Nitrogen and irrigation water management in corn (Zea mays) under no-tillage and conventional tillage systems

ABDOLHOSSEIN ZIAEYAN¹*, SEYED MAJID MOUSAVI², ALIDAD KARAMI³ and MOHAMMAD ZIAEIAN⁴

Fars Agricultural and Natural Resources Research and Education Center, AREEO, Shiraz, Iran

Received: 29 December 2019; Accepted: 13 January 2020

ABSTRACT

Organic carbon and irrigation water scarcity are two major limiting factors in corn (*Zea mays* L.) production of Fars province which is located in the south of Iran. Soil tillage systems can affect the nitrogen and water utilization. In 2015-2017, by using the strip-split plot design and two line-source sprinkler irrigation systems, effects of 0, 90, 180, and 270 kg.ha⁻¹ of pure nitrogen and 6400, 7500, 8550, and 9600 m³.ha⁻¹ of irrigation water in conventional, and no-tillage systems were investigated. Results showed that conventional tillage system had high WUE and foliage yield than no-tillage systems. Based on the obtained results, in the terms of dry foliage yield, combined application of 8550 m³.ha⁻¹ irrigation water and 90 kg N.ha⁻¹ (I2N90 treatment) are introduced as the superior treatments in both of two tillage systems. While, in terms of WUE, combined application of 8550 m³.ha⁻¹ irrigation water and 90 kg N.ha⁻¹ (I2N90 treatment) in conventional tillage and combined application of 7500 m³.ha⁻¹ irrigation water and 135 kg N.ha⁻¹ (I3N135 treatment) in no-tillage systems are introduced as the superior treatments.

Key words: Conservation tillage, Irrigation, Maize, Nitrogen, WUE

Fars province located in the south of Iran and based on Koppen Climate classification system has mostly arid and semi-arid climate (Nasseri et al. 2017). Corn (Zea mays L.) is one of the most important crops cultivated in Fars province but its production in this province is limited by water and nitrogen. Austin (2011) reported that drought and nutrient deficiency are the main factors effect on crop production in arid and semi-arid areas. Conservation tillage practices by enhancing soil fertility, reducing seasonal evapotranspiration and conserving more soil water can effect on crop yields (Lampurlanes et al. 2016). Lenka et al. (2012) reported that tillage practices by affecting on the soil macro pores characteristics influenced soil moisture conservation and distribution. Tillage also by affecting on water infiltration can affect nitrate-N concentration, water contents, aeration, available of organic carbon, soil temperature, infiltration and evapotranspiration processes (Shao et al. 2016). The crop residues in conservation tillage are the direct sources of organic carbon. Decomposition of

* Corresponding author e-mail: Abdolhossein.ziaeian@mcgill.ca, ^{1,3}Soil and Water Research Department, ²Soil and Water Research Institute, Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran. majidmousavi@alumni.ut.ac. ir, ⁴M Sc Graduate in MBA, Shiraz University, Shiraz, Iran. Mahan. ziaeyan@gmail.com

crop residues in conservation tillage is an effective practice that can improve soil properties and support crop production (Wang et al. 2015). A large number of studies have shown that conservation tillage practices have produced favorable benefits, including improved soil organic contents as well as increased crop yield and water use efficiency (Mazzoncini et al. 2016). Singh et al. (2016) believed that conservation tillage practices improved soil physical status like soil density, soil porosity, field capacity. In contrast, some limitations such limited root growth due to soil compaction in the no-tillage system, can lead to reduced contact between the crop roots and the soil in the root zone, and may decrease plant water and nutrients absorption (Zhang et al. 2004). The dominant factors affecting crop production in south of Iran are low amounts of rainfall and of low amounts of organic carbon in agronomic soils. As soil tillage systems can affect the nitrogen and water utilization, the objective of this research was to study conventional and no-tillage systems effects on irrigation water use efficiency and yield of corn and determine optimum amounts of irrigation water and nitrogen rates in two tillage systems.

MATERIALS AND METHODS

This field study was conducted at Fars, Iran (29°77′N and 52°72′E) for two years from July 2015 to October 2017 on a fine, carbonatic, termic, Typic Haploxerepts soil. The site (1170 m altitude) with the temperature averages 16.5°C and an average annual rainfall of 308 mm has a semiarid

Table 1 Means of some soil physical and chemical characteristics at the experimental field

Ec	pН	T.N.V.	O.C.	P	K	Mn	Fe	Zn	Fc	PWP	BD	Texture
(dS.m ⁻¹)		(g.10	0g-1)			(mg.kg ⁻¹)			(%)	(g.cm ⁻³)	
1.31	8.1	32.0	0.60	8.5	224	7.7	5.0	0.66	21	11	1.6	SiClL

Table 2 Results of chemical analysis of water used for field irrigation

pН	EC	HCO ₃ -	Cl-	HBO ₃ -	SO ₄	Total anion	Mg ⁺⁺	Ca ⁺⁺	Na ⁺	Total cation	SAR
	dS.m ⁻¹					(meq.l^{-1})					
8.0	0.48	2.3	1.1	-	1.1	4.5	1.0	2.2	1.8	5.0	0.62

climate. Each year, soil samples were collected from surface horizon (0 - 30cm) of the soil. In soil samples, particle-size distribution determined by hydrometer method (Gee and Bauder 1986), TNV was determined by neutralization with HCl (Loeppert and Suarez 1996) and organic carbon were determined by Walkley Black method (Nelson and Sommers 1996). Available Zn, Fe, Mn, and Cu were determined by DTPA extraction (Lindsay and Norvell 1978), phosphorus were determined by sodium bicarbonate extraction (Olsen *et al.* 1954) and potassium were determined by NH₄OAc-K extraction.

The field experiment was established as a strip split-split plot design with 3 replicates for a total of 192 plots. The main plots (48 m \times 48 m) were conventional tillage (CT) and no-tillage (NT). Subplots (24m \times 48 m) were 0, 90, 135, and 180 kg. N ha⁻¹ as urea and sub-subplots (12 m \times 48 m) were set at 9600 (I1), 8550 (I2), 7500 (I3), and 6400 (I4) m³.ha⁻¹ during the growing season.

In both two years, tillage treatments were conducted after the harvest of previous wheat crops according to the designed patterns. No tillage operations were carried out in the no-tillage system and a moldboard plow, a disk harrow, and a leveler were employed for the conventional tillage. A seed drill was used for all two tillage systems to plant corn (sc.704).

The irrigation treatments were applied using two line-

source sprinkler irrigation systems (Hanks *et al.* 1976). For this purpose, 8 Nelson F33 sprinklers with about 12 m sprinkling radius at a distance of 6 m from each other were mounted on risers of 150 cm height installed on a 75 mm polyethylene pipeline. As the sprinkling radius was 12 m, 4 treatments (I_1 to I_4) were located 0-3, 3-6, 6-9, and 9-12 m apart on both sides of the main pipeline and perpendicular to it. Therefore, each plot was 3*3 m². The amount of irrigation water was calculated through measuring soil moisture in treatment I_1 one day before irrigation using the following equation [1]:

$$I = [(\theta_{\rm F} - \theta)\rho_b. D]/100 \tag{1}$$

where, I is the depth of irrigation water (cm), θ_F is the gravimetric soil moisture content at field capacity (%), θ is the available gravimetric soil moisture (cm), ρ_b the soil bulk density (g.cm⁻³), and D is the effective root depth (30 cm). The irrigation interval was 8 days and the volume of irrigation water was measured by a flow meter using a catch can. The total water collected in each catch can was then determined during the growing season. Water use efficiency (WUE) was determined using the following equation (Zhao et al. 2019):

The amount of nitrogen required for each treatment plot

Table 3 Main effects of various tillage systems on the different parameters

Tillage treatment	Plant height (cm)	Stem diameter (mm)	No. of plants.m ⁻²	Fresh yield (t.ha ⁻¹)	Dry yield (t.ha ⁻¹)	Soil OC (g.100g ⁻¹)	Foliage N uptake (kg. ha ⁻¹)	WUE (kg.m ⁻³ . ha ⁻¹)
2014-2015								
conventional tillage (CT)	248	20.7	8.89	63.875	38.906	0.883	448	4.93
No tillage (NT)	223	26.2	7.84	50.292	29.146	1.147	332	3.69
2015-2016								
conventional tillage (CT)	248	20.1	8.07	57.521	39.659	0.893	432	4.96
No tillage (NT)	246	19.4	7.73	54.667	34.884	1.104	370	4.42
2014-2016								
conventional tillage (CT)	248 a	20.38 b	8.48 a	60.698 a	39.283 a	0.888 b	440 a	4.95 a
No tillage (NT)	234 b	22.80 a	7.79 b	52.479 b	32.015 b	1.126 a	351 b	4.06 b
Anova								
	8843**	280**	23.0**	3242**	2535**	0.04^{*}	377454**	37.91**

Similar letters in each column represent insignificant differences between the two treatments related to the parameter.

Table 4 Combined effects of irrigation-tillage, nitrogen- tillage and irrigation-nitrogen-tillage on the yield contributing characters

	Plant height (cm)	height n)	Stem d	Stem diameter (mm)	No. of	plants	Fresh yield	yield ₁₋₁	Dry yield	yield	OC post harvesting (g.100g-1)	arvesting	Foliage N uptake (kg.ha ⁻¹)	N uptake	WUE (kg.m ⁻³ .ha ⁻¹)	JE 3.ha ⁻¹)
	CT	NT	LJ	NT	CT	L	CT	NT	CT	NT	CL	NT	CT	NT	CT	NT
Irrigation																
11	261 a	238 b	20.98a	23.35 a	8.40 a	7.75 a	64.417ab	53.396 b	40.817b	33.031 b	0.835 b	1.15 a	470 a	354 b	4.25 c	3.43 b
12	259 a	243 a	20.96a	24.02 a	8.70 a	7.56 a	68.458a	56.417 a	40.817b	34.994 a	0.953 a	1.07 a	487 a	392 a	5.41 a	4.15 a
I3	248 b	236 a	20.29ab	23.69 a	8.48 a	7.63 a	62.188b	53.521 b	40.608b	32.277 b	0.943 a	1.13a	457 a	359 b	5.41 a	4.31 a
14	224 c	222 c	19.29b	20.13 b	8.33 a	8.21 a	47.729c	46.583 c	30.167c	27.758 c	0.822 b	1.15a	346 b	297 c	4.71 b	4.34 a
Nitrogen																
N0	239 b	229 a	19.52 b	21.4 a	8.56ab	7.90 a	56.313b	49.646 a	37.425b	29.706 b	0.862 a	1.06 b	393 b	294 b	4.70 b	3.77 b
06N	254 a	237 a	20.65 ab	23.1 a	8.21b	7.79 a	62.104a	53.354 a	40.077a	32.823 a	0.899 a	1.12 ab	118 a	360 a	5.05 a	4.16 a
N135	254 a	237 a	21.50 a	23.3 a	8.38ab	7.63 a	63.229a	53.896 a	40.100a	33.152 a	0.894 a	1.17 a	466 a	384 a	5.01 a	4.18 a
N180	245 b	235 a	19.85 ab	23.4 a	8.77a	7.83 a	61.146a	53.021 a	39.529ab	32.379ab	0.898 a	1.15 a	453 a	366 a	5.02 a	4.12 a
I*N*I																
11N0	245cd	232be	20.00ae	21.75cg	8.42a	7.75 a	58.417c	50.417be	39.658cd	29.042def	0.791e	1.07cd	415cg	318cde	4.13ef	3.02 f
11N90	368a	240ab	21.42abc	23.08ae	8.00a	7.92 a	63.000bc	52.083be	38.300d	32.758bcd	0.825de	1.12ad	433bf	342be	3.99f	3.41 ef
11N135	266a	235ad	21.58ab	23.75ae	8.58a	7.75 a	69.750ab	54.917ad	43.450ad	34.100abc	0.857cde	1.21ab	525a	387bc	4.53def	3.55de
11N180	267a	244a	20.92ad	24.83ab	8.58a	7.58 a	66.500abc	56.167abc	41.858bcd	36.225ab	0.865be	1.21ab	507ab	370bcd	4.36def	3.77cde
12N0	251bc	240abc	19.33de	21.75dh	8.67a	7.83 a	61.417bc	54.417ad	41.675bcd	32.967bcd	0.942abc	1.07cd	446ae	339be	4.89be	3.86be
12N90	260ab	244a	21.33abc	24.08ad	8.58a	7.58 a	72.750a	56.083abc	48.783a	35.675ab	0.975a	1.08cd	523a	400 b	5.73a	4.20abc
I2N135	267a	244a	22.08a	25.08ab	8.50a	7.67 a	70.750ab	61.417a	46.208ab	38.408 a	0.967ab	1.06cd	487ad	470 a	5.43abc	4.51a
I2N180	258ab	243a	21.08ad	25.50 a	9.08a	7.17 a	68.917ab	53.750 be 45.492abc 32.967bcd	45.492abc	32.967bcd	0.930abc	1.07cd	489ad	371bcd	5.58ab	4.04ad
13N0	235def	230cde	19.92ae	22.67 bf	8.25a	7.58 a	57.833c	51.167be	38.567d	30.333cf	0.923ad	1.07cd	410dg	281ef	5.14ad	4.04 ad
13N90	258ab	240abc	21.00ad	24.17abc	8.33a	7.25 a	63.500bc	57.083ab 41.600bcd	41.600bcd	33.933bc	0.972a	1.12ad	467ad	380bc	5.54ab	4.52 a
I3N135	258ab	238ad	21.17ad	23.75ae	8.58a	7.50 a	65.417abc	52.583 be 4	41.358bcd	31.925be	0.945abc	1.21ab	500abc	375bcd	5.51ab	4.26abc
I3N180	240de	234ad	19.8cde	24.17abc	8.75a	8.17 a	62.000bc	53.250 be 4	40.908bcd	32.617bcd	0.930abc	1.10ad	487ad	400b	5.45ab	4.39ab
I4N0	224fg	216f	18.83de	20.00gh	8.92a	841 a	47.583d	42.583 f	29.800e	26.525 f	0.792 e	1.02d	30h	241 f	4.66cf	4.14abc
14N90	230ef	223ef	18.83de	21.17fh	7.92a	8.41 a	49.167d	48.167def	31.625e	28.925bef	0.825 de	1.17abc	370fg	320bcd	4.94ad	4.52a
I4N135	224fg	229de	21.17ad	20.42fgh	7.83a	7.58 a	47.000d	46.667ef	29.383e	28.175ef	0.807e	1.21ab	349gh	304def	4.59def	4.40ab
I4N180	216g	218f	18.33e	18.92h	8.67a	8.41 a	47.167 d	48.917cf	29.858e	27.408f	0.865be	1.22a	363fgh	324cde	4.66cf	4.28abc
Anova																
Irrigation	7243**	1970**	15.1*	77.9**	0.65^{ns}	$2.04^{\rm ns}$	1956**	418**	1010^{**}	225**	0.115**	$0.04^{\rm ns}$	97750**	39530**	7.76**	4.25**
Nitrogen	1271**	305^{ns}	18.7 ^{ns}	19.3ns	1.41 ^{ns}	0.32^{ns}	223**	su68	38^{ns}	su6S	0.007^{ns}	0.06^{*}	24605*	36887**	0.63^{ns}	0.91^{ns}
N* I	243**	71ns	2.6 ^{ns}	6.4 _{ns}	0.50 ^{ns}	0.74 ^{ns}	45 ns	37ns	21 ^{ns}	19 ^{ns}	0.004 ^{ns}	0.02 ^{ns}	4389ns	4550 ^{ns}	0.28 ^{ns}	0.18 ^{ns}

Similar letters in each column of irrigation, Nitrogen and Irrigation*Nitrogen, represent insignificant differences between the two treatments related to the parameter.

in each tillage system was applied to the soil at planting time, at V3 stage, and at V10 stage. Based on the soil test results, triple superphosphate and zinc phosphate were uniformly applied to each treatment plots at 200 and 40 kg.ha⁻¹, respectively.

In the harvesting time, plant height, stem diameter and numbers of plants in square meter, soil organic carbon and wet foliage yields of each plot were measured. The wet foliage were dried at 65-70°C to find out dry foliage yield. In dry foliage, concentration and uptake of N, P, K and Zn were measured. Measured parameters as well as water use efficiency was evaluated with SAS version 9.2 (analysis of variance). When main effects were significant, the means were compared by using Duncan's multiple range tests.

RESULTS AND DISCUSSION

Tillage had a significant effect on the plant height, stem diameter, number of plant.m⁻², fresh and dry yield, N uptake by foliage and soil organic carbon after harvesting (Table 3). As the mean plants height and number of plants per square meter were significantly higher in CT than NT (by 5.6% and 8.1%, respectively), the fresh and dry foliage yield was higher in CT than in NT by 13.5 and 24.8% (Table 3). This result is in accordance with Zhang et al. (2018) and Ziaeian et al. (2019) who reported that the corn yield in conventional tillage was more than notillage. Based on Jin et al. (2017) reports deep ploughing in conventional tillage can decrease subsoil density, thereby increase soil water storage and crop yield. Van den Putte et al. (2010) believed that limited root growth due to soil compaction in the no-tillage system, can lead to reduced contact between the crop roots and the soil in the root zone, and may decrease plant water and nutrients absorption. In contrast with our results, Rani et al. (2019) reported that there were no statistical differences between conservation and conventional tillages in terms of grain yield. Singh et al. (2016) also believed that conservation tillage improved soil physical status like soil density, soil porosity and field capacity and Chen et al. (2015) reported that conservation tillage practices could capture rainfall effectively and could improve soil water and then improved crop yield.

Tillage also had a significant effect on water use efficiency. On the average over two experimental years, WUE was higher in CT than in NT by 18.0% (Table 3). Overall, conventional tillage system with average yield 39283 kg.ha⁻¹ and WUE average 4.95 kg.m⁻³.ha⁻¹ was significantly superior to no-tillage system by average yield 32015 kg.ha⁻¹ and average WUE of 4.06 kg.m⁻³.ha⁻¹ (Table 3). Various tillage can increase soil water content (Sharma et al. 2011). There are sufficient pore spaces in conventional tillage which causes a better development of the tap root (Van den Putte et al. 2010). Another possible explanation for WUE in conventional tillage is that deep ploughing can decrease subsoil density, thereby increase soil water storage and crop yield (Jin et al. 2017). In contrast, conventional tillage may have negative effects on water productivity and yield (Alletto et al. 2011). It has been shown that WP

can be improved by conservation tillage system such as no-tillage and reduced tillage systems and these systems are more useful and more effective in reducing soil erosion (Mohammadi 2012, Safari *et al.* 2013). Shao *et al.* (2016) reported that conventional tillage without straw mulching, which is widely used in semi-arid region, remarkably increased soil water loss via evaporation.

Combined effects of irrigation water, nitrogen and tillage systems on the yield contributing characters are presented in Table 4. In general, the amounts of plants height, number of plants per square meter, yield and WUE in CT were higher than NT in the same treatments so that in I2N180 treatment, amounts of plant height and number of plants per square meter, fresh and dry foliage yield and WUE in conventional tillage were higher than to no-tillage system by 8.6, 9.8, 13.2, 16.9 and 16.9 %, respectively. It has been reported that yield is a function of photosynthesis rate. Water stress resulting in reduced photosynthesis. Reduced photosynthesis reduces yield (Mafakheri et al. 2010). Drought stress reduces stomata conductance and net photosynthesis, shortens plant growth and ultimately reduces yield (Rajjala et al. 2009). Nitrogen application also had significant effects on yield and WUE. Azizian and Sepaskhah (2014) reported that nitrogen by influencing on cell division and by helping absorption of other nutrients increased plant growth. Subedi et al. (2007) reported that application of sufficient nitrogen leads to increased root growth and improved capability to absorb water from the deeper soil layers under drought conditions.

Conclusion

Tillage systems affected the irrigation and nitrogen application rates, yield and water use efficiency (WUE). The maximum dry foliage yield in conventional (CT) and in no-tillage systems (NT) (48783 and 38405 kg.ha⁻¹, respectively) were obtained from combined application of 8550 m⁻³.ha⁻¹ irrigation water and 90 kg N.ha⁻¹(I2N90) and combined application of 8550 m⁻³.ha⁻¹ irrigation water and 135 kg N.ha⁻¹ (I2N135) treatments, respectively, which are recommendable in the same conditions. The maximum WUE in CT (5730 kg.m⁻³.ha⁻¹) were obtained from I2N90 treatment and in NT (4520 kg.m⁻³.ha⁻¹) were obtained from combined application of 7500 m⁻³.ha⁻¹ irrigation water and 90 kg N.ha⁻¹ (I3N90) or combined application of 6400 m⁻³. ha⁻¹ irrigation water and 90 kg N.ha⁻¹ (I4N90) treatments. In general, combined application of 90 kg N.ha⁻¹, and 8550 m⁻³.ha⁻¹ of irrigation water and combined application of 135 kg N.ha⁻¹ and 7500 m⁻³.ha⁻¹ irrigation water are introduced as the superior treatment in conventional tillage and in notillage systems, respectively.

REFERENCES

Alletto L, Coquet Y and Justes E. 2011. Effects of tillage and fallow period management on soil physical behavior and maize development. Agriculture Water Management 102: 74–85.

Austin A T. 2011. Has water limited our imagination for arid land biogeochemistry? *Trends Ecology and Evolution* 261: 229–235.

- Azizian A, and Sepaskhah A R. 2014. Maize response to different water, salinity and nitrogen levels: agronomic behavior. *International Journal of Plant Production* 8 (1):107-130.
- Chen Y L, Liu T, Tian X H, Wang X F, Li M, Wang S X and Wang Z H. 2015. Effects of plastic film combined with straw mulch on grain yield and water use efficiency of winter wheat in Loess Plateau. *Field Crops Research* 172: 53–58.
- Gee G W and Bauder J W. 1986. Particle-size analysis, hydrometer method. (In) Klute A. (Ed.) *Methods of Soil Analysis*, Part I. Am. Soc. Agron., Madison, WI, pp 404-408.
- Hanks R J, Keller J, Rasmussen V P and Wilson Q P. 1976. Line source sprinkler for continuous variable irrigation – crop production studies. Soil Science Society American Journal 40: 426 - 429.
- Jin V L, Schmer M R., Stewart C E, Sindelar A J, Varvel G E and Wienhold B J. 2017. Long-term no-till and stover retention each decrease the global warming potential of irrigated continuous maize. *Global Change Biology*, 23 (7): 2848.
- Lampurlanes J, Plaza-Bonilla D, Alvaro-Fuentes J and Cantero-Martinez C. 2016. Longterm analysis of soil water conservation and crop yield under different tillage systems in Mediterranean rainfed conditions. *Field Crops Research* 189: 59–67.
- Lenka N K, Choudhury P R, Sudhishri S, Dass A and Patnaik, U.S. 2012. Soil aggregation, carbon build up and root zone soil moisture in degraded sloping lands under selected agroforestry based rehabilitation systems in eastern India. *Agriculture Ecosystem and Environment* 150:54–62.
- Lindsay W L and Norvell W A. 1978. Development of a DTPA test for zinc, iron, manganese, and copper. Soil Science Society American Journal 42: 421-428.
- Loeppert R H and Suarez D L. 1996. Carbonate and gypsum. (In) Sparks D L (Ed.). *Methods of Soil Analysis*, pp. 437-474. Part III. . Am. Soc. Agron., Madison WI.
- Mafakheri A, Siosemardeh A, Bahramnejad B, Struik P and Sohrabi E. 2010. Effect of drought stress on yield, proline and chlorophyll contents in three chickpea cultivars. *Australian Journal of Crop Science* 4: 580–585.
- Mazzoncini M, Antichi D, Bene C D, Risaliti R, Petri M and Bonari E. 2016. Soil carbon and nitrogen changes after 28 years of no-tillage management under Mediterranean conditions. *Europian Journal Agronomy* 77: 156–165.
- Mohammadi Kh. 2012. Effects of fertilization and tillage on soil biological parameters. *International Conference on Ecological, Environmental and Biological Sciences* (ICEEBS'2012) Jan. 7-8. 2012 Dubai.
- Nasseri A, Abbasi F and Akbari M. 2017. Estimating agricultural water consumption by analyzing. *Irrigation and Drainage Structures Engineering Research* 18(68):17-32.
- Nelson D W and Sommers L E. 1996. Total carbon, organic carbon, and organic matter. (*In*) Sparks D L (Ed.). *Methods of Soil Analysis*, Part III pp. 961-1010. Am. Soc. Agron., Madison, WI.
- Olsen S R, Cole C V, Watanabe F S, and Dean L A. 1954. Estimation of available phosphorus in soil by extraction with sodium bicarbonate. USDA. Circ. U. S. Gov. Print. Office, Washington D C.

- Rajjala A, Hakala K, Makela P, Muurinen S and Peltonen-Sainio P. 2009. Spring wheat response to timing of water deficit through sink and grain filling capacity. *Field Crops Research* 114: 263–271.
- Rani A, Bandyopadhyay K K, Krishnan P, Sarangi A and Datta SP. 2019. Effect of tillage, residue and nitrogen management on soil water dynamics and water productivity of wheat in an Inceptisol. *Journal of the Indian Society of Soil Science* 67 (1): 44-54.
- Safari A, Asoodar M A, Ghaseminejad M and Abdali A. 2013. Effect of residue management, different conservation tillage and seeding on soil physical properties and wheat grain yield. *Journal of Agricultural Science and Sustainable Production* 23(2): 49-59.
- Shao Y H, Xie Y X, Wang CY, Yue J Q, Yao Y Q, Li X D, Liu W X, Zhu Y J and Guo T C. 2016. Effects of different soil conservation tillage approaches on soil nutrients, water use and wheat-maize yield in rain-fed dry-land regions of North China. *European Journal* of *Agronomy* 81: 37–45.
- Sharma P, Abrol V and Sharma R K. 2011. Impact of tillage and mulch management on economics, energy requirement and crop performance in maize—wheat rotation in rainfed sub humid inceptisols, India. *European Journal of Agronomy* 34(1): 46–51.
- Singh V K, Singh Y, Dwivedi B S, Singh S K, Majumdar K, Jat M L, Mishra R P and Rani M. 2016. Soil physical properties: yield trends and economics after five years of conservation agriculture based rice-maize system in north-western India. *Soil Tillage Research* 155: 133–148.
- Subedi K D, Ma B L and Xue A. G. 2007. Planting date and nitrogen effects on grain yield and protein content of spring wheat. *Crop Science* 47: 36-44.
- Van den Putte A, Govers G, Diels J, Gillijns K and Demuzere M. 2010. Assessing the effect of soil tillage on crop growth: a meta-regression analysis on European crop yields under conservation agriculture. *European Journal of Agronomy*, 33: 231–241.
- Wang X J, Jia Z K and Liang L Y. 2015. Effect of straw incorporation on the temporal variations of water characteristics, water-use efficiency and maize biomass production in semi-arid China. *Soil Tillage Research* 153: 36–41.
- Zhang X Y, Pei D and Chen S Y. 2004. Root growth and soil water utilization of winter wheat in the North China Plain. *Hydrology Processes* 18: 2275–2287.
- Zhang Y, Wang SH, Wang H, Wang R, Wang X and Li j. 2018. Crop yield and soil properties of dryland winter wheat-spring maize rotation in response to 10-year fertilization and conservation tillage practices on the Loess Plateau. Field Crops Research 225: 170–179.
- Zhao J, Yang Z and Govers G. 2019. Soil and water conservation measures reduce soil and water losses in China but not down to background levels: evidence from erosion plot data. *Geoderma* 337: 729–741.
- Ziaeian A H, Karami A D, Moafpourian Gh R and Jowkar L. 2019. Effects of nitrogen and irrigation water on the silage corn production under minimum tillage and conventional tillage systems. Water and Soil Science 28(4): 44-56.