Screening of advanced breeding lines for high temperature tolerance using biochemical parameters in Indian mustard (*Brassica juncea*)

IBANDALIN MAWLONG¹, V V SINGH²*, BHAGIRATH RAM³, PANKAJ GARG⁴, REEMA RANI⁵, M S SUJITH KUMAR⁶, BISHAL GURUNG⁷ and P K RAI⁸

ICAR-Directorate of Rapeseed-Mustard Research, Bharatpur, Rajasthan 321 303, India

Received: 20 July 2019.; Accepted: 27 November 2019

ABSTRACT

A set of 30 advanced breeding lines of *Brassica juncea* were screened for heat tolerance in terms of biochemical parameters in field condition at ICAR-DRMR. The selection was based on (1) early sowing (ES) (September) when average soil temperature was 41°C and atmospheric temperature was around 35°C so that heat stress coincided with seedling growth and (2) normal sown (NS) (mid October) where soil temperature was 34.2°C so that seedling growth did not coincide with any stress. Various biochemical parameters like total chlorophyll, total carotenoid content, total antioxidant capacity, radical scavenging activity, lipid peroxidation and proline content were measured in leaves at flowering stage to evaluate the variability among the genotypes and comparison between ES and NS was done. Stress susceptibility index (SSI) categorized genotype NPJ-124 and DRMR-1165-40 to be highly tolerant. Correlation analysis among all the traits showed total antioxidant capacity to be significantly correlated to carotenoids and chlorophyll pigment levels showing the importance of these parameters as indices for screening.

Key words: Antioxidant capacity, Chlorophyll, Heat stress, Indian mustard, Lipid peroxidation, Proline, Radical scavenging activity

Elevating atmospheric temperature due to global climate change has become a major problem that is affecting crop yield of Indian mustard (*Brassica juncea*) and farm income of farmers of the country. IPCC (Inter governmental panel on climate change, 2018 https://archive.ipcc.ch/) reported the impact of global warming has led to an increase of 1.5°C above pre-industrial level due to greenhouse gas emissions worldwide. This prompted the researchers in agricultural sector to identify lines that can withstand higher temperature. The effect of heat stress has been well studied in Indian mustard (Azharudheen *et al.* 2013, Wilson *et al.* 2014, Sharma and Sardana 2016, Ram *et al.* 2016, Ram *et al.* 2017).

Oilseed brassica is a major oilseed crop covering across continents stand next to soybean in terms of area

¹Scientist (e-mail: iban02@gmail.com), ²Principal Scientist and corresponding aurthor (e-mail: singhvijayveer71@gmail.com), ³Principal Scientist (e-mail: bhagirathram_icar@yahoo.com), ⁴Research Associate (czarpankaj@gmail.com), ⁵Scientist (e-mail: reemasherwal@gmail.com), ⁶Scientist (e-mail: sujithkumaragri@gmail.com), ICAR-Directorate of Rapeseed-Mustard Research, Bharatpur, Rajasthan 321 303, India, ⁷Scientist (e-mail: vsalrayan@gmail.com), ICAR-Indian Agricultural Statistics Research Institute, New Delhi, ⁸Director (e-mail: director.drmr@gmail.com), ICAR-Directorate of Rapeseed-Mustard Research, Bharatpur, Rajasthan 321 303, India.

and production. Among the brassica species grown in India, 90% is shared by Indian mustard (Shekhawat *et al.* 2014). It is a cool season crop; hence high temperatures has a detrimental effect on its growth, development and in turn its yield. The optimum temperature of 25°C is required for seedling establishment (Lallu and Dixit 2008). But due to the changing climate the soil temperature rises to about 40-42°C in the month of September especially in hotter mustard growing areas like Rajasthan (Azharudhen *et al.* 2013).

Heat stress leads to an array of physiological, biochemical and molecular changes. During high temperature stress oxidative burst leads to an increase in ROS (Reactive oxygen species) like hydrogen peroxides which was also observed in mustard seedlings after heat treatment (Dat et al. 1998). The ROS are highly toxic and can lead to oxidative destruction in the cell. The consequences of ROS depend upon the intensity of stress and on the physiochemical conditions in the cell. Excessive generation of ROS produced as a result of heat stress, induces cell membrane injury, causes damage to the PS-II oxygen evolving complex and thus influence the protein synthesis (Sairam et al. 2000, Wahid and Close 2007). Cell membranes are most affected by high temperature due to lipid peroxidation with increased level of ROS products like malondialdehyde (MDA). The content of MDA depends upon the level of stress injury. Plants adapt to stress by naturally evolved defense mechanism to maintain cell homeostasis between the ROS production and the capacity to scavenge the toxic free radicals by cellular antioxidants. Under heat stress the release of ROS not only lead to lipid peroxidation, membrane damage, leakage of cellular content, protein degradation, but also pigment bleaching (Sharma et al. 2012). Therefore estimation of chlorophyll and its pigments is an important parameter for identifying the status of plant stress. Chlorophyll absorbs sunlight and uses its energy to synthesize carbohydrates from carbon dioxide (CO₂) and water. The change in chlorophyll content depends upon stress intensities thus, making the concentration of chlorophyll a marker of photosynthetic stability (Singh et al. 2019). Plants also adapt to stress by naturally evolved mechanism at cellular level by maintaining its homeostasis through the production of compatible solutes like proline. The increase in proline concentration influences the retention of water and maintains the normal membrane function of the plant. Apart from maintaining cellular balance, proline is also known to act as hydroxyl radical scavenger (Smirnoff and Cumbes 1989).

One of the ways to study heat stress during seedling establishment in field conditions is to do early sowing of the seeds during the month of September when soil temperature is above 40°C which exposes the seedling to soil temperature above 25°C. To have a better understanding of plant response to high temperature stress it is important to identifying genotypes that can adapt to high temperature. Keeping this in mind our objective was screening heat tolerant lines from advanced breeding materials with the help of biochemical markers and to identify and classify those lines based on their tolerance level for use in future breeding programmes.

MATERIALS AND METHODS

Experimental site and design

A total of 30 advanced high temperature tolerant breeding lines were selected for this experiment. Two hundred fifty seeds of each selected lines were sown under heat stress condition (maximum temperature 41°C at 0-10 cm soil depth on seeding date on September 28, 2015) and normal conditions (maximum temperature 34.2°C at 0-10 cm depth on seeding date on October 24, 2015) in randomized complete block design with three replications at ICAR-DRMR, Bharatpur (77.270 E longitude; 27.120 N latitude and 178.37 m above mean sea level), India. The soil of the experimental site was sandy loam with EC 1.5 dSm⁻¹, low organic carbon (0.25-0.30%), poor available N (125-135 kg/ha), medium P (20-22 kg/ha), and available K of 240-260 kg/ha and a pH 8.1. The Indian mustard crop was raised strictly under conserved moisture conditions. All the selected breeding lines were grown in three rows of five meter length. The distance between row to row and plant to plant was 45 cm and 15 cm, respectively.

Biochemical analysis

Selected advanced breeding heat tolerant lines

(Table 1a,b) were evaluated for various biochemical parameters to identify the most heat tolerant lines. Leaf samples during the flowering stage were taken from ES and NS for evaluating various biochemical parameters.

Chlorophyll estimation

Chlorophyll estimation was done in fresh leaf by a common method (Hiscox and Israelstam 1979) with the following formula for deriving Chlorophyll a (Chl a), Chlorophyll b (Chl b), Total chlorophyll (Chl_{total}) and Total carotenoids content.

Chl a (mg/g FW) =
$$[(12.7 \times A663) - (2.69 \times A645)] \times V/1000 \times W$$

Chl b (mg/g FW) =
$$[(22.9 \times A645) - (4.68 \times A663)] \times V/1000 \times W$$

Carotenoids (mg/g FW) = $[(1000 \times A470) - (3.29 \times Chl a) - (104 \times Chl b)]/198$

where, V-volume of DMSO added, W-weight of sample taken, FW- fresh weight.

Proline estimation

Fresh leaves were used for estimation according to the method described by Bates *et al.* (1973) using proline (Himedia) as the standard. Proline content was expressed in µmole/g FW.

Total antioxidant capacity

Total antioxidant capacity (TAC) was determined as per Prieto *et al.* (1999). The 100 mg of leaf sample was homogenised in 2ml of 80 % methanol, and kept overnight. The supernatant was collected after centrifuging at 4000 rpm for 10 min and final volume was raised to 2 ml. Reduction of Mo (VI) to Mo (V) and the subsequent formation of green colour complex was measured by spectrophotometer (Labomed UV-VIS Double beam UVD-3500) at 695 nm, using ascorbic acid as standard. The TAC was expressed as ascorbic acid equivalent (AAE).

Radical scavenging activity (RSA)

The same methanolic extract used for TAC was used for determining the potential antioxidant properties by determining the scavenging of 1,1- diphenylpicryl hydrazyl and employing the following formula according to Mellors and Tappel (1996)

RSA (%) =
$$\frac{\text{OD of control-OD of sample})}{\text{OD of control}} \times 100$$

where, OD -Optical density at 517 nm

Lipid peroxidation

MDA content was determined by the thiobarbituric acid (TBA) reaction as described by Heath and Packer (1968); Hagege *et al.* (1990); Hodges *et al.* (1999) with slight modifications. The 250 mg of leaf sample was homogenized with 5 ml of 1% Trichloro acetic acid (TCA) followed by centrifugation at 8500 rpm for 10 min. After centrifugation, 1ml of the supernatant was mixed with 4ml of TCA/TBA

Cond.

Table 1 a and b Biochemical analysis of advanced breeding lines in Indian mustard under early sown and normal sown (a) For each parameter, means with the same letter are not significantly different

Genotype	Chlorc	Chlorophyll a (mg/g FW)	FW)	Chlore	Chlorophyll b (mg/g FW)	(W ²	Caroteno	Carotenoid content (mg/g FW)	ng/g FW)	Total chloro	Total chlorophyll content (mg/g FW)	mg/g FW)
	Early	Normal	% increase (+)/ decrease (-)	Early	Normal	% increase (+)/ decrease (-)	Early	Normal	% increase (+)/ decrease (-)	Early	Normal	% increase (+)/decrease (-)
Urvashi	0.70a	1.44nopqrstuv	-106.22	0.19stu	0.27lmnopqrs	-47.44	2.60 ^u	5.42klmnopq	-108.01	0.88 ^b	1.72rstuvw	-93.91
DRMR-541-44	1.11wxy	1.62hijklmnopqr	-46.62	0.02^{v}	0.37cdefghijklmn	-1455.87	4.59 ^{rs}	5.56jklmnop	-21.21	1.13^{zab}	1.99klmnopq	-76.19
RH-119	1.54jklmnopqrst	1.40qrstuv	9.02	0.36jklmnopqr	0.34ghijklmnop	4.94	5.62ijklmnop	4.61 ^{rs}	17.84	1.85nopqrstu	1.74qrstuvw	5.94
RH-406	0.84yza	1.55jklmnopqrs	-85.61	0.12^{tuv}	0.36defghijklmno	-199.33	2.90 ^{ut}	5.20opqr	-79.45	0.96 ^b	1.921mnopqrs	-100.02
DRMR-HT-13-20	1.77efghijklm	1.49lmnopqrstuv	15.42	0.51^{a}	0.25noppqrs	50.74	6.03^{fghijk}	4.61 ^{rs}	23.54	2.28efghij	1.75qrstuvw	23.39
DRMR-HT-13-13	1.42pqrstuv	1.91 bcdefgh	-34.37	0.35ghijklmnop	0.47abcdef	-35.09	5.08opqr	6.31^{efgh}	-24.11	1.77pqrstuvw	2.38cdefgh	-34.52
DRMR-HT-13-7	0.81^{za}	1.88cdefghi	-132.39	$0.21\mathrm{qrstu}$	0.46abcdefg	-112.95	3.15 ^{ut}	6.09efghij	-93.21	1.02^{ab}	2.34defghi	-128.31
DRMR-HT-13-28	1.00^{xyz}	1.79efghijk	-79.99	0.26nopqrs	0.34ghijklmnop	-33.92	3.35^{t}	6.12efghij	-82.94	1.25^{zya}	2.14ghijklm	-70.58
DRMR-HT-729	$1.70^{\text{hijklmnop}}$	$1.70^{hijklmnop} 1.63^{hijklmnopqr}$	4.22	0.27mnopqrs	0.36defghijklmno	-35.62	5.88hijklm	5.63 ijklmno	4.22	1.97klmnopqr	1.99klmnopq	-1.23
BPR-543-2	1.67hijklmnopqr	1.89cdefgh	-13.54	$0.35^{\rm fghijklmnop}$	0.46abcdefg	-28.87	6.06efghij	6.41 defgh	-5.78	2.02jklmnop	2.35cdefghi	-16.22
BPR-349-9	1.49lmnopqrstuv	2.01abcdefg	-34.63	0.19rstu	0.45abcdefgh	-137.67	4.87qr	6.53 ^{cdefg}	-33.87	1.68stuvw	2.46abcdef	-46.34
BPR-549-9	1.26 ^{tuvwx}	1.53 jklmnopqrst	-21.68	0.12 ^{uv}	0.40abcdefghijkl	-240.30	4.19^{t}	5.00pqr	-19.56	1.37^{xyz}	1.921mnopqrs	-40.17
BPR-540-6	1.43 opqrstuv	1.86efghi	-30.11	0.45abcdefghi	0.48abcd	-7.57	$6.21^{ m efghi}$	6.17efghij	69.0	1.88mnopqrst	2.34defghi	-24.70
BPR-541-4	1.48mnopqrstuv	1.48mnopqrstuv 1.60ijklmnopqrs	-8.15	0.30jklmnopqrs	$0.36^{\mathrm{efghijklmno}}$	-18.84	4.60rs	5.15opqr	-12.13	1.78pqrstuvw	1.96klmnopqr	96.6-
NPJ-124	1.89cdefghi	1.51klmnopgrstu	20.05	0.51^{ab}	0.39cdefghijklm	24.35	6.62 ^{cdef}	4.92qr	25.64	2.40abcdefg	1.90mnopqrs	20.97
RH-555	1.54jklmnopqrst	0.89yza	42.44	0.44abcdefghi	0.22qrstu	50.65	6.27^{lmnopq}	3.08 ^{ut}	50.79	1.98klmnopqr	1.11zab	44.26
DRMR-1672-2	1.74fghijklm	1.56jklmnopqrs	10.37	0.24opqrst	0.39cdefghijklm	-59.76	6.00fghijk	5.24nopq	12.72	1.98klmnopqr	1.94klmnopqrs	1.76
JN-032	1.78efghijkl	1.69hijklmnopq	4.92	0.31jklmnopqr	0.35fghijklmnop	-13.39	6.09efghij	5.57jklmnop	8.45	2.09ijklmno	2.04jklmnop	2.19
DRMR-1617-45	1.72ghijklmn	1.73fghijklm	-0.74	0.32jklmnopq	0.30jklmnopqrs	3.68	5.95ghijkl	5.68ijklmno	4.54	2.04jklmnop	2.04jklmnop	-0.05
DRMR-1165-40	2.23a	1.87defghi	16.10	0.39bcdefghijkl	0.31 jklmnopqr	21.27	7.58a	5.86hijklmn	22.73	2.62abc	2.18ghijkl	16.87
DRMR-1191-2	2.04abcde	1.23 unwx	39.85	0.34ghijklmnop	0.29klmnopqrs	16.08	7.00abcd	4.09s	41.52	2.38bcdefgh	1.52 ^{wxy}	36.43

Cond.

Table 1 a and b (Continued)

Genotype	Chlor	Chlorophyll a (mg/g FW)	FW)	Chlorc	Chlorophyll b (mg/g FW)	(W)	Caroteno	Carotenoid content (mg/g FW)	ng/g FW)	Total chlorc	Total chlorophyll content (mg/g FW)	(mg/g FW)
	Early	Normal	% increase (+)/ decrease (-)	Early	Normal	% increase (+)/ decrease (-)	Early	Normal	% increase (+)/ decrease (-)	Early	Normal	% increase (+)/decrease (-)
NRCDR-601	2.16abc	2.20ab	-1.44	0.42abcdefghij	0.40abcdefghijk	4.61	7.25ab	7.12abc	1.75	2.58abcd	2.59abcd	-0.47
Varuna	1.51klmnopqrstu	1.32stuvw	12.12	0.33 ijklmnopq	0.29klmnopqrs	13.24	0.15^{v}	4.13 ^s	-2583.50	1.84 opqrstuv	1.61^{tuvwx}	12.33
NRCHB-101	2.03abcde	1.90cdefgh	6.30	0.46abcdefg	0.48abcde	-3.88	0.13^{v}	6.43defgh	-4740.66	2.48abcde	2.37cdefgh	4.42
DRMR1187-55	1.86defghi	2.15abcd	-15.51	0.42abcdefghij	0.38cdefghijklm	8.56	0.19v	6.67bcde	-3479.37	2.28efghij	2.53abcde	-11.12
DRMR-1616-47	2.20^{ab}	1.89cdefghi	13.97	0.51^{ab}	0.31jklmnopqr	39.29	0.12^{v}	6.06efghij	-5044.02	2.71 ^a	2.20^{fghijk}	18.74
DRMR-1187-71	1.80efghij	1.33stuvw	26.56	0.49abc	0.25nopqrs	49.09	0.17^{v}	4.16 ^s	-2352.85	2.29efghij	1.57vwx	31.35
GM-2	1.21vwx	2.21a	-83.19	0.39bcdefghijkl	0.44abcdefghi	-12.82	0.17^{v}	7.36a	-4328.77	1.60uvwx	2.65ab	-65.97
DRMR-64	1.39rstuvw	1.50lmnopqrstuv	-7.91	0.34ghijklmnop	0.24pqrstu	31.30	0.12^{v}	5.00pqr	-4198.85	1.73qrstuvw	1.73qrstuvw	-0.15
NPJ-113 (Pusa Mustard 26)	1.72hijklmno	1.72hijklmno 1.65hijklmnopqr	3.70	0.40abcdefghijk	0.33hijklmnopq	16.04	0.19v	5.32mnopq	-2761.40	2.11hijklmn	1.99klmnopqr	6.03

(b) For each parameter, means with the same letter are not significantly different

Genotype	Prol	Proline (µmole/g FW)	(W ²	Total antioxidant capacity (mg/g AAE)	lant capacity	(mg/g AAE)		RSA (%)		Lipid pe	Lipid peroxide (nmole/g FW)	e/g FW)
	Early	Normal	% increase (+)/decrease (-)	Early	Normal	% increase (+)/decrease (-)	Early	Normal	% increase (+)/decrease (-)	Early	Normal	% increase (+)/decrease (-)
Urvashi	2.70mnopqrstuv	0.47yza	82.48	29.60no	21.35 ^r	27.87	47.22mno	77.50 ^b	-64.12	3.01lmnop	2.36stuv	21.46
DRMR-541-44	1.63 ^{tuvwxyza}	1.63 ^{tuvwxyza} 2.76 ^{mnopqrstu}	06.89-	31.35^{klm}	26.10^{p}	16.75	41.33 ^{qp}	61.37^{fgh}	-48.47	2.90^{lmnop}	2.58qrs	15.12
RH-119	2.04qrstuvwx	1.37tuvwxyza	32.94	31.52^{kl}	$8.10^{\rm s}$	74.30	53.62^{ijk}	77.50 ^b	-44.53	4.36bc	2.32^{stuv}	46.75
RH-406	0.45yza	1.70stuvwxyz	-278.21	90.60^{a}	s09.6	89.40	25.40 ^{tuv}	42.86^{pq}	-68.75	2.32stuv	2.13 ^{tuvw}	8.33
DRMR-HT-13-20	1.70stuvwxyz	9.00ef	-429.41	46.10 ^d	39.85^{f}	13.56	41.07 ^{pq}	69.05cd	-68.12	1.94 ^{wx}	0.36°	81.33
DRMR-HT-13-13	0.44yza	2.32nopqrstuvw	-421.74	30.35^{lmn}	29.10no	4.12	12.79bc	12.50^{bcd}	2.27	5.29a	3.21^{jklm}	39.27
DRMR-HT-13-7	2.35nopqrstuvw	7.17ghi	-204.92	32.60^{ijk}	23.60^{9}	27.61	16.28 ^{ab}	15.28 ^{bc}	6.15	3.66efghi	1.54^{yz}	58.10
DRMR-HT-13-28	0.68wxyza	10.71 ^d	-1478.20	30.60 ^{lmn}	22.85qr	25.33	11.63 ^{cd}	23.61vwxy	-103.06	2.95mnopq	2.13 ^{tuvw}	27.95

Table 1 a and b. (Concluded)

BPMS-445-2 19,8 increase (Fig. 1) Farthy (Fig. 1) Farthy (Fig. 1) Normal (Fig. 1) % increase (Fig. 1) Farthy (Fig. 1) Parthy (Fig. 1) Par	Genotype	Prol	Proline (µmole/g FW)	FW)	Total antioxic	Total antioxidant capacity (mg/g AAE)	(mg/g AAE)		RSA (%)	Ī	Lipid po	Lipid peroxide (nmole/g FW)	e/g FW)
19.22b 4.76k 75.23 52.60e 43.35e 17.59 24.42mva 22.22mva 8.99 3.02mmp 16.37e 3.23 monopat 80.26 33.85 mil 29.35en 13.29 20.93mva 20.83ma 0.46 4.45b 1.93 monopat 80.26 33.85 mil 30.60mm 10.26 24.42mva 27.78m -13.76 3.10kmmp 3.20 monopat 3.20 monopat 3.71 kmma 4.75 36.10g 31.35km 11.77 23.26mvay 26.39mva -13.47 3.42ikm 3.20 monopat 7.33 mil 4.75 36.10g 31.35km 13.16 58.00gmil 11.44 3.42ikm 4.10 km 3.20 monopat 3.55 mil 32.38km 1.09 53.61jk 61.144 3.42ikm 3.41km 4.89 km 2.09 vol 33.81km 1.10 monopat 53.62jk 61.37g 1.444 3.66gmil 4.89 km 2.09 monopat 3.81km 1.10 monopat 3.50 mil 53.62jk 61.37g 1.444 3.66gmil		Early	Normal	% increase (+)/decrease (-)	Early	Normal	% increase (+)/decrease (-)	Early	Normal	% increase (+)/decrease (-)	Early	Normal	% increase (+)/decrease (-)
49.9 16.37e 3.28 timen 29.38 timen 29.38 timen 19.39 timen 19.39 timen 19.39 timen 19.39 timen 19.39 timen 19.30	DRMR-HT-729	19.23 ^b	4.76 ^{jk}	75.23	52.60°	43.35e	17.59	24.42 ^{tuvw}	22.22wxyz	8.99	3.02lmnop	1.87wxy	38.03
49.9 1.93 statuvavy 5.89 ji -205.51 34.10 ^{li} 30.060mm 10.26 24.42 m/s 2.178m -13.76 31.06 ^{li} mm 49.9 1.40 www.xyzz 2.80 ji 3.61.0g 31.85 ^{li} 11.77 23.26 wwxy 2.63 yuw -13.77 3.10 ^{li} mm 40-6 3.90 limm 3.71 kimno 4.75 36.10g 31.35 ^{li} m 11.31 5.80 way 2.63 yuw -13.47 3.20 ^{li} m 41-4 3.20 limmy 1.29.38 40.10f 32.35 ^{li} m 19.33 6.89 2.83 wwx -19.86 2.89 wyx 19.80	BPR-543-2	16.37°	3.231mnopqr	80.26	33.85hij	29.35no	13.29	20.93uvwxy	20.83yza	0.46	4.45 ^b	3.12klmno	29.86
49-9 1.40 μαναχτα 2.55.0 36.10g 31.884 11.77 23.26 μαναχ 26.39 μαν -13.47 3.42 μα 40-6 3.90 μα 3.71 βμπο 4.75 36.10g 31.384π 13.16 8.80 φβπ 51.07 μπ 11.96 2.80 γσσσ 24.4 3.20 μπουργα 7.33 μπ -129.38 40.10f 32.38μ 7.07 26.19π 65.12 μσ 11.86.2 2.89 γσσσ 19.33 3.53 μπ 2.89 μα 51.24π 11.44 3.56 μπο 2.89 μπο 2.99 μπο 2.89 μπο 2.90 μπο 2.	BPR-349-9	1.93rstuvwxy	5.89 ^{ij}	-205.51	34.10hi	30.60^{lmn}	10.26	24.42uvwx	27.78 ^{tu}	-13.76	3.10klmno	1.21^{za}	60.83
40-6 3.90klm 3.71klmo 4.75 36.10g 31.35klm 13.16 88.00glii 51.07mlm 11.96 2.80pq 41-4 3.20mmopqus 7.33glii -129.38 40.10f 32.35gli 19.33 6.98d 20.83xyza 198.61 3.35glid 24 4.10klm 3.67klmmop 10.33 35.35gli 32.85glik 7.07 26.19ul 65.12def -148.63 2.58gls 5 4.89lk 2.092a -328.32 31.85dl 28.35glik 10.99 35.62lik 61.37gl -144.4 3.66efglii 2-167.2 9.48de 7.55gli 1.18wxy 1.10wxy 66.02 3.35uw 1.10wxy 42.16 42.85glid -144.4 3.66efglii 2-165.4 1.53le 4.46 4.85t 0.60v 87.63 31.40 4.23glid 42.35glid 42.35glid 42.35glid 42.34bc 42.35glid 42.34bc 42.34bc 2-1165.4 1.53le 3.54kmopq 3.54kmopq 2.10wx 2.10m 29	BPR-549-9	1.40tuvwxyza		-55.50	36.108	31.85^{kl}	11.77	23.26uvwxy	26.39tuvw	-13.47	3.42 ^{ijk}	0.97ab	71.70
41-4 3.20µmmopqus 7.33ghl -129.38 40.10f 32.35ghl 32.35ghl <t< td=""><td>BPR-540-6</td><td>3.90^{klm}</td><td>3.71klmno</td><td>4.75</td><td>36.10^{g}</td><td>31.35^{klm}</td><td>13.16</td><td>58.00ghij</td><td>51.07^{nlm}</td><td>11.96</td><td>2.80°pqr</td><td>0.98^{ab}</td><td>64.98</td></t<>	BPR-540-6	3.90^{klm}	3.71klmno	4.75	36.10^{g}	31.35^{klm}	13.16	58.00ghij	51.07^{nlm}	11.96	2.80°pqr	0.98^{ab}	64.98
24 4.10 kbm 3.67 klmmop 10.33 35.35 kb 32.85 kig 7.07 26.19 km 65.12 def -148.63 2.58 ks 5. 4.89 k 2.09 kg k 2.28.32 31.85 kl 28.35 w 10.99 35.20 kg 1.14 kg 3.58 kg kg kg 2.1672-2 9.45 de 7.55 kg k 20.10 1.85 kwxy 1.10 kwxyz 45.35 kg -14.40 4.95 kg 4.23 kg -14.40 4.95 kg 4.23 kg -14.40 4.95 kg 4.23 kg -15.91 kg 4.25 kg 4.35 kg -14.40 4.85 kg 1.10 kwxyz 6.16 kg 3.50 kg 3.50 kg 4.25 kg <t< td=""><td>BPR-541-4</td><td>3.20lmnopqrs</td><td>7.33ghi</td><td>-129.38</td><td>40.10^{f}</td><td>32.35^{jk}</td><td>19.33</td><td>p86^{.9}</td><td>20.83^{xyza}</td><td>-198.61</td><td>3.35^{ijkl}</td><td>1.14^{a}</td><td>66.15</td></t<>	BPR-541-4	3.20lmnopqrs	7.33ghi	-129.38	40.10^{f}	32.35^{jk}	19.33	p86 ^{.9}	20.83 ^{xyza}	-198.61	3.35^{ijkl}	1.14^{a}	66.15
5 4.8 glk 2.0.92a -328.32 31.8 kl 28.35o 10.99 53.6 glk 61.37 glk -14.44 3.66 elghi 2-1672-2 9.45 de 7.55 lgh 20.10 1.85 wvy 1.18 wvyz 1.18 wvyz 36.04 35.90f 54.35 kl -51.44 36.6e elghi 2-167-45 1.5 glk 1.29 luwwyza 66.02 3.35 wv 1.10 wvyz 67.16 21.54 wvyz 42.86f -98.99 4.23 kl 4.23 kd 2-167-40 6.43 h 2.77 mmopuyas 66.02 3.35 wv 1.10 wvyz 87.63 31.67 s 40.35 gl 42.38 pl 42.38 pl 42.38 pl 2-1165-40 6.43 h 2.77 mmopuyas 6.26 29.10 m 62.50 80.13 k 42.38 pl 42.39 pl 42.39 pl 42.34 pc R-601 2.79 dlk 2.91 plw 2.91 plw 2.91 plw 42.50 pl 42.34 pl 43.45 pl 43.45 pl R-601 2.24 plw 2.23 plw 1.25 wvyz 1.24 plw 42.25 pl 42.25 pl 42.05 pl	NPJ-124	4.10^{klm}	3.67klmnop	10.33	$35.35 \mathrm{gh}$	32.85ijk	7.07	26.19 ^{ut}	65.12 ^{def}	-148.63	2.58 ^{rs}	3.51hij	-36.20
-1672-5 9.45de 7.55feh 20.10 1.887wxy 1.18wxyz 36.04 35.90f 54.35fel -51.40 -51.40 49.2a 2.167-45 3.81klmn 1.29uwxyza 66.02 3.35uw 1.10wxyz 67.16 21.54wxyz 42.86pq -98.98 4.23bcd 2-1165-40 6.43i 1.591c -4.46 4.881 0.60yz 87.63 31.67s 40.35g 27.742 9.89mxp 2-1165-40 6.43i 2.77mmopqxst 66.46 77.60p 29.10mp 14.66 80.35km 26.79wxx 46.80 3.91defg 2-1165-40 7.90fgh 2.79mp 29.10mp 62.50 36.10mi 45.35mm 46.80 3.91defg 3-1161-2 7.90fgh 3.54kmnop 29.10m 62.50 36.10mi 45.45mp 83.34m 46.80 3.91defg 4-1161-2 7.90fgh 3.54kmnop 2.18wwx 1.58wxy 1.52wx 1.52wx 42.25mp 42.59mp 4.01defg 3.94degg 1.187-55 0.17a	RH-555	4.89jk	20.92^{a}	-328.32	31.85^{kl}	28.35°	10.99	53.62 ^{ijk}	61.37gf	-14.44	3.66efghi	2.04uvwx	44.37
2.1617.45 3.8 klmm 1.29uvwxyza 66.02 3.35uv 1.10wxyz 67.16 21.54wyz 42.86pq -98.98 4.23bd 2.1617.45 15.23° 15.91° 4.46 4.88† 0.60yz 87.63 31.67s 40.35q -27.42 2.98lmmp 2.1165.40 6.43h 2.77mmopqus 6.69 34.10hi 29.10mo 62.50 56.10hii 42.59opq 27.74 298lmmp 2.1161-2 7.90lgh 2.54klmmopq 55.25 1.68wxy 0.10z 94.06 45.45mp 82.34a 2.97mmp 43.4bc R-601 7.90lgh 3.54klmmopq 55.25 1.68wxy 0.10z 94.06 45.45mp 83.34a 2.97mmp 42.13pc B-101 2.04ystuvwx 2.55pqvgramvx 1.58wxy 0.85xy 61.07 33.90rs 33.33rs 1.67 40.10delf B-101 2.04ystuvxy 2.540gs 2.52uvw 1.58xwx 2.53wk 2.53wk 2.53mk 2.53mk 2.53mk 2.53mk 2.53mk 2.	DRMR-1672-2	9.45 ^{de}	7.55fgh	20.10	1.85vwxy	1.18wxyz	36.04	$35.90^{\rm r}$	54.35jkl	-51.40	4.92^{a}	2.39stu	51.44
	JN-032	3.81klmn	1.29tuvwxyza	66.02	3.35tuv	1.10wxyz	67.16	21.54wxyz	42.86^{pq}	86.86-	4.23bcd	1.99vxw	53.05
F-1165-40 (4.43hi 2.77mnopqrst 56.93 (34.10hi 29.10no 14.66 (50.35klm 26.79uvvx 46.80 (3.91defg 24.10hi 29.10no 14.66 (2.50 (5.10hi 2.59pq 24.07 (4.34bc 1.10hi 2.78mnopqrst 60.46 (7.10hi 2.91nop 2.10hi 2.21quvxx (2.10hi 2.24klmnopq 55.25 (1.68wx) (0.10² (0.85xy² (1.0² (DRMR-1617-45	15.23°	15.91°	-4.46	4.85 ^t	0.60yz	87.63	$31.67^{\rm sr}$	40.359	-27.42	2.98lmnop	2.57rs	13.85
R-foll 7.04hi 2.78mnopqrst 60.46 77.60b 29.10no 62.50 56.10hi 42.59opq 24.07 4.34bc R-coll 7.90fgh 3.54klmnopq 55.25 1.68wxy 0.10z 94.06 45.45nop 83.34s -83.34 2.97mnop 1-1 2.24myx 1.74suvxyx 1.483 2.18uvxx 0.85xyz 61.07 33.90rs 1.67 4.01eeff B-101 2.23mpqrstuvxx 2.25mpqrstuvxx 2.28mx 1.52wxyz 35.46 42.22mpq 42.59mpq -0.88 3.94defs B-101 2.23mpqrstuvxx 2.54mx 1.52wxyz 2.54m 42.22mpq 42.59mpq -0.88 3.94defs L-1616-47 1.74suvxyza 5.04mx 1.85wxyz 2.52uvx 44.28 16.28zab 5.03my -15.34 2.70my 2-1187-71 1.20wxxyza 1.56uvxxyza 2.466 8.52s 1.10wxyz 8.08 64.10def 30.51s 52.40 1.70xy 1.20wxxyza 1.24wxyza 2.53 2.85mno<	DRMR-1165-40	6.43hi	2.77mnopqrst	56.93	34.10hi	29.10 ^{no}	14.66	50.35^{klm}	26.79uvwx	46.80	3.91 defg	2.95mnopq	24.42
R-601 7.90fgh 3.54klmnopq 55.25 1.68wxy 0.10z 94.06 45.45nop 83.34a -83.34 2.97mnop B-101 2.04qrstuvwx 1.74rstuvwxx 14.83 2.18uvwx 0.85xyz 61.07 33.90fs 33.33fs 1.67 4.01cdef B-101 2.23opqrstuvwx 2.25opqrstuvwx -0.90 2.35uvw 1.52wxy 26.49 52.38kj 60.42ghi -15.34 2.01cdef 1187-55 0.17a 8.60efg -5040.38 2.52uvw 1.85vwxy 26.49 52.38kj 60.42ghi -15.34 2.0pderg 1-1187-71 1.20vwxyza 1.50luvwxyza 2.4.66 8.52s 1.10wxyz 87.08 64.10def 30.51st 52.40 1.70vy 1-1187-71 1.20vwxyza 1.56luvwxyza 2.50.34 29.85mno 28.35o 5.03 68.42cd 67.39cde 1.70vy 1.44 1.26uvxyza 1.58 3.68u 1.60wxyz 56.56 42.22opq 67.39cde 1.50 2.99lmop 1.6	DRMR-1191-2	7.04hi	2.78mnopqrst	60.46	409°LL	29.10no	62.50	56.10^{hij}	42.59°P9	24.07	4.34bc	$2.50^{\rm rst}$	42.26
B-101 2.39drstuwwx 1.44stuwxx 1.483 2.18uwxx 0.85xyz 61.07 33.90rs 33.33rs 1.67 4.01cdef B-101 2.23opqrstuwxx 2.23opqrstuwxx 2.090 2.35uvwx 1.52wxyz 35.46 42.22opq 42.59opq -0.88 3.94defg 1187-55 0.17a 8.60efg -5040.38 2.52uvw 1.85vwxy 26.49 52.38kj 60.42ghi -15.34 2.70pqrs 2-1616-47 1.74rstuvwxyz 56.11 4.52t 2.52uvw 44.28 16.28zab 25.00uvwx -53.57 3.83efgh 2-1187-71 1.20vwxyza 1.50tuvwxyza 8.52s 1.10wxyz 87.08 64.10def 30.51st 52.40 1.70xy 2-44 1.24vwxyza 1.58 3.68tmno 28.35o 5.03 68.42cd 67.39cde 1.50 2.99lmnop 2-64 1.26uvwxyza 1.58 3.68tmno 1.60wxyz 5.03 68.42cd 67.39cd 1.50 2.99lmnop 2.50 4.36kf 0.20za </td <td>NRCDR-601</td> <td>7.90fgh</td> <td>3.54klmnopq</td> <td>55.25</td> <td>1.68^{wxy}</td> <td>$0.10^{\rm z}$</td> <td>94.06</td> <td>45.45nop</td> <td>83.34^{a}</td> <td>-83.34</td> <td>2.97mnop</td> <td>1.79wxy</td> <td>39.57</td>	NRCDR-601	7.90fgh	3.54klmnopq	55.25	1.68 ^{wxy}	$0.10^{\rm z}$	94.06	45.45nop	83.34^{a}	-83.34	2.97mnop	1.79wxy	39.57
B-101 2.23 opdrstuvwx 2.05 opdrstuvwx 2.05 oversity 2.05 oversity 1.52 wxyz 35.46 42.22 opq 42.59 opq -0.088 3.94 defg 21187-55 0.17a 8.60 efg -5040.38 2.52 uvw 1.85 vwxy 26.49 52.38 kg 60.42 ghi -15.34 2.70 pqrs 2-1616-47 1.74 rstuvwxyza 3.611 4.52 t 2.52 uvw 44.28 16.28 rab 55.00 uvwx -53.57 3.83 efgh 2-1187-71 1.20 vwxyza 1.50 uvwxyza -24.66 8.52 s 1.10 wxyz 87.08 64.10 def 30.51 st 52.40 1.70 xy 2-44 1.26 uvwxyza 1.55 uvxxyza 250.34 29.85 mno 28.35 o 56.56 42.22 opq 67.39 cde 1.70 xy 2.99 lmnop 2-64 1.26 uvxxyza 1.58 3.68 u 1.60 wxyz 56.56 42.22 opq 63.83 efg 5.01 lmop 5.01 lm	Varuna	2.04qrstuvwx	1.74rstuvwxy	14.83	2.18uvwx	0.85xyz	61.07	$33.90^{\rm rs}$	33.33^{rs}	1.67	4.01cdef	0.65^{bc}	83.92
1187-55 0.17a 8.60efg -5040.38 2.52uvw 1.85vwxy 26.49 52.38kj 60.42ghi -15.34 2.70pqrs 2.5166-47 1.74rstuvvxy 0.76xyza 5.611 4.52t 2.52uvw 44.28 16.28zab 2.5.00uvwx -5.3.57 3.83efgh 2.1187-71 1.20vwxyza 1.50uvwxyza 2.26.34 2.985mno 28.35° 5.03 64.10def 30.51st 52.40 1.70xy 1.70xy 6.4.10def 30.51st 52.40 1.70xy 1.70xy 6.4.20cde 1.26uvwxyza 1.24vwxyza 1.250.34 2.8.60° 32.60jik 1.50uxyza 2.5.55 28.60° 32.60jik 1.3.99 39.13q 71.11° -81.73 4.03cde	NRCHB-101	2.23 opqrstuvwx	2.25 opqrstuvwx		2.35uvwx	1.52wxyz	35.46	42.22 ^{opq}	42.59 ^{opq}	-0.88	3.94defg	3.64^{fghi}	7.54
L1616-47 1.74rstuvwxy 6.11 4.52t 2.52uvw 44.28 16.28zab 25.00uvwx -53.57 3.83efgh 2-1187-71 1.20vwxyza 1.50twvxyza -24.66 8.52s 1.10wxyz 87.08 64.10def 30.51st 52.40 1.70xy 2-44 1.26twvxyza 1.25twxxyza 28.35o 5.03 68.42cd 67.39cde 1.50 2.99lmnop 2-64 1.26twxxyza 1.58 3.68tw 1.60wxyz 56.56 42.22cpq 63.83efg 5.118 3.68efghi 3 Pusa 4.36kl 0.20za 95.35 28.60o 32.60ilk -13.99 39.13q 71.11c -81.73 4.03cde	DRMR1187-55	0.17^{a}	8.60efg	-5040.38	2.52uvw	1.85vwxy	26.49	52.38kj	$60.42 \mathrm{ghi}$	-15.34	2.70pqrs	2.70pqrs	
L1187-71 1.20vwxyza 1.50luvwxyza -24.66 8.52s 1.10wxyz 87.08 64.10def 30.51st 52.40 1.70xy 1.4187-71 0.47yza 1.65luvwxyza -250.34 29.85mno 28.35° 5.03 68.42cd 67.39cde 1.50 2.99lmnop 1.64 1.26uvwxyza 1.24vwxyza 1.58 3.68tu 1.60vxyz 56.56 42.22opq 63.83efg -51.18 3.68efghi 3 Pusa 4.36kl 0.20za 95.35 28.60° 32.60ilk -13.99 39.13q 71.11° -81.73 4.03cde	DRMR-1616-47	1.74rstuvwxy	0.76xyza	56.11	4.52^{t}	2.52uvw	44.28	16.28zab	25.00uvwx	-53.57	3.83efgh	3.10klmno	19.19
0.47yza 1.65uvwxyza -250.34 29.85mno 28.35° 5.03 68.42°d 67.39°de 1.50 2.99lmnop 2.64 1.26uvwxyza 1.24vwxyza 1.58 3.68 ^u 1.60 ^{wxyz} 56.56 42.22°pq 63.83°fg -51.18 3.68°fghi 3.69°fghi 95.35 28.60° 32.60°jjk -13.99 39.13°d 71.11° -81.73 4.03°de	DRMR-1187-71	1.20vwxyza	1.50 ^{tuvwxyza}	-24.66	$8.52^{\rm s}$	1.10^{wxyz}	87.08	64.10def	$30.51^{\rm st}$	52.40	1.70 ^{xy}	1.81 ^{wxy}	-6.06
$ 1.26^{\rm uvwxyza} = 1.24^{\rm vwxyza} = 1.58 \qquad 3.68^{\rm tu} \qquad 1.60^{\rm wxyz} \qquad 56.56 \qquad 42.22^{\rm opq} \qquad 63.83^{\rm efg} \qquad -51.18 \qquad 3.68^{\rm efghi} \\ $	GM-2	0.47yza	1.65 ^{tuvwxyza}	-250.34	29.85mno	28.35°	5.03	68.42 ^{cd}	67.39cde	1.50	2.99lmnop	2.83nopqr	5.60
4.36^{kl} 0.20^{za} 95.35 28.60^{o} 32.60^{ijk} -13.99 39.13^{q} 71.11^{c} -81.73 4.03^{cde}	DRMR-64	1.26uvwxyza	1.24vwxyza	1.58	3.68 ^{tu}	1.60^{wxyz}	56.56	42.22opq	63.83efg	-51.18	3.68efghi	3.20jklmn	12.98
Wilstard 26)	NPJ-113 (Pusa Mustard 26)	4.36 ^{kl}	0.20^{za}	95.35	28.60°	32.60 ^{ijk}	-13.99	39.139	71.11°	-81.73	4.03cde	3.57ghij	11.22

T comparison lines for least Squares means of genotypes sowing. The alphabets represent an interaction studies between early sown and Normal sown.

(0.5% TBA in 20%TCA) reagent. For control, 1 ml of 1% TCA plant extract was incubated in hot water (95°C) for 30 min. Thereafter, it was cooled immediately on ice to stop the reaction and centrifuged at 10000 rpm for 10 min at 4°C. Absorbance was measured at 535 and 600 nm using a spectrophotometer (Labomed UV-VIS Double beam UVD-3500), and MDA concentration was estimated by subtracting the non-specific absorption at 600 nm from the specific absorption at 535 nm. The absorbance coefficient of extinction is 155 mM⁻¹ cm⁻¹.

where, A-Absorbance, ε - malondialdehyde (MDA) molar extinction coefficient at 532nm [155mM⁻¹ cm⁻¹], d- optical distance (width of cuvette) (1cm), V-volume of sample (L), FW-fresh weight equivalent in the sample (g).

Stress susceptibility index

The stress susceptibility index (SSI) was determined, by using the mean of different traits under normal (Non-stress sown) and early sown (Stress). Fischer and Maurer (1978) method of SSI was employed for calculation. Differences in the results obtained for stress (early sown) and non-stress (normal) conditions were employed to calculate SSI by using the following equations:

$$SSI = \frac{\left[1 - \frac{Y_p}{Y_s}\right]}{SI}$$
Stress Intensity (Sl) = 1 $\frac{MY_s}{MY_p}$

In the above equations, Y_P is the mean value for the investigated trait under non-stress conditions, Y_S is mean trait value under stress conditions, MY_P is mean trait value of all 30 genotypes under non-stress conditions and MY_S is mean trait value under stress conditions.

Statistical analysis

The data obtained for different treatments with respect to various parameters under consideration were subjected to Analysis of Variance (ANOVA) using SAS 9.4 software package available at ICAR-IASRI, New Delhi, India. Pairwise comparisons of the least square means (LSMEANS) were performed using the Tukey's honest significant difference (HSD) test. Further, SSI was also calculated for each genotype employing the formula given by Fischer and Maurer (1978) to identify the genotypes with high temperature tolerance.

RESULTS AND DISCUSSION

Chlorophyll content

Study in Indian mustard explains the importance of sink to source translocation for positive improvement of harvest index and consequently seed yield (Kumar and Srivastava 2003). High temperature causes poor translocation of photosynthates by both upper and lower pods of Indian

mustard (Subrahmanyam and Rathore 1994) which was also observed under stress. This has been documented by reduction of photosynthetic pigments (chlorophyll a, b, total chlorophyll and carotenoid) in the leaves of various crops (Yordanov et al. 2000, Montagu and Woo 1999, Nilsen and Qrcutt 1996, Kumar et al. 2013). This indicates the importance of leaf pigments like chlorophyll as they have role in fixation of CO2 and harvesting of energy required for photosynthesis leading to higher yield and harvest index. Kumar et al. (2013) reported the importance of chlorophyll and carotenoid content as heat tolerant indices that help to identify heat tolerant genotypes. It is well known that photosynthetic efficiency is dependent on pigments like chlorophyll which absorbs sunlight and uses its energy to synthesize carbohydrates from carbon dioxide and water. The change in chlorophyll content depends upon stress intensities. In this study the total chlorophyll content under NS condition ranged from 1.11 mg/g FW (RH-555) to 2.65 mg/g FW (GM-2). In ES condition the total chlorophyll content ranged from 0.88 mg/g FW (Urvashi) to 2.71 mg/g FW (DRMR-1616-47) (Table 1a). There is one report in Indian mustard (Kumar et al. 2013) under three different dates of sowing 15th October, 1st November and 15th November in which the total chlorophyll content ranged from 1.45 mg/g FW (EJ-15) to 2.1 mg/g FW (CS-52); 1.36 mg/g FW (EJ-15) to 1.91 mg/g FW (Proagro) and 0.89 mg/g FW (EJ-15) to 1.67 mg/g FW (CS-52) respectively which is in agreement with the present report.

Photosynthetic function has been recognized as indicator of heat stress. Photosynthetic dysfunction happens as a result of the loss of pigments like chlorophyll that causes disruption of electron flow, thermos-liability of photosystem II, carbon fixation and assimilation reduction (Sinsawat et al. 2004). There are many reports that suggest stress leads to reduction of chlorophyll content (Yordanov et al. 2000, Montagu and Woo 1999, Nilsen and Qrcutt 1996, Kumar et al. 2013). In this study about 57% of the genotypes showed reduction in total chlorophyll by 0.1% (DRMR-64, DRMR-1617-45) to 128.3% (DRMR-13-7) compared to NS, while, 43% of the genotypes showed increase in total chlorophyll content under early sown by 1.8% (DRMR-1672-2) to 44.3% (RH-555) compared to NS (Table 1a). These genotypes that can maintain chlorophyll content under ES could adapt to heat stress.

The ability of plants to absorb light is governed by chlorophyll which is composed of two pigments chlorophyll a and chlorophyll b. Chlorophyll a act as the pigment which is required for the light reactions of photosynthesis. Chlorophyll b act as the accessory pigment that function indirectly in photosynthesis by transferring the energy to chlorophyll a (Soengas et al. 2018).

In advanced breeding lines we observed Chlorophyll *a* content ranged from 0.89 mg/g FW (RH-555) to 2.21 mg/g FW (GM-2) under NS condition. In ES condition the chlorophyll *a* content ranged from 0.70 mg/g FW (Urvashi) to 2.23 mg/g FW (DRMR-1165-40) (Table 1a). Chlorophyll *b* content under NS condition ranged from

0.22 mg/g FW (RH-555) to 0.48 mg/g FW (BPR-540-6, NRCHB-101). For ES condition the chlorophyll b content ranged from 0.02 mg/g FW (DRMR-541-44) to 0.51 mg/g FW (DRMR-HT-13-20, NPJ-124, DRMR-1616-47) (Table 1a). A study in Indian mustard variety Varuna and RH-30 showed chlorophyll a content of 1.11 to 1.27 mg/g FW and chlorophyll b content of 0.53 to 59 mg/g FW (Mobin and Khan 2007) which is also similar to the present study.

Under ES the chlorophyll a content decreased by 0.7% (DRMR-1617-45) to 106.2% (Urvashi) over 53% genotype in NS. While in rest 47% it increased by 3.7% (NPJ-113 (PM-26)) to 42.4% (RH-555) (Table 1a). For, chlorophyll b, we observed similar trend where there was a reduction under ES by 7.57% (BPR-54-06) to 1456% (DRMR-541-44) over NS (Table 1a). In previous reports on heavy metal cadmium (Cd) stress in Indian mustard (Mobin and Khan 2006) and heat stress in B. oleracea (Soengas et al. 2018) it was observed that chlorophyll b showed more reduction in comparison to chlorophyll a, which according to Cui et al. (2006) may be due to faster degradation of chlorophyll b. The variation in these pigment content with reduction of chlorophyll b showed higher chlorophyll a:b ratio is linked to lowering of light harvesting chlorophyll proteins (LHCPs) (Loggini et al. 1999). It was proposed that the reduction in LHCPs play adaptive role or defense mechanism of the plant against adverse stress conditions (Asada et al. 1998).

Apprehending the factors regulating the chlorophyll metabolism during heat stress could give more insight into the development of tolerant genotypes with stay-green traits either through marker assisted selection or transgenic approach (Jespersen *et al.* 2016).

Carotenoids

Carotenoids apart from functioning as accessory pigments in photosynthesis they also play a role in preventing the oxidative stress by acting as antioxidants. They safeguard the photosystem by scavenging the ROS produced during the photo oxidative stress by quenching both the triplet chlorophyll (³Chl*) and singlet oxygen (¹O₂) (Edge *et al.* 1997; Triantaphylides and Havaux 2009). The presence of singlet oxygen, the main ROS, is detrimental to the plants (Triantaphylides and Havaux 2009), which make carotenoid estimation, an important parameter to screen heat tolerant genotypes.

The carotenoid content under NS condition ranged from 3.08 mg/g FW (RH-555) to 7.36 mg/g FW(GM-2) and for ES condition the carotenoid content ranged from 0.12 mg/g FW (DRMR-1616-47& DRMR-64) to 7.58 mg/g FW (DRMR-1165-40) (Table 1a). A report in Indian mustard (Kumar *et al.* 2013) under three different date of sowing 15 October, 1 November and 15 November, the total carotenoid content ranged from 0.38 mg/g FW (EJ-15) to 0.49 mg/g FW (CS-52, NDR 8801), 0.33 mg/g FW (EJ-15) to 0.48 mg/g FW (CS-52) and 0.26 mg/g FW (Pusa Agrani) to 0.42 mg/g FW (EJ-15) which is in tune with this experiment. During ES, the total carotenoid content decreased by 5.8% (BPR-543-2) to 5044.0 % (DRMR-161647) in about 60% of

genotypes compared to NS, while in rest of the genotypes there was an increase of total carotenoid content by 0.7% (BPR-5406) to 50.8% (RH-555) (Table 1a). The genotypes that are less affected in terms of reduction in chlorophyll and carotenoids content can be grouped as heat tolerant.

Proline

Plants being static under environmental stress have to adapt themselves in order to survive. One of the mechanisms at cellular levels that defend them is the accumulation of electroneutral molecules also known as osmolytes like proline. Proline is widely studied and is known to have diverse roles like shielding proteins against elevated concentration of inorganic ions and extreme temperature (Singh et al. 2017), stabilizing membranes and sub-cellular structures and also protecting cells from reactive oxygen species (Singh et al. 2017). Accumulation of proline under stress acts as a defense mechanism to maintain cellular redox state during stress (Singh et al. 2017). Hence, the estimation of proline helps in the selection of heat tolerant genotypes. In this experiment it was observed that proline content under NS condition ranged from 0.20 µmole/g FW (NPJ-113 (Pusa Mustard 26)) to 20.9 µmole/g FW (RH-555). For ES condition it ranged from 0.17 µmole/g FW (DRMR1187-55) to 19.23 µmole/g FW (DRMR-HT-729) (Table 1b).

Under ES condition about 47% of the genotypes showed reduction in proline content by 0.9% (NRCHB-101) to 5040.4% (DRMR-1187-55) while, 53% showed increase in proline content by 1.6% (DRMR-64) to 95.4% (NPJ-113 (PM-26)) (Table 1b). The increase in proline content indicates that those genotypes are capable of adapting against heat stress. The genotypic variations in proline content under ES have been reported in sunflower as well (Amutha et al. 2007). However, in their report it was concluded that the increase in proline is not to be associated with stress tolerance. Proline content could be a mere indicator of plant water status (Amutha et al. 2007). Another report on moth bean where inspite of increase in proline under stress it was not qualified as heat tolerant (Harsh et al. 2016). Similarly, in this experiment genotypes like Urvashi, BPR-543-2 that had a high increase in proline content (>80%) at ES condition was not qualified as highly heat tolerant.

Lipid peroxidation

Under stress, membrane damage is often caused by MDA the product of lipid peroxidation of unsaturated fatty acid in membrane phospholipids (Da Costa and Huang 2007). The intensity of membrane damage depends upon the rise in concentration of MDA content. Under NS the MDA content ranged from 0.36 nmole/g FW (DRMR-HT-13-20) to 3.64 nmole/g FW (NRCHB-101). Under ES it ranged from 1.70 nmole/g FW (DRMR-1187-71) to 5.29 nmole/g FW (DRMR-HT-13-20) (Table 1b). In one report under controlled condition, seedling stage of Indian mustard the MDA content was reported as 4.66 MDA g/FW in tolerant and 7.44 MDA g/FW in susceptible variety

(Wilson *et al.* 2013). In this study, almost all the genotypes showed increase in MDA content by 5.6% (GM-2) to 81.3% (DRMR-HT-13-20) over that of NS (Table 1b). This indicates the membrane damage during stress. However, there are only two genotypes that showed less effect on lipid membrane damage where there was 6.1% (DRMR-118-7-7) to 36.2% (NPJ-124) reduction in MDA content compared to NS condition and in one genotype (DRMR-1187-71) it did not change at all under ES. This could be due to the ability of these genotypes to have protective antioxidant system to scavenge the ROS preventing lipid peroxidation.

Total antioxidant capacity and radical scavenging activity

Plants are able to naturally adapt to change in climatic conditions because of the presence of antioxidant molecules that enable them to regulate cellular metabolism under temperature stress. The damage on leaves intensify upon stress if the defense mechanism like antioxidants are reduced. Thus measuring the antioxidant capacity can help in identifying plants that can withstand stress. In this experiment the Total antioxidant capacity (TAC) under NS condition ranged from 0.10 mg/g AAE (NRCDR-601) to 43.35 mg/g AAE (DRMR-HT-729). In ES condition the TAC ranged from 1.6 mg/g AAE (NRCDR-601) to 90.60 mg/g AAE (RH-406) (Table 1b). Radical scavenging activity (RSA) under NS condition ranged from 12.50 % (DRMR-HT-13-13) to 83.34% (NRCDR-601) and under ES condition it was found to range from 6.98% (BPR-541-4) to 68.42% (GM2).

Surprisingly, under ES all the genotypes showed increase in TAC from 4% (DRMR-HT-13-13) to 94.1% (NRCDR-601) except for one genotype NPJ-113 (PM-26) which can be expected as the increase in MDA content almost all the genotypes in was accompanied by parallel increase in TAC. This is so to allow plants to combat the stress, but the capacity to scavenge radicals depends upon the genotype's ability to withstand stress as observed with the variation in TAC among genotypes during ES and NS (Table 1b). In case of RSA only 33% of the genotypes showed increase in its capacity to scavenge the radicals by 0.5% (BPR-543-2) to 52.4% (DRMR-1187-71) (Table 1b). The increase in antioxidant properties was also observed by Rani et al. (2016) in five day old seedlings at high temperature and which was significantly higher in tolerant lines, as observed in this tune with our experiment where TAC increased in almost all genotypes under stress (ES). A comparative study of antioxidant properties among various vegetables has also concluded the difficulty to compare antioxidant properties verses assay methods (Rameh et al. 2011). Therefore, it cannot be an index and can only rank the genotypes based on the antioxidant properties.

Correlation analysis

To understand the relationship between the parameters under ES and NS a correlation analysis was performed. It was observed that during early sown, TAC had significant correlation with carotenoids (Table 2), while RSA did not show any significant correlation. In case of RSA, we observed that only 33% of the genotypes showed increase

Table 2 Correlation analysis of biochemical traits under early sown (ES) and normal sown (NS)

Parameter	Environments	Chl a	Chl b	Total chlorophyll	Total carotenoid	TAC	RSA	Lipid peroxide	Proline
Chl a	ES	1							
	NS								
Chl b	ES	0.68**	1						
	NS	0.69**							
Total chlorophyll	ES	0.98**	0.80**	1					
	NS	0.99**	0.80**						
Total carotenoid	ES	0.19	-0.08	0.13	1				
	NS	0.98**	0.72**	0.97**					
TAC	ES	-0.33*	-0.31*	-0.34*	0.34*				
	NS	-0.07	0.17	-0.02	-0.04		1		
RSA	ES	0.19	0.33*	0.23	-0.11	-0.08			
	NS	-0.12	-0.26	-0.16	-0.1	-0.16			
Lipid peroxide	ES	0.16	-0.07	0.11	0.14	-0.17	-0.24	1	
	NS	0.2	0.09	0.19	0.25	-0.16	0.14		
Proline	ES	0.32*	0.01	0.26	0.49**	0.04	-0.11	0.17	1
	NS	-0.21	-0.22	-0.22	-0.22	0.09	-0.04	-0.21	

^{**} Sig nificant at 1% level, *significant at 5% level

Table 3 Classification of genotypes based on SSI in 30 advanced breeding lines of Indian mustard. HT-Highly tolerant, T-Tolerant, MT-Moderately tolerant, S- Susceptible, HS- Highly susceptible

A			Š		7.1	1				E	3.
Advanced breeding lines				Stress susceptibility Index (SSI)	ty Index (S	SI)			Number of	Iotal	Classin-
	Chl a	Chl b	Total	Total	TAC	RSA	Lipid	Proline	Parameters showing	parameters	cation
			chlorophyll	carotenoid			peroxide		less effect on Stress	analysed	
Urvashi	8.01	4.75	-7.37	1.85	98.0	1.95	0.51	-75.53	4	8	MT
DRMR-541-44	4.94	13.82	6.58	0.62	0.45	1.63	0.33	6.55	3	~	S
RH-119	-1.54	-0.77	96:0-	-0.77	6.46	1.54	1.64	-7.88	5	~	MT
RH-406	7.17	9.84	7.61	1.58	18.84	2.03	0.17	11.80	1	8	HS
DRMR-HT-13-20	-2.83	-15.22	-4.65	-1.10	0.35	2.02	8.12	13.01	5	~	MT
DRMR-HT-13-13	3.98	3.84	3.91	69.0	0.10	-0.12	1.21	12.97	3	~	S
DRMR-HT-13-7	8.86	7.84	8.56	1.72	0.85	-0.33	2.58	10.78	2	8	S
DRMR-HT-13-28	6.91	3.74	6.30	1.62	92.0	2.53	0.72	15.03	2	8	S
DRMR-HT-729	-0.68	3.88	0.18	-0.16	0.48	-0.49	1.14	-48.72	9	∞	Т
BPR-543-2	1.85	3.31	2.12	0.19	0.34	-0.02	0.79	-65.22	5	8	MT
BPR-349-9	4.00	8.56	4.82	0.90	0.26	09.0	2.89	10.79	3	~	S
BPR-549-9	2.77	10.43	4.36	0.58	0.30	0.59	4.72	-5.73	4	~	MT
BPR-540-6	3.60	1.04	3.02	-0.02	0.34	-0.68	3.46	-0.80	4	~	MT
BPR-541-4	-1.17	2.34	-1.38	0.39	0.53	3.31	3.64	9.05	4	8	MT
NPJ-124	-3.90	-4.75	-4.04	-1.23	0.17	2.98	-0.50	-1.85	7	~	HT
RH-555	-11.46	-15.16	-12.09	-3.68	0.28	0.63	1.49	12.30	9	~	L
DRMR-1672-2	-1.80	5.53	-0.27	-0.52	1.26	1.69	1.97	-4.04	4	~	MT
JN-032	-0.80	1.74	-0.34	-0.33	4.57	2.48	2.11	-31.17	4	~	MT
DRMR-1617-45	0.11	-0.56	0.01	-0.17	15.82	1.07	0.30	69.0	9	~	Τ
DRMR-1165-40	-2.98	-3.99	-3.09	-1.05	0.38	-4.38	09.0	-21.21	~	~	HT
DRMR-1191-2	-10.30	-2.83	-8.72	-2.53	3.72	-1.58	1.36	-24.54	9	~	Τ
NRCDR-601	0.22	-0.71	0.07	-0.06	35.35	2.26	1.22	-19.81	5	8	MT
Varuna	-2.14	-2.25	-2.14	3.43	3.50	-0.08	9.73	-2.79	5	8	MT
NRCHB-101	-1.05	0.55	-0.70	3.49	1.23	0.04	0.15	0.14	5	8	MT
DRMR1187-55	2.09	-1.38	1.52	3.47	0.80	99.0	0.00	15.73	4	~	MT
DRMR-1616-47	-2.52	-9.56	-3.51	3.50	1.77	1.74	0.44	-20.51	5	~	MT
DRMR-1187-71	-5.62	-14.24	-6.95	3.42	15.05	-5.49	-0.11	3.17	5	~	MT
GM-2	7.06	1.68	6.05	3.49	0.12	-0.08	0.11	11.46	3	~	S
DRMR-64	1.14	-6.73	0.02	3.48	2.91	1.69	0.28	-0.26	3	8	S
NPJ-113 (Pusa Mustard 26)	-0.60	-2.82	-0.98	3.44	-0.27	2.24	0.24	-329.04	9	8	Т

in RSA under ES over that of NS. The strong positive correlation of total carotenoids with TAC at ES (Table 2) indicates that the carotenoids act as antioxidants to scavenge the radicals produced under stress. Studies in chickpea on exogenous application of proline showed less injury to membranes and improved water and pigment associated photosynthesis (Kaushal *et al.* 2011) which we also observed with the significant correlation of carotenoids with proline. According to Hasanuzzaman *et al.* (2013) the strong association with antioxidant capacity implies the genotypes tolerance to heat stress. Hence, carotenoids could be an important indicator for heat stress tolerance.

Under NS the TAC had no significant correlation with any of the parameters (Table 2), while under ES condition it was observed that the TAC was negatively correlated to chlorophyll *a*, chlorophyll *b*, total Chlorophyll and in turn the carotenoid had significant positive correlation to TAC (Table 2) indicating its role as antioxidants to protect the photosystem from dysfunction by quenching triplet chlorophyll (³Chl*) and singlet oxygen (¹O₂) as reported by Mitchel Havaux (2013). The significant correlation only during stress condition points us to the importance of these parameters for screening of heat tolerant lines.

Selection of genotypes

Heat tolerant lines were identified based on the percentage of increase or decrease in each parameter under ES over that of NS and based on individual SSI of each parameter analysed. Using SSI, comparative analysis between tolerance and susceptibility of genotype(s) to heat stress was screened. When, SSI is less the tolerance of genotypes will be higher. SSI less than one considering all the parameters analysed was identified as tolerant. The cumulative SSI of individual parameter helped in classifying the genotypes into highly tolerant, tolerant, moderately tolerant, susceptible and highly susceptible as shown in table below (Table 3). The negative SSI indicates tolerance and intensive synthesis or accumulation of compounds that help in combating oxidative stress as also reported in previous work in tomatoes (Zdravkovic *et al.* 2013).

Conclusion

The study showed variation in most of the biochemical traits which can be exploited in various breeding programmes. The genotypes classified in this study as tolerant should be further evaluated at different developmental stages in field conditions. The best among the lines identified in this study are NPJ-124 and DRMR-1165-40 which could serve as potential source in breeding programmes for high temperature tolerance.

ACKNOWLEDGMENT

The authors are grateful to the funding agency Indian Council of Agricultural Research (Incentivizing Research in Agriculture DRMR EA-14) and Director of ICAR-Directorate of Rapeseed Mustard Research for providing all the necessary facilities to carry out the research work.

REFERENCES

- Asada K, Endo T, Mano J and Miyake C. 1998. Molecular mechanism for relaxation of and protection from light stress. *Stress Responses of Photosynthetic Organisms*, pp 37-52. Satoh K and Murata N (Eds), Elsevier, Amsterdam-Tokyo.
- Amutha R, Muthulaksmi S, Baby Rani W, Indira K and Mareeswari P. 2007. Studies on biochemical basis of heat tolerance in sunflower (*Helianthus annuus* L.). *Research Journal of Agricultural Biology Science* **3**: 234–238.
- Azharudheen T M, Yadava D K, Singh N, Vasudev S and Prabhu K V. 2013. Screening Indian mustard [*Brassica juncea* (L.) Czern and Coss)] germplasm for seedling thermo-tolerance using a new screening protocol. *African Journal of Agricultural Research* 8: 4755–4760.
- Bates L S, waldren R P and Teare I D. 1973. Rapid determination of free proline for water stress studies. *Plant Soil* **39**: 205–207.
- Cui L, Li J, Fan Y, Xu S and Zhang Z. 2006. High temperature effects on photosynthesis, PSII functionality and antioxidant activity of two *Festuca arundinacea* cultivars with different heat susceptibility. *Botanical Studies* 47: 61–69.
- DaCosta M and Huang B. 2007. Changes in antioxidant enzyme activities and lipid peroxidation for bentgrass species in response to drought stress. *Journal of the American Society* for Horticultural Science 132: 319–326.
- Dat J F, Lopez Delgado H, Foyer C H and Scott I M. 1998. Parallel changes in H₂O₂ and catalase during thermotolerance induced by salicylic acid or heat acclimation in mustard seedlings. *Plant Physiology* **116**: 1351–1357.
- Edge R, McGarvey D J and Truscott T G. 1997. The carotenoids as anti-oxidants-a review. *Journal of Photochemistry and Photobiology B: Biology* **41**: 189–200.
- Fischer R A and Maurer R. 1978. Drought resistance in spring wheat cultivars. I. Grain yield responses. *Australian Journal of Agricultural Research* **29.5**: 897–912.
- Hagege D, Nouvelot A, Boucard J and Gaspar T. 1990.
 Malondialdehyde titration with thiobarbiturate in plant extracts:
 avoidance of pigment interference. *Phytochemical Analysis* 1: 86–89.
- Harsh A, Sharma Y K, Joshi U, Rampuria S, Singh G, Kumar S and Sharma R. 2016. Effect of short-term heat stress on total sugars, proline and some antioxidant enzymes in moth bean (*Vigna aconitifolia*). *Annals of Agricultural Sciences* 61: 57–64
- Heath R L and Packer L. 1968. Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Archives in Biochemistry and Biophysics 125: 189–198.
- Hiscox J D T and Israelstam G F. 1979. A method for the extraction of chlorophyll from leaf tissue without maceration. *Canadian Journal of Botany* 57: 1332–1334.
- Hodges D M, Delong J M, Forney C F and Prange R K. 1999. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation plant tissues containing anthocyanin and other interfering compounds. *Planta* 207: 604-611.
- Hasanuzzaman M, Nahar K, Alam M, Roychowdhury R. and Fujita M. 2013. Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. *International Journal of Molecular Sciences* 14: 9643–9684.
- Jespersen D, Zhang J and Huang B. 2016. Chlorophyll loss associated with heat-induced senescence in bentgrass. *Plant Science* **249:** 1–12.

- Kumar N and Srivastava S. 2003. Plant ideotype of Indian mustard (*Brassica juncea*) for late sown conditions. *Indian Journal of Genetics and Plant Breeding* (India).
- Kaushal N, Gupta K, Bhandhari K, Kumar S, Thakur P and Nayyar H. 2011. Proline induces heat tolerance in chickpea (*Cicer arietinum* L.) plants by protecting vital enzymes of carbon and antioxidative metabolism. *Physiology and Molecular Biology of Plants* 17:203.
- Kumar S, Thakur P, Kaushal N, Malik J A, Gaur P and Nayyar H. 2013. Effect of varying high temperatures during reproductive growth on reproductive function, oxidative stress and seed yield in chickpea genotypes differing inheat sensitivity. *Archives of Agronomy and Soil Science* 59: 823–843.
- Lallu and Dixit R K. 2008. High temperature effect at terminal stage in mustard genotypes. *Indian Journal of Plant Physiology* 13: 151–158.
- Loggini B, Scartazza A, Brugnoli E and Navari-Izzo F. 1999. Antioxidative defense system, pigment composition, and photosynthetic efficiency in two wheat cultivars subjected to drought. *Plant Physiology*, 119:1091–1100.
- Mellors A and Tappel A L. 1966. The inhibition of mitochondrial peroxidation by ubiquinone and ubiquinol. *Journal of Biological Chemistry* **241**: 4353–4356.
- Michel Havaux. 2013. Carotenoid oxidation products as stress signals in plants. *Plant Journal* **79**: 597–606.
- Mobin M and Khan N A. 2007. Photosynthetic activity, pigment composition and antioxidative response of two mustard (*Brassica juncea*) cultivars differing in photosynthetic capacity subjected to cadmium stress. *Journal of Plant Physiology* **164:** 601–610.
- Montagu K D and Woo K C. 1999. Recovery of tree photosynthetic capacity from seasonal drought in the wet–dry tropics: the role of phyllode and canopy processes in *Acacia auriculiformis*. *Functional Plant Biology* **26**: 135–145.
- Prieto, Pilar, Manuel Pineda, and Miguel Aguilar. 1999. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. *Analytical Biochemistry* **269**: 337–341.
- Ram Bhagirath, Meena H S, Singh V V, Singh B K, Nanjundan J, Kumar A, Singh S P, Bhogal N S and Singh D. 2016. High temperature stress tolerance in Indian mustard (*Brassica juncea*) germplasm as evaluated by membrane stability index and excised-leaf water loss techniques. *Journal of Oilseed Brassica* 1: 149–157.
- Ram Bhagirath, Singh V V, Singh B K, Meena H S, Kumar A and Singh Dhiraj. 2017. Genetic analysis of heat stress tolerance in Indian mustard (*Brassica juncea*). *Indian Journal of Agricultural Sciences* 87 (1): 79–82.
- Rani B, Kumari N, Jain V, Dhawan K, Avtar R, Kumar A and Sheoran P. 2016. Antioxidative system as influenced by high temperature stress in *Brassica juncea* (L) Czern & Coss. *Current Trends in Biotechnology & Pharmacy* 10: 118–125.
- Ramesh C K, Raghu K L, Jamuna K S, Joyce G S, Mala R S V and Vijay A B R. 2011. Comparative evaluation of antioxidant

- property in methanol extracts of some common vegetables of India. *Annals of Biological Research* **2**: 86–94.
- Sairam R K, Srivastava G C and Saxena D C. 2000. Increased antioxidant activity under elevated temperatures: a mechanism of heat stress tolerance in wheat genotypes. *Biologia Plantarum* 43: 245–251.
- Sharma P, Jha A B, Dubey R S and Pessarakli M. 2012. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. *Journal of Botany* **2012**: 1–26.
- Sharma P and Sardana V. 2016. Screening of Indian mustard (*Brassica juncea*) for thermo tolerance at seedling and terminal stages. *Journal of Oilseed Brassica* 1: 61–67.
- Shekhawat N, Jadeja G C and Singh J. 2014. Genetic variability for yield and its components in Indian mustard (*Brassica juncea* L. Czern & Coss). *Electronic Journal of Plant Breeding*. 5 (1): 117–119.
- Singh A, Sharma M K and Sengar R S. 2017. Osmolytes: Proline metabolism in plants as sensors of abiotic stress. *Journal of Applied and Natural Science* **9:** 2079–2092.
- Singh J, Singh V, Vineeth, T V, Kumar P, Neeraj, Sharma P C. 2019. Differential response of Indian mustard (*Brassica juncea* L., Czern & Coss) under salinity: photosynthetic traits and gene expression. *Physiology and Molecular Biology of Plants* **25** (1): 71–83.
- Sinsawat V, Leipner J, Stamp P and Fracheboud Y. 2004. Effect of heat stress on the photosynthetic apparatus in maize (*Zea mays* L.) grown at control or high temperature. *Environmental and Experimental Botany* **52**: 123–129.
- Smirnoff N and Cumbes Q J. 1989. Hydroxyl radical scavenging activity of compatible solutes. *Phytochemistry* **28**: 1057-1060.
- Soengas P, Rodriguez V M, Velasco P and Cartea M E. 2018. Effect of temperature stress on antioxidant defenses in *Brassica oleracea*. *ACS OMEGA* **3**: 5237–5243.
- Subrahmanyam D and Rathore V S. 1994. Effect of high temperature stress on ¹⁴CO₂ assimilation and partitioning in Indian mustard. *Journal of Agronomy and Crop Science* **172**: 188–193.
- Triantaphylides C and Havaux M. 2009. Singlet oxygen in plants: production, detoxification and signaling. *Trends in Plant Science* **14**: 219–228.
- Wahid A and Close T J. 2007. Expression of dehydrins under heat stress and their relationship with water relations of sugarcane leaves. *Biologia Plantarum* 51: 104–109.
- Wilson R A, Sangha M K, Banga S S, Atwal A K and Gupta S. 2014. Heat stress tolerance in relation to oxidative stress and antioxidants in *Brassica juncea*. *Journal of Environmental Biology* 35: 383.
- Yordanov I, Velikova V and Tsonev T. 2000. Plant responses to drought, acclimation, and stress tolerance. *Photosynthetica* 38: 171–186
- Zdravkovic J, Jovanovic Z, Dordevic M, Girek Z, Zdravkovic M and Stikic R. 2013. Application of stress susceptibility index for drought tolerance screening of tomato populations. *Genetika* **45**: 679–689.