Screening brinjal (Solanum melongena) accessions conserved in the National Genebank collected from states adjoining Bangladesh for adventitious presence of EE1 event

KUWARDADRA SAHADEO INDALDAS¹, CHITHRA DEVI PANDEY², APARNA PALIWAL³ and GURINDERJIT RANDHAWA⁴*

ICAR-National Bureau of Plant Genetic Resources, New Delhi 110 012, India

Received: 25 November 2019; Accepted: 5 December 2019

ABSTRACT

Systematic management of Plant Genetic Resources (PGRs) is the key to sustainable agriculture for food and nutritional security and in mitigating climate change. The National Genebank (NGB) at ICAR-National Bureau of Plant Genetic Resources (NBPGR), New Delhi, acts as a repository of PGRs for future use. This study aimed at screening for the adventitious presence of transgenes in brinjal (Solanum melongena L.) accessions conserved in the NGB. The study targeted the collections made during 2007-2016 from areas adjacent to Bangladesh (Assam, Meghalaya, Mizoram, Tripura and West Bengal), where field trials of Bt brinjal event EE1 were conducted during 2005-2012 and commercial cultivation of this event was permitted in 2013. There could be an apprehension of both unintentional introgression and transboundary movement through borders. Adventitious presence of transgenes was checked in a set of 96 accessions of brinjal employing Polymerase Chain Reaction (PCR) and real-time PCR assays. As event EE1 carries cry1Ac gene for insect resistance with Cauliflower Mosaic Virus (CaMV) promoter (P-35S) and marker genes (nptII and aadA), so these genetic elements were targeted for qualitative GM testing. Based on the test results, transgenes were not detected in brinjal accessions conserved in NGB. Our study showed that brinjal and wild species collected from adjoining areas of Bangladesh, post field trials and release, do not contain the event EE1. The study presents an efficient and reliable method to ensure conservation of GM-free germplasm in the NGB.

Key words: Adventitious presence, GM-free Conservation, National Genebank, Polymerase Chain Reaction, Real time PCR, Transgenes

Brinjal or eggplant (*Solanum melongena* L.) is an important vegetable crop, belonging to family Solanaceae. It is cultivated across tropics, subtropics and temperate parts of the world (Kumar 2009). In India, brinjal is cultivated in almost all states including West Bengal, Odisha, Andhra Pradesh, Gujarat, Bihar and Maharashtra (http://agricoop.nic.in/sites/default/files/Horticulture%20Statistics%20 at%20a%20Glance-2018.pdf). India has a diverse range of wild species and landraces of brinjal comprising *Solanum*

¹Ph D Scholar (sahadeokuwardadra@gmail.com), Post Graduate School, ICAR-Indian Agricultural Research Institute, New Delhi, ²Principal Scientist (chithra.pandey@icar.gov.in), Division of Germplasm Conservation, ³Senior Research Fellow (paliwal15aparna@gmail.com), Division of Genomic Resources, ^{4*}Principal Scientist and corresponding author (gurinder. randhawa@rediffmail.com, gurinder.randhawa@icar.gov.in), Division of Genomic Resources, ICAR- National Bureau of Plant Genetic Resources, New Delhi

aethiopicum L., S. anomalum Thonn, S. incanum L., S. indicum L., S. insanum L., S. khasianum C.B. Clarke, S. macrocarpon L., S. mammosum L., S. nigrum L., S. sisymbrifolium Lam., S. torvum Swartz, S. viarum Dunal and S. xanthocarpum Schrad. & H. Wendl. (Choudhary and Gaur 2009). The National Genebank (NGB) at ICAR-National Bureau of Plant Genetic Resources (NBPGR), New Delhi, is the second largest genebank in the world and conserves more than 0.44 million accessions of different agri-horticultural crops including 4496 brinjal accessions (http://www.nbpgr. ernet.in/). Brinjal is usually a self-pollinated crop, but the extent of cross-pollination varies from 0 to 46 % (Sekara et al. 2008).

The major constraint to brinjal cultivation is the infestation of brinjal fruit and shoot borer (FSB) (*Leucinodes orbonalis* Guenee), which can cause damage up to 80% throughout the vegetative and reproductive stages (Raina *et al.* 2018). To control FSB, Maharashtra Hybrid Seeds Company Limited (MAHYCO) developed *Bt* brinjal event EE1 with *cry1Ac* gene of *Bacillus thuringiensis* (*Bt*) subsp. Kurstaki strain HD7 (http://www.isaaa.org/gmapprovaldatabase). In India, the event EE1 was under

field trials in 2006, 2007 and 2009 (http://www.geacindia. gov.in/). Bangladesh has approved Bt brinjal event EE1 in 2013 (APAARI 2018). It is essential for genebank curators to ensure genetic purity of conserved germplasm before sharing the genetic resources to the breeders to restrict unintentional transfer of alleles from genetically modified (GM) crops (Bairwa et al. 2016). Thus, consistent efforts need to be made to check possible adventitious presence of transgenes in genebank collections employing reliable GM diagnostics for ensuring GM-free conservation (Tiwari and Randhawa 2010). Efficient and reliable DNA-based diagnostics for Bt brinjal event EE1 have been reported (Randhawa et al. 2012; Randhawa and Singh 2016), which could be systematically employed to monitor adventitious presence of transgenes in brinjal germplasm. PCR-based studies to monitor adventitious presence of transgenes in cotton, maize, brinjal and okra conserved in the genebanks have been reported (Mezzalama et al. 2010; Gamarra et al. 2011; Parimalan et al. 2015, Bairwa et al. 2016), showing absence of transgenes.

The present study was designed to assess the GM-free status of NGB *Solanum* accessions comprising six different species, namely, *S. melongena* L., *S. aethiopicum* L., *S. incanum* L., *S. macrocarpon* L., *S. torvum* Swartz and *S. violaceum* Ortega collected during 2007 to 2016 from different states (Assam, Meghalaya, Mizoram, Tripura and West Bengal) bordering Bangladesh employing PCR and real-time PCR-based diagnostics.

MATERIALS AND METHODS

Seed material: Based on the passport data from the NGB, ICAR-NBPGR, 96 brinjal accessions were chosen, which were collected during 2007 to 2016 comprising S. melongena L. (79 acc.,), S. aethiopicum L. (12 acc.,), S. incanum L. (02 acc.,), S. macrocarpon L. (01 acc.,), S. torvum Swartz (01 acc.,) and S. violaceum Ortega (01 acc.,) from five states of India, viz. Assam, Meghalaya, Mizoram, Tripura and West Bengal, bordering Bangladesh (Table 1).

Table 1 Passport details of brinjal and wild species used in this study

Accession number	Botanical name	Collector No/Other identity	Vernacular name	District	State
IC0618069	S. melongena	GGBC-9-1	Bengena	Kokrajhar	Assam
IC0618070	S. melongena	GGBC-10	Bengena	Kokrajhar	Assam
IC0394735	S. melongena	SMBR-618	Kola Bengena	Sonitpur	Assam
IC0345758	S. melongena	AKS-1/43	Bengun	Dhubri	Assam
IC0599663	S. melongena	GB 09-12	Bengena	Jorhat	Assam
IC0618074	S. melongena	GGBC-18-1	Bengena	Kokrajhar	Assam
IC0394872	S. melongena	SMBR-741	Bengun	Nalbari	Assam
IC0599662	S. melongena	GB 09-05	Bengena	Jorhat	Assam
IC0394902	S.melongena	SMBR-769	Junuka Bengena	Barpeta	Assam
IC0427083	S. melongena	AAU04 Brinjal-2	Bengena	Kokrajhar	Assam
IC0345740	S. melongena	AKS-1/7	Begun	Nalbari	Assam
IC0345757	S. melongena	AKS-1/38	Bengun	Dhubri	Assam
IC0618072	S. melongena	GGBC-17	Bengena	Kokrajhar	Assam
IC0618071	S. melongena	GGBC-12	Bengena	Kokrajhar	Assam
IC0618068	S. melongena	GGBC-6	Bengena	Kokrajhar	Assam
IC0599664	S. melongena	GB 10-11	Bengena	Jorhat	Assam
IC0618067	S. melongena	GGBC-4	Bengena	Kokrajhar	Assam
IC0618075	S. melongena	GGBC-19	Bengena	Kokrajhar	Assam
IC0618076	S. melongena	GGBC-20	Bengena	Kokrajhar	Assam
IC0618077	S. melongena	GGBC-21	Bengena	Kokrajhar	Assam
IC0618081	S. melongena	GGBC-35	Bengena	Kokrajhar	Assam
IC0618080	S. melongena	GGBC-26	Bengena	Kokrajhar	Assam
IC0618079	S. melongena	GGBC-25-2	Bengena	Kokrajhar	Assam
IC0618078	S. melongena	GGBC-24	Bengena	Kokrajhar	Assam
IC0394868	S. melongena	SMBR-738	Bengun	Nalbari	Assam
IC0618082	S. melongena	GGBC-35-1	Bengena	Kokrajhar	Assam
IC0281102	S. melongena	PK-230	Baring	West Garo Hills	Meghalaya
IC0090063	S. melongena	H-1442	-	East Garo Hills	Meghalaya

Table 1 (Continued)

Accession number	Botanical name	Collector No/Other identity	Vernacular name	District	State
IC0090070	S. melongena	H-1449	-	East Garo Hills	Meghalaya
IC0090937	S. melongena	KB-9	-	Kalyani	West Bengal
IC0090944	S. melongena	KB-18	-	Kalyani	West Bengal
IC0090949	S. melongena	KB-23	-	Kalyani	West Bengal
IC0098148	S. melongena	B-95	-	West Garo hills	Meghalaya
IC0111077	S. melongena	H-1639	-	Falkata	West Bengal
IC0111080	S. melongena	H-1642	-	Jalpaiguri	West Bengal
IC0136003	S. melongena	D-1777	-	Nadia	West Bengal
IC0136359	S. melongena	BDS-1377	-	M. Tripura	Tripura
IC0136364	S. melongena	BDS-1382	-	M. Tripura	Tripura
IC0136367	S. melongena	BDS-1386	-	N. Tripura	Tripura
IC0136380	S. melongena	BDS-1423	-	N. Tripura	Tripura
IC0136383	S. melongena	BDS-1432	-	N. Tripura	Tripura
IC0280281	S. melongena	PK/RS-OT56	Nol Bengena	Barpeta	Assam
IC0280913	S. melongena	PK/RS-OT133	Brinjal	Bongaigaon	Assam
IC0280961	S. melongena	PK/RS-OT181	Gol Begun	Dhubri	Assam
IC0280963	S. melongena	PK/RS-OT183	Lamba Begun	Dhubri	Assam
IC0281072	S. melongena	PK-200	Baring	West Garo Hills	Meghalaya
IC0281074	S. melongena	PK-202	Baring (Gol)	West Garo Hills	Meghalaya
IC0281099	S. melongena	PK-227	Baring	West Garo Hills	Meghalaya
IC0597000	S. melongena	RSR/BR-56	Begun	Jalpaiguri	West Bengal
IC0596998	S. melongena	RSR/BR-45	Begun	Coochbehar	West Bengal
IC0618073	S. melongena	GGBC-18	Bengena	Kokrajhar	Assam
IC0611550	S. melongena	JJKNE/2011-6		Dhalai	Tripura
IC0611549	S. melongena	JJKNE/2011-B3	-	Kolazib	Mizoram
IC0611548	S. melongena	JJKNE/2011-B2	-	Kolazib	Mizoram
IC0598458	S. melongena	BCB-40	Begun	Nadia	West Bengal
IC0597240	S. melongena	RY/SS/DY/BD/AJ/VV-111	-	Ri-Bhoi	Meghalaya
IC0597239	S. melongena	RY/SS/DY/BD/AJ/VV-110		Ri-Bhoi	Meghalaya
IC0596998	S. melongena	RSR/BR-45	Begun	Coochbehar	West Bengal
IC0566645	S. melongena	Brinjal-BCC-1	Brinjal-BCC-1	Coochbehar	West Bengal
IC0553604	S. melongena	Singnath	Singnath	Lembuehera	Tripura
IC0553603	S. melongena	Bholanath	Bholanath	Lembuehera	Tripura
IC0374516	S. melongena	RD-137	Bonbock	Lunglei	Mizoram
IC0281112	S. melongena	PK-240	Baring	West Garo Hills	Meghalaya
IC0280281	S. melongena	PK/RS-OT56	Nol Bengena	Barpeta	Assam
IC0280913	S. melongena	PK/RS-OT133	Brinjal	Bongaigaon	Assam
IC0280961	S. melongena	PK/RS-OT181	Gol Begun	Dhubri	Assam
IC0280963	S. melongena	PK/RS-OT183	Lamba Begun	Dhubri	Assam
IC0281072	S. melongena	PK-200	Baring	West Garo Hills	Meghalaya
IC0281074	S. melongena	PK-202	Baring (Gol)	West Garo Hills	Meghalaya
IC0281099	S. melongena	PK-227	Baring (Gol)	West Garo Hills	Meghalaya
IC0281102	S. melongena	PK-230	Baring	West Garo Hills	Meghalaya
IC0281112	S. melongena	PK-240	Baring	West Garo Hills	Meghalaya
IC0285125	S. melongena	RSP-1/B-5	Begun	Burdwan	West Bengal

Cond.

Table 1 (Concluded)

Accession number	Botanical name	Collector No/Other identity	Vernacular name	District	State
IC0285126	S. melongena	RSP-1/B-6	Begun	Burdwan	West Bengal
IC0285138	S. melongena	RSP-1/B-8	Bengun	Burdwan	West Bengal
IC0345742	S. melongena	AKS-1/9	Begun	Nalbari	Assam
IC0345746	S. melongena	AKS-1/16	Begun	Barpeta	Assam
IC0345750	S. melongena	AKS-1/22	Bengun	Bongaigaon	Assam
IC0345756	S. melongena	AKS-1/36	Bengun	Dhubri	Assam
IC0326242	S. aethiopicum	RVN-129	Solanum	Saiha	Mizoram
IC0622458	S. aethiopicum	AD-16/97	Santu	North Tripura	Tripura
IC0394570	S. aethiopicum	SMBR-47	Tita Bhekuri	Tinsukia	Assam
IC0394992	S. aethiopicum	SMBR-85	-	Tinsukia	Assam
IC0611552	S. aethiopicum	JJKNE/2011-G1	-	Kolazib	Mizoram
IC0611553	S. aethiopicum	JJKNE/2011-G4	-	Aizwal	Mizoram
IC0611554	S. aethiopicum	JJKNE/2011-G5	-	Kolasib	Mizoram
IC0606839	S. aethiopicum	-	-	Shillong	Meghalaya
IC0446954	S. aethiopicum	SS/DRLT-120	-	Shillong	Meghalaya
IC0419703	S. aethiopicum	FDI/RS/43	-	Shillong	Meghalaya
IC0419701	S. aethiopicum	FDI/RS/41	-	Shillong	Meghalaya
IC0419692	S. aethiopicum	FDI/RS/33	-	Shillong	Meghalaya
IC0284536	S. incanum	DRLT-345	Bengene	Sonitpur	Assam
IC0427630	S. incanum	SBC-2/34	Bengun	24 Paragana (S)	West Bengal
IC0587758	S. macrocarpon	BKS/KAP/YR-1	Satinrem	Kolasib	Mizoram
IC0394385	S. torvum	SMBR-302	Tita Bagun	Dhemaji	Assam
IC0611814	S. violaceum	KP/SC-1583	Takuri Teetha	Karbi-Anglong	Assam

The rationale behind choosing these accessions from the NGB was that the collection sites of these accessions were in close proximity to the field trial sites of *Bt* brinjal event EE1 and commercial *Bt* brinjal growing regions of Bangladesh with majority of porous border.

DNA extraction and preparation of test samples: Approximately 40 seeds of each accession were homogenized into fine powder and DNA was extracted using modified Sodium dodecyl sulphate (SDS) method (Dellaporta *et al.* 1983). The quality and quantity of DNA was determined using UV spectrophotometer (Eppendorf, Hamburg, Germany) by measuring ratio of the absorbance at 260 and 280 nm. DNA samples were diluted to a working concentration of 20 ng/μL.

Internal controls: Before conducting GM tests, amplifiability of extracted DNA was ensured using a plant-specific chloroplast t-RNA gene assay as reported earlier (Taberlet *et al.* 1991). For PCR-based testing to check adventitious presence of transgenes in test samples, appropriate positive and negative controls were included to eliminate the chances of false negatives and false positives. The DNA of MON 531 event of *Bt* cotton was used as positive control, as it has similar genetic construct to that of *Bt* brinjal event EE1.

PCR assays targeting P-35S and cry1Ac: Singleplex PCR assays were performed using Veriti® Thermal Cycler

(Applied Biosystems, Foster City, CA, USA) in 20 μ L reaction mixture containing 100 ng of DNA template, 1X PCR buffer, 1.5 mM MgCl₂, 200 μ M dNTPs, 0.25 μ M each of forward and reverse primers and 0.5 U *Taq* DNA polymerase (Thermo Scientific, Walthan, Massachusetts, USA). PCR was performed with following thermal profile: initial denaturation at 94 °C for 5 min, 35 cycles of denaturation at 94 °C for 30 s; annealing at 60 °C for 50 s and extension at 72 °C for 1 min followed by final extension at 72 °C for 7 min. PCR products were resolved on 2% agarose gel and visualized by UV gel documentation system (Alpha Innotech, USA). Details of primers used are given in Table 2.

Multiplex PCR assays targeting marker genes (nptII and aadA): Duplex PCR was standardized for simultaneous detection of two marker genes, namely nptII and aadA, to facilitate rapid screening. Multiplex PCR was standardized on Veriti® Thermal Cycler (Applied Biosystems, Foster City, CA, USA) in 25 μL reaction mixture containing 100 ng of template DNA, 2X Multiplex PCR Mastermix (Qiagen® Multiplex PCR Plus Kit), 0.25 μM each of forward and reverse primers of nptII and aadA with PCR profile of initial denaturation at 95 °C for 5 min; 35 cycles of denaturation at 95 °C for 30 s, annealing at 60 °C for 90 s, extension at 72 °C for 30 s and final extension at 68 °C for 10 min. PCR products were resolved on 2% agarose gel

Table 2 Primers employed in this study

Target	Marker	Primer sequence (5'-3')	Amplicon size (bp)	Reference
PCR-based markers				
Chloroplast specific endogenous t-RNA gene	Plant A1/ Plant A2	F-CGAAATCGGTAGACGCTACG R- GGGGATAGAGGGACTTGAAC	≈610	Taberlet et al. (1991)
CaMV 35S promoter	<i>P-35S</i> F/R	F- GCTCCTACAAATGCCATCA R- GATAGTGGGATTGTGCGTCA	195	Lipp et al. (1999)
cry1Ac	<i>cry1Ac</i> F/R	F-TGACCGCTTACAAGGAGGGATACG R-CACGGAGGCATAGTCAGCAGGAAC	230	Randhawa et al. (2010)
nptII	nptII F/R	F-CTC ACC TTG CTC CTG CCG AGA R-CGC CTT GAG CCT GGC GAA CAG	215	Randhawa et al. (2009)
aadA	aadA F/R	F-TCCGCGCTGTAGAAGTCACCATTG R-CCGGCAGGCGCTCCATTG	406	Randhawa et al. (2009)
Real-time PCR based mark	ters			
cry1Ac	<i>cry1Ac</i> F/R	F-TGACCGCTTACAAGGAGGGATACG R-CACGGAGGCATAGTCAGCAGGAAC	230	Randhawa <i>et al.</i> (2010)

and visualized using UV gel documentation system (Alpha Innotech, USA).

Real-time PCR assay: Real-time PCR using SYBR® Green chemistry was performed targeting cry1Ac gene in all the selected 96 brinjal accessions to further confirm the results. Real-time PCR was performed in 7500 real-time PCR system (Applied Biosystems, Foster City, CA, USA). The reaction was carried out in 20 μl reaction volume containing 100 ng of template DNA, 1X QuantiFast SYBR® Green PCR master mix (Qiagen, Germany), 0.1 µM each of forward and reverse primers of cry1Ac (Table 2). The thermal profile of real-time PCR used was: 50 °C for 2 min, single cycle of pre-activation of DNA at 95 °C for 10 min followed by 40 amplification cycles of denaturation at 95 °C for 15 s and annealing-extension at 60 °C for 1 min. After amplification, melting curve analysis of the PCR products was carried out as per the standard conditions mentioned in the system.

All the PCR and real-time PCR tests were performed

in two replications.

RESULTS AND DISCUSSION

Effective management of PGRs poses a challenge for genebank curators in the diversity rich regions, where field trials of large number of GM crops are being conducted. After large scale commercial cultivation of Bt Brinjal in Bangladesh, it is important to consistently monitor for adventitious presence of transgenes in brinjal from the adjoining areas with porous borders. The best strategy is to monitor adventitious presence of transgenes in ex-situ collections employing DNA-based GM diagnostics for relevant GM events in proximity to the collection sites (Tiwari and Randhawa 2010). Some reports of monitoring adventitious presence of transgenes in ex-situ conserved germplasm are available (Mezzalema et al. 2010; Gamarra et al. 2011; Randhawa et al. 2016; Bairwa et al. 2016), showing absence of transgenes in ex-situ collection of maize, cotton and okra. The present study screening 96 selected

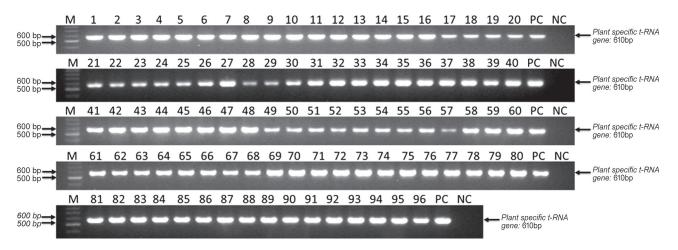


Fig 1 PCR amplification profile targeting 610 bp region of endogenous chloroplast t-RNA gene to confirm the amplifiability of DNA samples. Lane M=100 bp DNA ladder; 1-96=ex situ brinjal accessions; PC= Positive control and NC=Negative control.

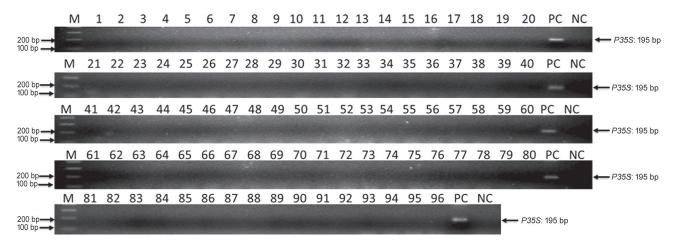


Fig 2 PCR amplification profile targeting 195 bp region of CaMV 35S promoter (*P-35S*). Lane: M=100 bp DNA ladder; 1-96= brinjal accessions; PC= Positive control and NC=Negative control.

accessions of brinjal targeted to monitor the adventitious presence of transgenes in brinjal germplasm collections.

PCR assay to check amplifiability of DNA samples: PCR assay targeting endogenous chloroplast t-RNA gene was performed to confirm the amplifiability of extracted DNA samples, for eliminating the chances of false negatives in the results. Amplifications were detected in all the brinjal test samples with expected amplicon size of 610 bp and no amplification was detected in negative control (Fig 1).

PCR assay targeting P-35S and cry1Ac using singleplex PCR: The GM status of a sample can be checked by screening for the presence of control elements such as P-35S and T-nos (Waiblinger et al. 2008; Mezzalama et al. 2010; Bonfini et al. 2012; Block et al. 2013; Wu et al. 2014). The gene-specific assays target specific transgenes expressed in GM crops, e.g. cry1Ac gene of Bt brinjal event EE1 for FSB resistance. Singleplex PCR targeting P-35S and cry1Ac, was performed in all 96 accessions. Positive control showed amplification of respective targets with expected amplicon size of 195 bp for P-35S and 230 bp for cry1Ac. The ex situ genebank accessions, including negative control did not show amplification for P-35S and

cry1Ac (Fig 2, 3).

Duplex PCR assay targeting marker genes: For rapid and simultaneous detection, duplex PCR targeting nptII and aadA marker genes was performed for all the samples. Only positive control amplified for these genes with amplicon size of 215 bp for nptII and 406 bp for aadA. The ex situ genebank accessions, including negative control did not show any amplification (Fig 4).

Real-time PCR assay targeting cry1Ac: Real-time PCR is more robust, specific and sensitive for GM detection (Debode et al. 2017). Real-time PCR was performed targeting cry1Ac gene. The amplification curve with mean Ct value of 20.76 and 18.90 was detected in the positive control in two set of reactions, i.e. 1-43 and 44-96 brinjal accessions respectively (Fig 5). The ex situ genebank accessions, including negative control did not show any amplification signals.

With the results of PCR and real-time PCR tests, it was confirmed that the brinjal and wild species collected during 2007-2016 from close proximity sites of India (Assam, Meghalaya, Mizoram, Tripura and West Bengal), bordering Bangladesh do not contain transgenes from *Bt*

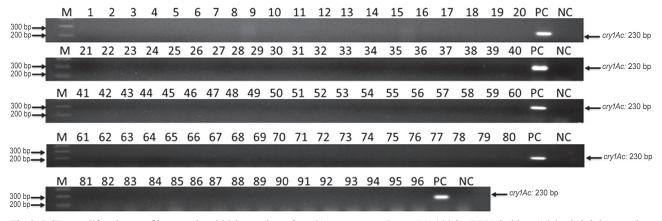


Fig 3 PCR amplification profile targeting 230 bp region of *cry1Ac* transgene. Lane: M=100 bp DNA ladder; 1-96 = brinjal accessions; PC= Positive control and NC=Negative control.

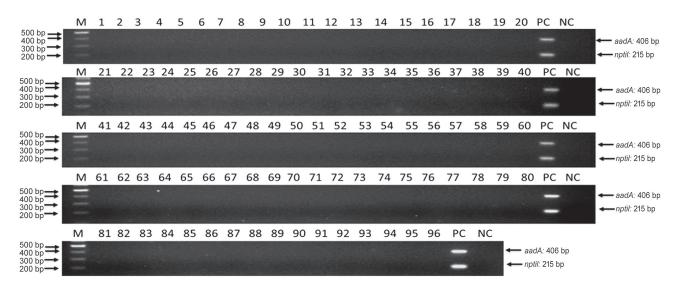


Fig 4 PCR amplification profile targeting 406 bp region of *aadA* and 215 bp of *nptII* marker genes. Lane: M=100 bp DNA ladder; 1-96=ex situ brinjal accessions; PC= Positive control and NC=Negative control.

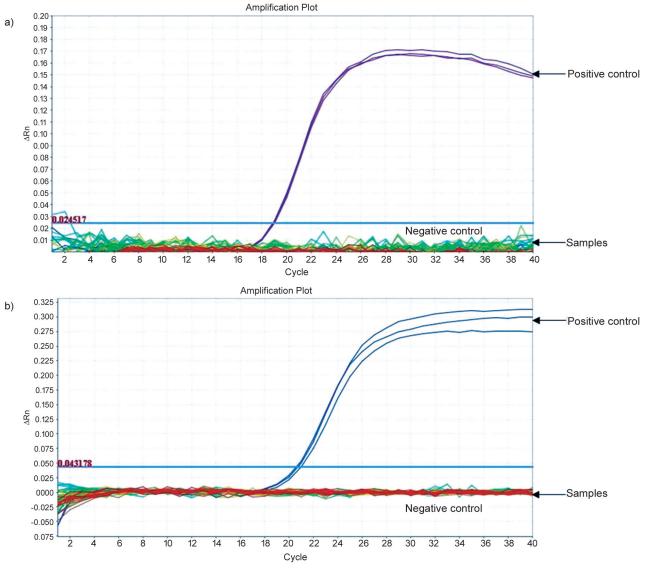


Fig 5 Real time PCR amplification profiles targeting *cry1Ac* transgene in brinjal accessions, a) 1-43 and b) 44-96, to confirm absence of adventitious presence of transgenes.

brinjal event EE1, thus eliminating the apprehension of either unintentional introgression or transboundary movement through borders. This study could serve as a model to detect adventitious presence of transgenes in commercial varieties, local cultivars including wild and weedy species to monitor intentional/unintentional introgression of transgenes, unapproved cultivations of GM events and their transboundary movement. Furthermore, it would help researchers and genebank curators for GM-free management of germplasm in different crops for which large scale field trials of their GM events have been conducted in their respective agro-climatic zones.

ACKNOWLEDGMENTS

The authors sincerely thank the Indian Council of Agricultural Research (ICAR) and Director, ICAR-National Bureau of Plant Genetic Resources, New Delhi, for providing all the necessary facilities during this research work. The first author (KSI) thanks the Post Graduate School, ICAR-Indian Agricultural Research Institute, New Delhi, for providing Senior Scholarship during this study.

REFERENCES

- Bairwa R K, Singh M, Bhoge R K, Devi C and Randhawa G J. 2016. Monitoring adventitious presence of transgenes in ex situ okra (Abelmoschus esculentus) collections conserved in genebank: a case study. Genetic Resources and Crop Evolution 63(2): 175–184.
- Block A, Debode F, Grohmann L, Hulin J, Taverniers I and Kluga L. 2013. The GMOseek matrix: adecision support tool for optimizing the detection of genetically modified plants. BMC Bioinformatics 14: 256.
- Bonfini L, van den Bulcke M H, Mazzara M, Ben E and Patak A. 2012. GMOMETHODS: The European Union Database of reference methods for GMO analysis. *Journal of AOAC International* **95**(6): 1713–1719.
- Choudhary B and Gaur K. 2009. The Development and Regulation of *Bt* Brinjal in India (Eggplant/Aubergine). ISAAA Brief No.38. ISAAA: Ithaca, NY.
- Debode F, Janssen E, Bragard C and Berben G. 2017. Detection by real-time PCR and pyrosequencing of the *cry1Ab* and *cry1Ac* genes introduced in genetically modified (GM) constructs. *Food Additives & Contaminants: Part A* **34**(8): 1398–1409.
- Dellaporta S L, Wood J and Hicks J B. 1983. A plant DNA minipreparation: version II. *Plant Molecular Biology Reporter* **1**(4): 19–21.
- Gamarra L F R, Delgado J A, Villasante Y A and Ortiz R. 2011. Detecting adventitious transgenic events in a maize center of diversity. *Electronic Journal of Biotechnology* **14**(4): 9–9.
- Kumar P A. 2009. Bt brinjal: a pioneering push. Biotechnology News 4(6): 108–111.
- Lipp M, Bluth A, Eyquem F, Kruse L, Schimmel H, Van den Eede G and Anklam E.2001. Validation of a method based on polymerase chain reaction for the detection of genetically modified organisms in various processed foodstuffs. *European Food Research and Technology* 212: 497–504.

- Mezzalama M, Crouch J H and Ortiz R. 2010. Monitoring the threat of unintentional transgene flow into maize gene banks and breeding materials. *Electronic Journal of Biotechnology* **13**(2): 6–7.
- Parimalan R, Bhoge R, Randhawa G J and Pandey C D. 2015. Assessment of transgene flow in eggplant germplasm conserved at National Genebank. *Indian Journal of Biotechnology* 14(3): 357–363.
- Raina J and Yadav G S. 2018. Brinjal shoot and fruit borer: Bioecology and management. *Journal of Pharmacognosy and Phytochemistry* 7(4): 444–449.
- Randhawa G J, Sharma R and Singh M. 2009. Multiplex PCR-based simultaneous amplification of selectable marker and reporter genes for the screening of genetically modified crops. *Journal of Agricultural and Food Chemistry* **57**(12): 5167–5172.
- Randhawa G J, Sharma R and Singh M. 2010. Decaplex and real-time PCR based detection of MON531 and MON15985 *Bt* cotton events. *Journal of Agriculture and Food Chemistry* **58**(18): 9875–9881.
- Randhawa G J, Sharma R and Singh M. 2012. Qualitative and event-specific real-time PCR detection methods for *Bt* brinjal event EE-1. *Journal of AOAC International* **95**(6): 1733–1739.
- Randhawa G J and Singh M. 2016. Qualitative and quantitative diagnostics for EE-1 event of *Bt* eggplant. *Genetically Modified Organisms in Food* 1st Edition, pp 87-96. Watson R R and Preedy V R (Eds). Academic Press Publication (Elsevier), USA.
- Sekara A and Bieniasz M. 2008. Pollination, fertilization and fruit formation in eggplant [Solanum melongena L.]. Acta Agrobotanica 61(1): 107–113.
- Taberlet P, Gielly L, Pautou G and Bouvet J. 1991. Universal primers for amplification of three non-coding regions of chloroplast DNA. *Plant Molecular Biology* 17(5): 1105–1109.
- Tiwari S P and Randhawa G J. 2010. Strategies to monitor the adventitious presence of transgenes in *ex situ* collections. *Indian Journal of Agricultural Sciences* **80**(5): 351–356.
- Waiblinger H U, Ernst B, Anderson A and Pietsch K. 2008. Validation and collaborative study of a P35S and T-nos duplex real-time PCR screening method to detect genetically modified organisms in food products. European Food Research Technology 226: 1221–1228
- Wu Y, Wang Y, Li J, Li W, Zhang L, Li Y, Li X, Li J, Zhu L and Wu G. 2014. Development of a general method for detection and quantification of the P35S promoter based on assessment of existing methods. *Science Reports* 4: 7358
- http://agricoop.nic.in/sites/default/files/Horticulture%20 Statistics%20at%20a%20Glance-2018.pdf) (last accessed on 18.11.2019)
- http://www.nbpgr.ernet.in/ (last accessed on 17.11.2019)
- http://www.indiaenvironmentportal.org.in/files/brinjal.pdf (last accessed on 18.11.2019)
- http://www.isaaa.org/gmapprovaldatabase (last accessed on 15.11.2019)
- http://www.geacindia.gov.in/decisions-of-GEAC-meetings.aspx (last accessed on 15.11.2019)
- http://www.apaari.org/web/wpcontent/uploads/downloads/2018/Bt%20Brinjal%20in%20Bangladesh%20final.pdf (last accessed on 17.11.2019)