grain weight qTGW10.1 10 25.91 RM239-
RM294

25.2-87.1 4.41 -2.1859 72.731 IB

Grain length-breadth ratio qLB1.1 1 115.51 RM5-
RM1088

94.9-150.7 3.98 0.4056 31.290 M

qLB3.1 3 78.91 RM426-
RM503

27.6-153.9 5.51 -0.2836 69.048 IB

qLB3.2 3 101.91 RM426-
RM503

27.6-153.9 5.13 -0.2822 1.758 IB

qLB9.1 9 73.41 RM434-
RM205

57.7-114.7 3.60 -0.2596 66.546 IB

qLB9.2 9 82.41 RM434-
RM205

57.7-114.7 3.31 -0.2445 3.150 IB

qLB11.1 11 31.01 RM4-
RM208

5.2-102.9 3.27 -0.372 72.255 IB

F4 generation
Grain yield/plant qGYP6.1 6 61.21 RM217-

RM345
26.2-123.9 2.90 2.8344 4.22 M

Grain length-breadth ratio qLB2.1 2 92.11 RM327-
RM318

72.6-152.8 4.75 0.2842 0.091 M

qLB6.1 6 61.21 RM217-
RM345

26.2-123.9 4.10 -0.4867 79.46 IB

qLB6.2 6 79.21 RM217-
RM345

26.2-123.9 4.87 0.2905 61.47 M

qLB6.3 6 94.21 RM217-
RM345

26.2-123.9 5.09 0.4841 61.25 M

qLB9.1 9 29.01 RM444-
RM24093

3.3-42.9 3.80 0.0189 71.87 M

analyzed were identified on chromosomes 2 (qLB2.1), 
6 (qLB6.1, qLB6.2, qLB6.3 and qGYP6.1) and 9 (qLB9.1) 
respectively . The phenotypic variation explained was ranged 
from 1.89 % to 48.67 % with the LOD score ranging from 
2.90-4.87 and explained 1.7 to 72.2% phenotypic variation. 
The QTL identified in chromosome 9 for grain length-
breadth ratio in F3 and F4 generation were different. QTL 
for grain length have been reported earlier on chromosomes 
1, 2, 3 and 6 (Aluko et al. 2004; Fan et al. 2006; Lou et 
al. 2009). Wan et al. (2006) reported the six main-effects 
QTL for grain length in four environments on five rice 
chromosomes (2, 3, 5, 7 and 9). Among them, qGL-3a, 
was consistently detected in these four environments and 
mapped to the interval C80–C1677 in the centromeric region 
of chromosome 3. On the other hand, a loss of function 

associated with QTL qPL4.1 located in the chromosome 4 
with the linkage of markers RM551-RM3042 explained 71.04 
% phenotypic variation. TheqTGW10.1 in chromosome 
10 was associated thousand grain weight explained 72.7 
% phenotypic variation and linked with markers RM239-
RM294. In F3 generation QTLs for grain length-breadth ratio 
were identified on chromosomes 1 (qLB1.1), 3 (qLB3.1 and 
qLB3.2), 9 (qLB9.1 and qLB9.2) and 11 (qLB11.1). Leila 
Bazrkar-Khatibani et al (2019) also reported seven QTLs 
for various traits such as grain length and quality traits in 
rice with phenotypic variance ranging up to 44%. Solis et 
al. (2018) also high phenotypic variance ranging between 
30-34% in rice while mapping various yield related traits 
under drought conditions.

In F4 generation 6 QTLs for various phenotypic traits 
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mutation in GW2, a QTL located on chromosome 2, affects 
the grain width and weight (Song et al. 2007). Sixteen QTL 
were mapped on Chromosome 1, 2, 3, 6, 7 and 9 for grain 
quality in RIL populations derived from indica × japonica 
crosses (Lou et al. 2009). For grain yield/plant, a QTL was 
detected on chromosome 6 (qGYP6.1) linked with markers 
RM217-RM345 explained 28.44% phenotypic variation. 
QTL mapping of drought resistance traits in the background 
of locally adapted indica/Basmati rice lines have been 
reported by several research groups in rice (Gomez et al. 
2010; Sandhu et al. 2014; Venuprasad et al. 2009). Large-
effect QTL for grain yield under drought has been identified 
(Bernier et al. 2007 and Venuprasad et al. 2009) and their 
successful introgression has established yield-advantage 
under drought (Swamy et al. 2013). Earlier, QTL for grain 
yield in rice have been reported on chromosome 2, 3, 5, 
7 and 9 (Wan et al. 2006; Song et al. 2007; Weng et al. 
2008). Sandhu et al. (2015, 2016) reported QTL for grain 
yield per plant (qGY8.1 at 56.3 cM) on chromosome 8 in 
the Aus276/3*IR64 BC2F4 population. Many SSR markers 
have been reported to be linked to QTL promoting aerobic 
adaptation in rice such as yield under drought (Venuprasad 
et al. 2009; Vikram et al. 2011), root length (Steele et al. 
2007), basal root thickness (Qu et al. 2008) and root dry 
weight (Kanbar and Shashidhar 2004). 

The identified QTL in present investigation showed 
high phenotypic variation however, the population size 

was limited therefore, after validation 
of these QTLs could be used marker 
assisted selection for the improvement 
of rice under aerobic condition with 
keeping the basmati traits.
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