Storage stability of popped pearl millet based ready to eat breakfast cereal

RITU SINGH¹, KARUNA SINGH², MANJEET SINGH NAIN³ and RASHMI SINGH⁴

Amity Institute of Food Technology, Amity University, Noida, Uttar Pradesh 201 303, India

Received: 16 December 2019; Accepted: 23 January 2020

ABSTRACT

The study was carried out for the assessment of storage stability of popped pearl millet based Ready to Eat (RTE) breakfast cereal. The RTE breakfast cereal based on popped pearl millet was developed and standardised and storage study was done under ambient conditions (25±28.0 °C and 65 ± 10% RH) after packaging in Metalized Pouches of 1.36 mm thickness for 3 months. The RTE- breakfast cereal was evaluated for moisture, water activity (aw), Free Fatty Acids and Peroxide Value and overall acceptability at an interval of 15 days. Microbial count (yeast and mold count) were also determined during the entire period of storage. The results revealed a marginal increase in all the parameters during storage and overall acceptability value was 7.29. No significant change was noticed in the RTE – breakfast cereal and was found with acceptable attributes at ambient conditions. The study illustrated the storage stability and safety of popped pearl millet-based RTE breakfast cereal at ambient storage in metalized pouches throughout three months storage period. Consistent increase in deteriorative quality parameters (moisture content, water activity, FFA, PV) was observed during the storage period. However, no significant difference on sensory evaluation of RTE- breakfast was observed during the storage period. Although there were increases in deteriorative parameters, but none of the parameters suggested initiation of spoilage in the product. The total plate count, yeast, mould count was not detected during the storage period, further indicated safety of the popped pearl millet breakfast cereal product for consumption.

Key words: Free fatty acid, Pearl millet-based breakfast cereal, Peroxide value, Sensory evaluation, Storage,

Important meal of day is the breakfast as it supplies the necessary nutrients to the brain and body after a long gap of time. Breakfast cereals are the healthy choice, as they are made of whole grains which are rich in carbohydrates, low in fat and generally have good amount of fibre and protein. Almost all over the world the breakfast cereals have established firmly on the breakfast tables of the people. They are available in wide variety in terms of taste, forms and colour etc. Ready to Eat (RTE) breakfast cereals are also expected to meet the essential nutrients requirement in daily life. In many RTE cereals the dietary fibre is present, as part of the whole grain or added in the form of wheat bran, oat bran, dried fruits and nuts, or by the additions of other fibre. The breakfast cereals give a countless options for meeting daily recommendations so that intake of whole grain to be taken by the persons of all age groups. Cereals that are most often used in the formulation of RTE-BC include maize, wheat, oats and rice. The minor cereals-based products; such as pearl millet and other millets are still limited (Kumari et al. 2018, Pradeep et al. 2013).

Pearl millet commonly known as bajra is nutritious and of value especially in the semi-arid-tropics because of its short growing season and higher productivity under heat and drought conditions and is generally cultivated with minimum agricultural inputs. It is nutritionally superior to rice and wheat; good source of carbohydrates, protein, dietary fibre and micronutrients. The nutritional superiority of this millet compared to other cereals also add value for commercial exploitation. Pearl millet is profoundly nourishing, energising and creative that could be creditable extension to anybody’s eating regimen yet the bioavailability is low because of certain factors like rapid development of rancidity or bitterness in the flour after 5-10 days of storage (Jalgaonkar et al. 2016, Kaced et al. 1984, Tiwari et al. 2014 and Yadav et al. 2012). Processing have varied effects on the mineral composition of the flour, it reduces the anti-nutritional factors and increases the water absorption capacity, oil absorption capacity, least gelation concentration and bulk density of the flours, hence flours could be used in food systems where the above qualities are desirable (Sade 2009).
Storage quality of any breakfast cereal depends on their moisture, fat content and water activity. Water activity affects the stability of products as under low water activity microbial growth stops, however, enzymatic and chemical reactions could occur and result in food product spoilage (Labuz et al. 1982). For any product, the moisture content is the predominant factor in defining its stability and thus shelf life. Moisture content has a significant effect on the sensory crispiness and mechanical properties of saltines and corn curls (Katz and Labuz 2006). Packaging of food is also a major concern to determine the oxidative stability of cereal snack products with respect to the effect of oxygen pressure, humidity and water vapour permeability of the packaging material.

Nowadays various types of packaging materials have been developed to prevent spoilage of food product from air exposure, pH change, moisture and retaining good sensory properties during storage. As such, the study was undertaken to evaluate the qualitative changes in popped pearl millet-based breakfast cereal at ambient condition in metallized pouch that occurred during storage. Various deterioration indicators of food products; moisture content, water activity, microbial load, FFA, PV and sensory quality were determined during storage period.

MATERIALS AND METHODS

Processing methods and preparation of popped pearl millet based RTE breakfast cereal

The breakfast cereal was developed by using 29.2% popped pearl millet (230±5°C for 20-30 seconds) was mixed manually with 10% wheat puff (200±10°C for 3 min), 12% popped amaranth (200±10°C for 30 seconds), 5% sunflower seeds, 5% flax seeds and 4% raisins in a stainless-steel bowl. Syrup mixture (sugar, water, sunflower oil and honey) was added to the dry ingredients and mixed until it was homogenously dispersed. The resulting mix was spread on baking tray covered with wax paper and baked at 50-60°C (15 min) until toasted uniformly. The breakfast cereal was cooled at room temperature (27°C), packaged and stored as per the procedure followed by Kumari et al. (2019). Sample of pearl millet based RTE breakfast cereal was packed in metalized pouch of 1.36 mm thickness at 50-60° C (15 min) until toasted uniformly. The breakfast cereal was cooled at room temperature (27°C), packaged and stored as per the procedure followed by Kumari et al. (2019). Sample of pearl millet based RTE breakfast cereal was packed in metalized pouch of 1.36 mm thickness at room temperature under ambient condition (maximum temperature: 25.95±28.0°C, minimum temperature: 17.6±12.1°C and relative humidity: 60±19%) for 3 months.

Quality attributes of pearl millet based RTE Breakfast cereal during Storage

Stored breakfast cereal was withdrawn at 15 days intervals up to 3 months of storage. Analysis of moisture content (%), water activity (a_w), FFA, PV, microbial load and overall acceptability were conducted in each 15 days with new sample packets.

Moisture content

Moisture content of the sample was estimated by AOAC (2000). The moisture in sample was calculated in percent.

\[
\text{Moisture (\%) } = \frac{\text{Initial weight (g)}}{\text{Final weight (g)}} \times 100
\]

Water Activity (a_w)

Water activity (a_w) is an important determinant for shelf life of the food product. The sample water activity (a_w) was measured through ROTRONIC (model Hygro lab 3) instrument under controlled temperature condition for 3 months storage period. Each measurement was carried out in triplicate.

Peroxide Value (PV)

Peroxide value was estimated by the given method of Syed et al. (2007). Five grams of each stored product weighed into a conical flask (500 ml), in this 30ml acetic acid and chloroform was added and dissolved. Then 0.5 ml of saturated KI solution was added, mixed well and allowed to stand for 1 min. The 430 ml of water, 3-4 drops of starch indicator was added and mixed well. It was titrated against standard 0.01 N sodium thiosulphate until the blue colour disappeared. Similarly, blank was treated in the without sample.

\[
\text{Peroxide value (meqO}_2/\text{kg of sample) } = \frac{A \times N \times 1000}{\text{Weight of sample}}
\]

Free Fatty Acid (FFA)

Free fatty acid was estimated by the given method of AOAC (2000). In 50 ml neutral ethyl alcohol 5 g of dried sample was mixed into 250 ml conical flask. Afterwards few drops of phenolphthalein indicator were added. The contents were titrated against 0.1N potassium hydroxide (KOH), shake constantly until a pink colour, which persists for 15 seconds. Free Fatty Acid (FFA) content of the sample was expressed as per cent oleic acid in the sample and calculated using the given formula:

\[
\text{FFA (as % oleric acid)} = \frac{282 \times 0.02N \times \text{ml of alkali used} \times \text{dilution factor}}{100 \times \text{Weight of sample taken}} \times 100
\]

The FFA calculated as oleic acid using the equation:

1ml 0.1N KOH = 0.028g oleic acid

Microbiological load

The microbial contamination of the RTE- breakfast cereal was determined during storage. The total plate count and yeast/mold count was determined using the given method of Olunlade et al. (2013) in which, the media nutrient agar (NA) used for total plate count (TPC), the potato dextrose agar (PDA) used for yeast and mold counts. Serial dilutions were made for each sample and 1 ml of the appropriate dilution was poured 10^{-2} and 10^{-3} serial dilution were used for pouring plate in triplicate on selective media. Culture media was incubated at 37°C
Table 1: Effect of storage period on moisture content and water activity of popped pearl millet RTE-BC

<table>
<thead>
<tr>
<th>Storage period</th>
<th>Moisture content (%)</th>
<th>Water activity (a_w)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4.87±0.01</td>
<td>0.175±0.001</td>
</tr>
<tr>
<td>15</td>
<td>4.90±0.05</td>
<td>0.181±0.001</td>
</tr>
<tr>
<td>30</td>
<td>4.99±0.05</td>
<td>0.285±0.001</td>
</tr>
<tr>
<td>45</td>
<td>5.06±0.01</td>
<td>0.289±0.001</td>
</tr>
<tr>
<td>60</td>
<td>5.19±0.01</td>
<td>0.312±0.001</td>
</tr>
<tr>
<td>75</td>
<td>5.23±0.07</td>
<td>0.388±0.001</td>
</tr>
<tr>
<td>90</td>
<td>5.35±0.07</td>
<td>0.401±0.001</td>
</tr>
</tbody>
</table>

Values are mean ± SD of three replicates

Moisture content

The moisture content of any RTE product is important for its shelf life. Generally, moisture content decreases or increases during storage depending upon the storage condition and packaging material. The variation in moisture content was noticed in popped pearl millet RTE breakfast cereal. The value of moisture increased from 3.37% to 4.45% (Table 1) at the end of 3 months of storage period. The results showed that the moisture content (<12%) of breakfast cereal was within the permissible limit all through the storage period.

The increase in moisture content was due to hygroscopic nature of the breakfast cereal, packaging material permeability and storage environment (change in temperature and relative humidity), as also reported by Nagi et al. (2012) for an increase in moisture content of cereal bran enriched biscuit in flexible packaging. The metalized packaging was found better because of higher moisture and oxygen barrier properties.

Water activity

For controlling the shelf-life of food products, water activity is an important mean. The water activity of breakfast cereal increased significantly (\(P \leq 0.05\)) from 0.17 to 0.40 (approximately 42% increase) in metalized packaging during 3 months storage period (Fig 1). Santa et al. (2014) in their study on evaluated changes in cereal muesli with seeds during storage have reported that water activity compared to the fresh prepared muesli (aw=0.56) decreased, in paper tube it was 0.33, in paper bag – 0.16 and in Doypack – 0.47, whereas Hsieh et al. (1990) reported that mechanical properties of biomass based products were affected by the water activity levels. Hence, in present case the water activity of the RTE-BC stored in Metalized Pouch was within the permissible limit (>0.5) during 90 days of storage.

Microbial analysis

In popped pearl millet-based breakfast cereal, no microbial growth was detected on first day of storage. The result exhibited that the number of micro-organism were found to be increased from 0 to 1.99 log CFU/g during storage. All packaged ready to eat breakfast cereal had gradual increase in total plate count (TPC) but remain within acceptable limit during the study period. Parallel results stand reported by earlier investigators like Pradeep et al. (2014) in their study on formulation of RTE breakfast cereal reported that the product prepared from popped millets and legumes exhibited good overall acceptability with a shelf life period of 90 days. Deshpande et al. (2004) reported total plate count of 4.7 log CFU/g for soy fortified barley based sattu. Mridula et al. (2013) in their study on...
Storage period had a noticeable effect on free fatty acid, peroxide value of breakfast cereal. A significant increase in the Free Fatty Acid and Peroxide Value was pragmatic with storage period (Table 3). During 3 months of the storage period, FFA and PV in breakfast cereal increased from 0.25% to 0.61% and from 0.80 meq O₂/kg to 1.61 meq O₂/kg of oil, respectively. Similarly, Coulibaly et al. (2012) developed extruded adult breakfast based on millet and soybean and they observed that in all blends IPV increased significantly (p<0.05) during storage. They further reported that mixtures which contain germinated millet flour had the highest rates in IPV. For development of off flavours in food the lipids oxidation is one of the major reasons. Lipid oxidation rate is influenced by storage conditions such as light exposure, moisture content, temperature, and pH and oxygen availability (Adetuyi et al. 2009). The steady growth in free fatty acids and peroxide value of breakfast cereal, caused by enzymatic hydrolysis of the lipids had also been reported by earlier workers (Mamta 2015) where, the peroxide value of 100% pearl millet popped mixture ranged from 6.51 to 10.04 meq/1000 g fat from day 30 to 90 days of the storage. Similarly, Khatkar (2002) found higher FFA in crunchy muesli and differ significantly (P<0.05) at 30 and 60 days when compared to that of 0 day; increase was 33.2 and 71.7% respectively. Similar results were reported by earlier studies on the popped pearl millet mixture in which, PV ranged from 6.51 to 10.04 meqO₂ /100 g fat from 30 to 90 days of the storage (Mamta 2015). Although, there was an increase in FFA and PV value during the storage period, but the occurrence of rancidity or bitter taste in the product was not noticed as observed by sensory evaluation report of the product.

Sensory evaluation

Colour, texture, crunchiness and taste are the important characteristics for suitability of a food item, and these are also good indicators of the physicochemical changes during storage (Rao et al. 1995). Sensory evaluation of the standardized breakfast cereal revealed non-significant effect of storage period on the liking of cereal by the panellists with respect to colour, taste, crunchiness and overall acceptability (Table 4). At the end of three month storage, the sensory score for colour, taste, crunchiness and overall acceptability of breakfast cereal was rated...
as 8.00, 8.10, 7.93 and 7.89, respectively, indicating a well acceptable product. The observations were in close concurrence with the observations reported by Gunjan (2011) and Pradeep et al. (2013). They studied the sensory analysis of the millet product which revealed that all the sensory parameters they studied were in adequate sequence with mean score of 6.8. Shaheen (2010) developed popped sorghum breakfast cereal and found that the mean sensory scores remained steady during the one month storage period. Premavalli et al. (2003) formulated puffed ragi, the sweetened and spiced convenience mix. Both the mixes had a shelf life of 4 and 6 months with 7.70 and 6.00 level of acceptability in each.

Conclusion

The study illustrated the storage stability and safety of pearl millet based breakfast cereal at ambient storage in metalized pouches throughout three months storage period. Consistent increase in deteriorative quality parameters (moisture content, water activity, FFA, PV) was observed during the storage period. However, no significant difference on sensory evaluation of breakfast cereal was observed during the storage period. Although there were increases in deteriorative parameters, but none of the parameters suggested initiation of spoilage in the product. The yeast, mould was not detected during the storage period, which indicated the safety of the product for consumption. Pearl millet being nutritionally better than most other common cereals having high levels of calcium, iron, zinc, lipids and high quality proteins and the observed superiority of developed product the popped pearl millet based RTE can not only provide nutritional security but diet diversity to most people.

REFERENCES

Indian Journal of Agricultural Sciences 90 (10)

Journal of Food Processing and Preservation 38: 1215-1223.