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Abstract

Drought stress is well known phenomenon that affects the productivity of wheat (Triticum aestivum L).  Knowledge 
on genetic variation, genotype × environment interaction and association between physiological and yield component 
traits is crucial for the development of improved varieties having high yield and water use efficiency. The present study 
consists of 280 backcross inbred lines (BILs) population evaluated for grain yield and morpho-physiological traits for 
two years at three locations. Combined ANOVA unfolded significant variability among traits in BILs population for 
yield and morpho-physiological traits.Grain yield showed significant association with normalized difference vegetation 
index (NDVI), soil plant analysis development (SPAD), thousand grain weight (TGW), and canopy temperature (CT). 
The genotype, environment and genotype ×environment interaction for yield was highly significant (p< 0.01). ASV 
(AMMI stability value) was calculated and top 29 genotypes were selected and further analyzed with AMMI and 
GGE biplot analysis for dissecting out genotype × environment interaction. The results classified genotypes G82, 
G202, G234, G263, G6, G192 and G77 are most stable and high yielding genotypes. 
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 A global Wheat Yield Consortium (WYC) was formed 
to look into the problem of productivity under major 
abiotic stresses such as drought and heat (Reynolds et al. 
2011). The improvement in drought tolerance is limited by 
complex nature of the trait being controlled by many genes 
and genotypic × environment interaction (Ahmed Sallam 
et al. 2019). Many physiological phenotyping tools have 
been developed to allow precise and efficient selection of 
drought-tolerant genotypes. Thorough understanding of the 
genetic mechanism of morphological and physiological trait 
variability for water use efficiency will improve the breeding 

of wheat (Triticum aestivum L) for drought tolerance.
The BILs population has benefit over RILs on selection 

of genotypes in advance generation. First, major portion of 
genome will be of recurrent parent type (3:1) with desirable 
traits transferred from the drought tolerant parent. Second, 
the undesirable traits from donor parent will be replaced by 
recurrent parent genome. Therefore, this population outfit 
the breeder, when he wants his most of the genotype from 
desired parent with superior traits from donor. NDVI and 
CT are successfully used for rapid screening of drought 
tolerance in wheat. Drought susceptible genotypes suffered 
under greater water stress and warmer canopy temperature 
at mid-day leads to relatively great yield loss (Blum et al. 
1989). Relative water content (RWC) is important parameter, 
which measures degree of stress expressed under drought 
condition. The genotypes that maintain turgid condition will 
have physiological advantage under stress. Additionally, 
integrating whole canopy chlorophyll content (NDVI) with 
point reading from SPAD chlorophyll meter will have a 
better impact on evaluation of genotypes physiologically 
under drought stress.  

Additive Main effects and the Multiplicative Interaction 
(AMMI) model and GGE biplot is highly effective in 
capturing major section of interaction of sum of squares, 
meanwhile this separates main as well as interaction 
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components and shows that which genotype is suitable for 
which environment. This highly supports the evaluation of 
multilocation data in breeding programs and meaningful 
interpretation of the data and results graphically (Jeberson 
et al. 2017). The current study explains the evaluation of 
280 BILs population of the parental crosses HD2733* 1/ 
C306 was evaluated in three locations for two consecutive 
years to characterize of drought tolerance using yield and 
physiological component traits and also to select stable 
genotypes with high yield over different moisture regimes. 

Materials and methods
 Plant materials: The BC1F5 BIL population comprising 

280 lines was developed by crossing C306 (a well-known 
drought tolerant variety from late sixties), with wheat variety 
HD2733 (released for irrigated timely sown condition of 
north eastern plain zone), HD2733 was used as female with 
C306 as a male parent during crossing.The F1 from the 
cross was backcrossed to female HD2733 and the resulting 
BC1F1 progenies were selfed over generations to get BC1F5.

Phenotyping and analysis of phenotypic data: The BIL 
population was evaluated for, NDVI, SPAD, CT, RWC, Days 
to heading (DH), Plant height (PH), average grain weight per 
spike (GWS), TGW, biomass, and yield at three locations for 
two years, which makes six environments. Phenotypic trails 
were conducted at Delhi under rainfed condition 2016-17 
(DRF17), 2017-18 (DRF18), and, irrigated condition during 
2016-17 (DELIR17), 2017-18 (DELIR18). The Research 
farm at Division of Genetics, IARI was situated at the altitude 
of 228 m above mean sea level with 28° 40’ N latitude and 
77° 13’ E longitude representing northern India. A trial under 
restricted irrigated condition (two irrigations) was conducted 
during 2017-18 (INDORE17), 2018-19 (INDORE18) at 
Indore. This location was located at an altitude of 553 m 
above mean sea level, 22° for N° 75 E’ placed at central 
India.All trials were conducted using Alpha Lattice design 
with two replications. Each entry was planted in triple-row 
plot of 1m long and 0.8m wide in a bed planting system.The 
parental genotypes were used as checks in the design. All 
the agronomic practices were taken up to raise a healthy and 
uniform crop trials. Plant materials were harvested after they 
attained full physiological maturity when grains were totally 
dry in the field. NDVI was measured as NDVI-1 (Heading 
stage), NDVI-2 (Anthesis stage) and NDVI-3 (Grain milk 
stage) measured with the help of hand held Trimble Green 
Seeker. SPAD readings were taken using Minolta SPAD-502 
chlorophyll meter. Randomly 10 spikes harvested from each 
plot consisting of three rows of each genotype were threshed 
and grains weighed using electronic balance constituted 
average grain weight per spike. RWC was measured using 
formula Leaf RWC (%) = ((Fresh Weight-Dry Weight) / 
(Turgid Weight-Dry Weight)) × 100. CT recorded as CT-1 
(Heading stage) and CT-2 (Grain filling stage) using hand 
held Infrared thermometer. CT and NDVI were recorded by 
referring standard trait dictionary of CIMMYT (Pask et al. 
2012).  TGW was measured manually by counting randomly 
selected thousand seeds from each plot and weighed using 

electronic balance. 
Statistical analysis: Data for physiological, yield and 

its component traits of six environments were used to 
estimate analysis of variance (ANOVA), and heritability 
using META-R (Multi Environment Trail Analysis with R 
for Windows) Version 6.04, Software (CIMMYT). Pearson's 
correlation coefficient among different traits was estimated 
by OPSTATsoftware package.  GenStat Software, 17th 
edition was used to calculate the AMMI test and to derive 
AMMI1 plots and GGE Biplots. ASV was estimated for 
each genotype according to the relative contributions of 
the principal component axis scores (IPCA1 and IPCA2) 
to the interaction sum of squares. The AMMI stability 
value (ASV) as described by Purchase et al. (2000), was 
calculated as follows: 
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Results and Discussion

Genotypic variance and G × E interaction
The analysis of variance from present experimentation 

on BILs manifest highly significant differences among 
genotypes and genotype× environment interaction for all 
thirteen traits across the environments (Table 1). Among 
the physiological traits NDVI, CT, SPAD, GWS and TGW, 
have low genotypic variance compared PH, Biomass, DTF, 
RWC and Yield. The physiological traits NDVI-2, NDVI-3 
and RWC were found to have higher heritability (>0.60) 
compared to NDVI-1, SPAD, CT-1,and CT-2. Whereas, 
PH, DTF, and yield were found to be more heritable 
among agronomic traits in comparison to biomass, GWS, 
HI and TGW. The pooled broad sense heritability across 
environment ranged from 0.31 (CT-2) to 0.91(PH). In 
overall, across six environments broad sense heritability 
for all traits is ranged between0.30-0.60. The data of RWC 
taken in single location (DRF 17) was found promising with 
high heritability (0.90) with significant genotypic variance. 

Association between yield with its component and 
physiological traits across environment

The best linear unbiased prediction (BLUPs) values 
were calculated for each genotype across the environment. 
The BLUP values were used for calculation of Pearson’s 
correlation for phenotypic correlation among all traits 
(Table 2). The correlation between morpho-physiological 
traits with grain yield for individual environment is 
represented in Table 3. The physiological traits NDVI-
1, NDVI-2, NDVI-3, SPAD, RWC positively correlated 
with yield, whereas CT-1 and CT-2 of reproductive stages 
were negatively correlated.These results are in accordance 
with (El-Hendawy et al. (2015), who reported significant 
negative correlation between CT grain yield, and positive 
correlation with leaf water content.The CT1 found non 
significant association with grain yield under irrigated 
condition. The major agronomic traits GWS, TGW, biomass, 
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are positively correlated with yield. Apart from this CT was 
also found to be negatively correlated with RWC, NDVI 
and TGW. Biomass was found positively correlated with 
NDVI and PH. SPAD also found positively correlated with 
NDVI, GWS, and biomass. Ramya et al. (2016) conducted 
recurrent selection programme for physiological traits like 
NDVI, CT and Chlorophyll content for developing superior 
drought tolerant lines with high yield. Therefore, best way 
to improve genetic gain of wheat under drought stress by 
selecting and combining economic physiological traits, viz 
NDVI, CT and SPAD.  

Genotype and environment analysis
The BILs population exhibited significant variation 

for yield among the experimental conditions.The AMMI 
analysis of variance showed significant effects of genotype, 
environment, and their interaction (GEI) for yield.
The significance of GEI has influence on magnitude of 
difference between genotypes in different environment 
and itsanalysis of GEI gives estimate of stability (Hill 
et al. 1998). Genotype, Environment and genotype × 
environment interaction accounted for 20.39%, 39.05%, and 
40.55% of the total variation, which is comparable to the 
results reported by Mehari et al. (2015) and Verma et al. 
(2015). Interaction variation was again differentiated into 
interaction principle component axis (IPCA). The IPCA1 
and IPCA-2 explained 37.95% and 20.51% of interaction 
sum of square, respectively over yield components (Table 
4). Both the IPCAs were significant. The sum of square 
of GEI was 1.99 times higher than that of sum of square 
of genotypes and has more proportion of total variance, 
suggesting that the experiment carried out in divergent 
environmental conditions resulted in significant differences 
in genotypes response across the environments (Jeberson et 
al. 2017, Verma et al. 2015, Mohammadi  et al. 2009). The 
best 10 genotypes in terms of yield for each environment 
is represented in Table 5. Many genotypes out performed 
transversely under irrigated, restricted irrigation and rainfed 
conditions. Genotype 4, and 86 consistently picked over E2, 
E4, E5, and E6 environment and ranked within 10 for their 
higher mean yield. This was followed by G28, G70, G109, 
G265 and G116 over three environments and genotypes 
G7, G26, G264, G243 and G171 between two environment 
conditions.AMMI analysis and mean performance (grain 
yield per plot) bestowed G86 as most desirable, stable and 
high yielding genotype over all the three different moisture 
stress environments followed by G4, G109, G265, G116, 
G28 and G70. An outstanding genotype needs to combine 
more grain yield and stable performance across a range of 
crop production environments. The AMMI Biplot helps 
us to visualize the GEI and provides details on association 
between environment. The INDORE17, INDORE18 and 
DELIR18 environments clustered together and influence the 
genotypes in identical way. Indore 17, Indore 18 and DRF18, 
DELIR18 had positive correlation and were present in the 
same sector in biplot (Fig 1), whereas DELIR18, DRF18 
and DRF17, DRF18 have negative correlation as they were Ta
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Table 3	 Pearson correlation coefficient among the morpho-
physiological traits with grain yield across different 
locations in BILs population

DRF17 
(GY)

DRF18 
(GY)

DIR17 
(GY)

DIR18 
(GY)

IND17 
(GY)

IND18 
(GY)

GY 1 1 1 1 1 1
NDVI-1 0.116 0.213* 0.312* 0.102* 0.214* 0.127*
NDVI-2 0.256* 0.325* 0.115 0.126* 0.163* 0.226*
NDVI-3 0.314* 0.204* 0.263* 0.241** 0.227* 0.204*
CT-1 -0.224* -0.105* -0.057 -0.046 -0.254* -0.231*
CT-2 -0.367* -0.312* -0.141* -0.135* -0.325* -0.269*
GWS 0.331* 0.423* 0.332* 0.422** 0.241* 0.324**
PH 0.279* 0.147 -0.138 0.034 0.025 0.054
Biomass 0.673* 0.210* 0.602* 0.301* 0.131* 0.268*
SPAD 0.431* 0.248* 0.321* 0.287* 0.354* 0.249*
TGW 0.351* 0.415** 0.283* 0.317* 0.407** 0.337*

*Significant at 0.05, **Significant at 0.01.

Table 4	 AMMI analysis of variance of main effects and 
interactions for wheat BILs population for grain yield

Source df SS MS F F_prob
Total 3359 58008823 17270
Treatments 1679 52918101 31518 10.27 <0.001
Genotypes 279 10790613 38676 12.6 <0.001
Environments 5 20666323 4133265 3940.72 <0.001
Interactions 1391 21461165 15429 5.03 <0.001
IPCA 283 8146004 28784 9.38 <0.001
IPCA 281 4403219 15670 5.1 <0.001
Residuals 827 8911942 10776 3.51 <0.001
Error 1656 5084429 3070

two multiplicative component axes, insufficient accounting 
of total interaction variance in judging genotypes stability 
over all environment may happen. Therefore, further on 
dissection of 280 genotypes, the top stable genotypes were 
selected using ASV for further AMMI stability analysis 
and GGE biplot analysis. This stability measure has a 
significant correlation with other noted stability measures 
like Shukla, Wricke (Wi) and Eberhart and Russel (S2d) 
(Purchase et al. 2000). 

Based on this, top 29 highly stable genotypes with 
relatively high average yield were chosen. AMMI ANOVA 

Table 2  Pearson correlation coefficient among the morpho-physiological and yield traits of BILs population

GY DH NDVI-1 NDVI-2 NDVI-3 RWC CT-1 CT-2 GWPS PH Biomass SPAD TGW
GY 1
DH 0.052 1
NDVI-1 0.316* 0.014 1
NDVI-2 0.251* 0.112 0.264* 1
NDVI-3 0.285* 0.298* 0.125* 0.234* 1
RWC 0.158* -0.05 0.012 0.115 0.056 1
CT-1 -0.152 -0.03 0.05 -0.234* -0.125 -0.112 1
CT-2 -0.367** 0.01 0.157* -0.122* -0.223 -0.203* 0.148 1
GWS 0.371** 0.215* 0.07 0.148* 0.233* 0.115* 0.04 -0.396* 1
PH 0.071 0.236* 0.012 0.025 0.04 0.06 0.05 0.115 0.221* 1
Biomass 0.373** 0.200* 0.234* 0.104 0.365* 0.121 -0.124 0.405** 0.089 0.433** 1
SPAD 0.231** 0.153 0.557** 0.342* 0.452* 0.234* 0.05 0.045 0.315** 0.103* 0.373** 1
TGW 0.285** 0.04 0.331** 0.212* 0.101* 0.145* -0.235* -0.562* 0.224* 0.127** 0.296** 0.541** 1

*Significant at 0.05, **Significant at 0.01.

Table 5  Mean yield performance in an environment (Em) and first 10 AMMI selections per environment

ENV Em 1 2 3 4 5 6 7 8 9 10
E1(DELIR17) 525.04 G243 G171 G71 G265 G80 G244 G261 G119 G227 G123
E2(DELIR18) 493.5 G86 G265 G28 G264 G109 G171 G4 G7 G26 G243
E3(DRF17) 517.48 G216 G108 G93 G54 G50 G64 G156 G116 G219 G102
E4(DRF18) 521.1 G86 G70 G53 G5 G4 G247 G176 G15 G126 G26
E5(INDORE17) 317.5 G86 G28 G109 G265 G4 G264 G205 G7 G116 G70
E6(INDORE18) 379.8 G4 G205 G70 G86 G108 G28 G35 G109 G116 G68

present in opposite sectors of the biplot (Yan et al. 2006).
The collective contribution of IPCA1 and IPCA2 is 58.46% 
to the total GEI. However, as testimony for the variation 
revealed by G×E, the first two IPCA axes were sufficient 
as has been previously reported (Gauch 2006; Fufa 2013; 
Verma et al. 2015). Since most of G×E left out from first 
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Table 6	 AMMI analysis of variance of 29 selected stable 
genotypes based on ASV of wheat BILs population for 
grain yield

Source df SS MS F F_prob
Total 347 3725737 10737
Treatments 173 3158650 18258 5.6 <0.001
Genotypes 28 410768 14670 4.5 <0.001
Environments 5 2037475 407495 110.41 <0.001
Interactions 139 710406 5111 1.57 0.0028
IPCA1 32 288809 9025 2.77 <0.001
IPCA2 30 211079 7036 2.16 0.0012
Residuals 77 210518 2734 0.84 0.8084
Error 167 544944 3263

of selected stable genotypes accounted 13%, 64.50% and 
22.49% of significant genotypic, environmental, GEI 
variance (Table 6). The environment has more influence 
in genotypes stability. The partition of interaction into 
IPCA explained IPCA1 (45.37%), and IPCA2 (21.88%) 
interaction of sum of square. The total variance of first two 
multiplicative component axes is 67.25%. According to Yang 
et al. (2009), if biplot can represent at least 60% of the total 
data variance, it can be used to identify positions of mega 
environments. This excise narrows down our investigation 
from 280 genotypes to bunch of 29 highly stable genotypes. 
Analyzing selected genotypes using GGE biplot helps to 

filtrate and interpret performance of genotypes in terms of 
stability and high mean yield. 

'Which won where’ feature of GGE biplot helps us to 
find out genotypes that perform well in each environment and 
in each mega environment. The biplot divided into 7 sectors 
and three-mega environment. The one mega environment 
comprised INDORE 18 while the other includes INDORE17 
and DELIR18. The remaining environments combined to 
form third mega environment. Harikrishna et al. (2016) 
identified three mega environments by evaluating RILs 
population of wheat under different moisture stress based 
on the GGE biplot analysis.The hexagon has six genotypes, 
viz. G98, G149, G124, G45, G36, and G273 at the vertices 
(Fig 2). These are most responsive to environmental 
change and specifically adapted genotypes, because they 
have longest distance from the origin (Yan and Tinker 
2006). As now environment markers placed into different 
sectors, this shows that different cultivars won in different 
sectors (Yan et al. 2007).The G273 winning genotype in 
first mega environment (INDORE18). G36 represented in 
second mega environment (INDORE17 and DELIR18). 
Third mega environment (DRF18, DRF17 and DELIR17) 
comprised G45 as winning genotype. Therefore, these 
genotypes should be selected in these mega environments 
and deployed for each. Third mega environment includes 
DRF17 and DRF18Delhi rainfed repeated across years, 
hence G45 genotype can be exploited by selecting in 
it.Further genotypes namely G115, G202, G234 and G20 
are centered at polygon having average performance, 
high stability, less responsive across all environments. 
The genotype having high mean yield and absolute stable 
performance is considered ideal genotype (Yan and Kang 
2003, Farshadfar et al. 2012). A genotype which is closer 
to ideal genotype is most desirable for selection (Mitrovic 
et al. 2012). Hence ideal genotype will be indicated by 
representing point on average environment axis towards 
positive direction and having highest vector length of high 
yielding genotypes with zero G×E, as indicated by an arrow 
pointing towards ideal genotype.  In order to visualize the 
distance between ideal genotype to each genotype, keeping 
ideal genotype in center concentric circles have been drawn 
placing other genotypes in it (Yan and Tinker 2006). Hence 
forth, G82 was closure to ideal genotype followed by G6, 
G192, G77, G202, G234 and G263 ranked for closest 
to ideal genotype and most desirable genotypes (Fig 3). 
Through the biplot it’s possible to assess the mean yield 
and stability performance. The projection onto ATC vertical 
axis represent stability of genotype similarly projection 
of their markers on to the ATC horizontal axis indicate 
average yield of genotypes (Yan and Tinkler 2006). Thus, 
genotype G82, G45, G36 and G6 had the highest average 
yield, and G98, G29 and G34 had the lowest. G120 had 
a mean yield similar to grand mean. Whereas genotypes 
G149, G77, G273 and G124 were the least stable and G82, 
G202, G234, G120, G263and G239 were the most stable. 
However, by considering both mean yield and stability 
performance, genotypes, G82, G263, G202, G234, and 

Fig 1	 AMMI Biplot for grain yield showing the interaction of 
IPCA2 against IPCA1 scores of 280 wheat genotypes (G) 
in six environments.



1683September 2020]

47

Genotype × Environment interaction for grain yield of wheat

Fig 2	 Polygon view of GGE biplot showing ‘‘which won where’’ 
pattern for genotypes and environments.

Fig 3	 GGE biplot based on genotype-focused scaling for rank 
genotypes relative to ideal genotype (the center of the 
concentric circles).

moisture stress. AMMI stability analysis model could be 
prominent tool for selecting most fit and stable high yielding 
genotypes for specific and diverse environment. AMMI 
model has shown that the major proportion of the total 
variation in grain yield was contributed by environments 
and GE interactions. Overall on the basis of stability of BILs 
G82, G202, G234, G263, G6, G192 and G77 were hardly 
affected by the G×E interaction and thus would perform 
wellacross a wide range of environments, viz. RF, RI, and 
Irrigated. These genotypes can be exploited in wheat varietal 
breeding scheme to develop drought tolerant genotypes.  
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