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ABSTRACT

The basic aim of analyzing gene expression data is to identify genes whose expression patterns differ in the treatment
samples, with respect to the control or healthy samples. Microarray technology is a tool for analyzing simultaneous
relative expression of thousands of genes within a particular cell population or tissue in a single experiment through the
hybridization of RNA. Present paper deals with mixture distribution approach to investigate differentially expressed
genes for sequence data of Arabidopsis thaliana under two conditions, salt-stressed and control. Two-component
mixture normal model was fitted to the normalized data and the parameters were estimated using EM algorithm.
Likelihood Ratio Test (LRT) was performed for testing goodness-of-fit. Fitting of two-component mixture normal
model was found to be capable of capturing more variability as compared to single component normal distribution
and was able to identify the differentially expressed genes more accurately.
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Differential Gene expression (DGE) provides the
power to understand the biological variations between
two different conditions or states like healthy or diseased,
treated or control etc. Genes identified from DGE analysis
are known as differentially expressed genes (DEGs) that
are responsible for different expressions than rest of the
genes in genome. In clinical research, DEGs are important
to identify candidate biomarkers and therapeutic targets for
drug designing.

Methods available for generating the expression data
are DNA Microarray, RNA seq, Chip Seq etc. For RNA
seq data, distributional approaches have been applied for
expression analysis (Marioni et al. 2008, Mortazavi et al.
2008, Nagalakshmi et al. 2008, Anders and Huber 2010,
Anjum et al. 2016). Other than RNA seq, microarray
data is most commonly used for transcriptome/expression
analysis. Microarray technique is a powerful technique that
increases the speed at which differentially expressed genes
are analysed and to determine its function. This technique
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is used for comparing the expression level of thousands of
genes at a time.

The most common methods for microarray data
analysis are clustering and heatmap approach (Brazma
and Vilo 2000). Other than this, statistical techniques like
t-test, multiple hypothesis testing, Baye’s method have
also been used on microarray data (Jeffery et al. 2000).
Mixture distribution approach is another technique that can
be applied on this data for expression analysis as within
a whole data set there are different subsets that possess
different properties that can be modelled separately. To
know statistically significant evidence that any of the genes
under study possesses a difference in expression across the
groups/conditions/subpopulations is the main concern. The
theory of mixture distribution model can be an effective
tool in such situations.

A mixture distribution is a mixture of statistical
distributions with a different probability density function
in each component. This distribution is used in the
situation when a population (complete set of genes) has
subpopulations (like, up-regulated and down-regulated
genes). Here components of mixture probability density
are the densities of the subpopulations along with the
weights as the proportion of each subpopulation in the
overall population (Karim ef a/. 2011). Mixture model has
become popular because they provide a simple mechanism
to incorporate extra variation and correlation in the model
along with model flexibility (McLachlan and Peel 2000,
Yang et al. 2007).
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Pearson (1895) studied mixture distribution by mixing
of different crab species and modelled mixture of two
normal distributions and found that about 28% of genes
appear to have an expression pattern that follows a mixture
distribution. A mixture analysis approach was introduced
by McLachlan ef al. (2002) to the clustering of microarray
expression data with respect to tissue samples on a very
large number of genes.

In this article, mixture distribution approach is applied
to microarray data of Arabidopsis thaliana for performing
differential expression analysis. Joint likelihood density
function is obtained and the parameters of the mixture
model including the mixing weights (mixing proportions)
are estimated. The performance of the mixture distribution
model is compared with single distribution model. Further, R
codes have been developed for fitting of mixture distribution
and its testing.

MATERIALS AND METHODS

For this study, the data of Arabidopsis thaliana was
used. It is known that Arabidopsis thaliana is a model
organism for study because of its relative genetic simplicity,
convenience and abundance, massive seed production,
susceptibility to T-DNA insertions and basic life processes.
The microarray data under two conditions, salt-stressed
and control, was taken from Gene Expression Omnibus,
with accession ID-GDS 3927 (https://www.ncbi.nlm.nih.
gov/sites/GDSbrowser?acc=GDS3927) and with platform
GPL 198 (http://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GPL198).

To model the variations with respect to expression
levels, a class of mixture models are utilized that make use
of arandom threshold value for accommodating variations in
the gene expression distribution. Distribution of expression
scores/index (Z) can be considered as a mixture of two
probability functions, representing the density function
under two conditions as

gH=pfi O+ -p) /(D) (M

where, p is the proportion of subpopulation in the overall
population, f(Z) is the i component density which may
be continuous or discrete for i = /,2. An extension of
this problem is to model genes that are under-expressed,
expressed and over-expressed, leading to a three component
mixture.

The mixture distribution for a random variable X that
takes values in a sample space ®, can be represented by a
probability density function (or mass function in the case
of discrete ®) of the form

g =m,f(x) + ... + T,f(x), (x EO) )

where, 0 <z, <[ fori=1I.. kandm, + 7, + . +m =
1. The parameters z,, «,, ... , m, are the mixing weights
or mixing proportions and f;(.),..., f;(.) are the component
densities of the mixture respectively. The component
densities f;(x), ...,f,(x) can belong to the same or different
parametric family. When there is a common functional form
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with different parameters, then
Jix) = fix|6)) 3

where, 0, denotes the parameters occurring in f{(x). The
finite mixture density function will have the form

k
g(x|‘1‘):2ﬂif(x|9i),(xe®) %)
i1
where, ¥ = (71'1,...,7Tk, 91,...,0k) is the complete collection
of all distinct parameters occurring in the mixture model.
A random variable X has mixture normal distribution
if f,(x) is normally distributed with mean u, and variance
012 with mixing proportion 7, = p and f,(x) is normally
distributed with mean u, and variance 022 with mixing
proportion 7, =(1-p). The mixture distribution of two normal
distributions given above has five parameters, namely p, u ,

Uy 072 0.7 Letfy(x)= (I)ul’ s12(¥) and f5(x) = ¢u2, 52,(x) then
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where 7; = p and , = I-p is a mixture of two normal
densities.

The mean and variance of the mixture distribution with

k components are as follows:
k k
W, =EX)= ng(x)dx = Zﬂi_[x Ji(x) dx = Z”iﬂi
i=1 i=1

and

G,%, =E(x—/1m)2 =
k k (6)
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The total number of parameters to be estimated depends
on the distributions that are combined to form mixture
distribution. The maximum likelihood estimation (MLE)
method for parameter estimation is used in which the
likelihood function is taken as the starting point. Incomplete
data gives complicated likelihood functions, where MLE’s
usually have to be computed iteratively. The Expectation-
Maximization algorithm, known as the EM algorithm, is
a broadly applicable approach to the iterative computation
of MLE’s.

EM algorithm: Each iteration of the EM algorithm
consists of two steps: the Expectation step (E-step) and the
Maximization step (M-step). In the E-step, the algorithm
finds the expected value of the log-likelihood, given the
observed data and the initial parameter estimates. The M-step
of the algorithm maximizes the expected log-likelihood
obtained from the E-step and updates the parameter
estimates. Unless it comes to some convergence criteria,
the E- and M-steps are alternated repeatedly. After each,
the log-likelihood is increased and thus the algorithm is
guaranteed to converge to a local maximum.

The 'mixtools' (https://CRAN.R-project.org/
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package=mixtools) package of R (Benaglia et al. 2009)
provides a set of functions for analyzing a variety of finite
mixture models. Many of the algorithms of the 'mixtools'
package use EM algorithm. The function 'normalmixEM'
implements the algorithm in mixtools. It returns the EM
algorithm output for mixture of normal distributions. Other R
packages are also available for Mixture of distributions like
'mixtNB' for the mixture of negative binomial distribution
(Bonafede et al. 2016).

Likelihood Ratio Test (LRT): 1t is useful for comparing
goodness-of-fit of two different distributions to the same set
of data. The LRT statistic is given by following expression

L,(6) ;
) %)

LRT is the ratio of two likelihood functions; the single
(s) distribution model has fewer parameters than the mixture
(m) distribution model. Asymptotically, the test statistic is
distributed as a y° random variable, with degrees of freedom
equal to the difference in the number of parameters between
the two models. LRT compares two models provided the
single model is a special case of the more complex model.
LRT can be presented as a difference in the log-likelihoods
as follows:

LRT =-2log,

LRT =2 log, ,(0)~log, 1, (9) 8)

Following steps are followed for analyzing differential
gene expression:

i.  For different genes, expression data for the two different
conditions [control (C) and treated (T), i.e. salt-stressed]
is taken. Fold change is then calculated as the ratio
of the final value to the initial value, which describes
how much a quantity changes from an initial to a final

value.
ii. log2-fold change is calculated as follows:
log2FC = log2(T) — log2(C) 9)

Fold changes greater than 1 (when T > C) become
positive, while those lesser than 1 (C > T) become
negative.

iii. The appropriate mixture distribution is fitted to the
log2-fold change data and accordingly the parameters
of the distribution are estimated.

iv. The goodness-of-fit of the model is tested and the
fitted mixture distribution is compared with the single
component distribution using likelihood ratio test.

R code has been developed for performing above steps
of fitting mixture distribution.

RESULTS AND DISCUSSION

Gene expression data of two replicates under the two
different conditions [Control (C) and Salt stressed (T)] for
22810 genes was taken and fold change was calculated. The
log2-fold change was calculated. The one’s with positive
sign were up-regulated genes and the negative one’s are
down-regulated genes. Fig | and Fig 2 shows the histogram
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Fig 1 Histogram of log2-fold change values.
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Fig 2 Plot of log2-fold change values.

and plot of fold changes.

Normal distribution was fitted to the data and the
parameters were estimated as mean (u) = 0.02297 and
standard deviation (o) = 0.53839. The fitted plot is shown
in Fig 3.

The distribution of probabilities corresponding to
different log2-fold change values is calculated and shown
in Table 1.

It can be seen that the probability is ranging from 0 to
0.90. It clearly indicates that the distribution of probabilities
cover a wide range of values and hence make it difficult to
identify genes with differentially expressed value or reject
genes which are not differentially expressed. If the genes
are selected based on the probabilities, it will give a good
selection only if the distribution covers probabilities in a
smaller range. Therefore, the data was subjected to fitting
of mixture normal distribution. The fitted two-component
mixture plot is shown in Fig 4.
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Fig 3 Fitted single normal plot.

Table 1 Distribution of the number of genes with respect to the

probabilities

Probability interval Frequency (No. of genes)

0.00 - 0.05 21
0.05-0.10 16230
0.10 - 0.15 4028
0.15-0.20 1358
0.20-0.25 595
0.25-0.30 286
0.30-0.35 132
0.35-0.40 68
0.40 — 0.45 41
0.45-0.50 21
0.50 - 0.55 11
0.55 - 0.60 12
0.60 — 0.65 2
0.65-0.70 3
0.70 - 0.75 1
0.75 - 0.80 0
0.80 - 0.85 0
0.85-0.90 1
Total 22810

The parameters of the two-component mixture model
are estimated as follows:

Component 1 Component 2

Mean 1 = 0.258905 1, = -0.0478084
Standard deviation o, = 0.972783 6, = 0.2668608
Proportion (weights) =, = 0.230776 n, = 0.7692240

Likelihood ratio test was performed to compare the
goodness of fit of two models, one of which (the null model,
single component normal model) is a special case of the
other (the alternative model, two-component mixture normal
model). The test based on the likelihood ratio expresses how
likely the data can be fitted under single component normal
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Fig 4 Fitted two-component mixture normal plot.

model than the two-component mixture normal model. In
case of significance, the likelihood ratio test indicates that
fitting of single component normal model is less appropriate
as compared to two-component mixture normal model. For
the given data set, LRT= 9176.395 which follows a chi-
square with 4 degrees of freedom. Thus, it is found that the
null model is rejected in favour of the alternative model as
the calculated value of the LRT is much more higher than
the tabulated value of y? at 4 degrees of freedom and 5%
level of significance which is 9.488. Hence, the alternative
model of two-component mixture normal distribution fits
the data more accurately as compared to a single component
normal distribution.

The distribution of probabilities corresponding to
different log2-fold change values are calculated and shown
in Table 2. It can be seen that the probability is ranging
from 0 to 0.50 with maximum number of genes falling in
the range of 0.05 to 0.35. It clearly indicates the distribution
probabilities of genes covering a small range of values and
hence enabling the selection of genes which are differentially
expressed.

Table 2 Distribution of the number of genes with respect to the
probabilities

Probability interval Frequency (No. of genes)

0.00 - 0.05 12
0.05-0.10 15517
0.10-0.15 4875
0.15-0.20 1584
0.20-0.25 521
0.25-0.30 188
0.30-0.35 80
0.35-0.40 22
0.40 - 0.45 6
0.45-0.50 5
Total 22810
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Table 3 Number of genes identified

Number of genes Single normal Mixture normal

(+30) (,x 30,)
Total genes identified 439 246
Number of down-regulated 97 43
genes identified (<-1.61465) (<-1.98774)
Number of up-regulated 342 203
genes identified (>1.64007) (>2.03255)

The total number of genes identified as differentially
expressed are shown in Table 3 along with the cut-off
values (within bracket) under the single normal and two-
component mixture normal distributions. These cut-off
values are obtained from (u = 3c) and (p,, + 30, for single
and mixture normal distribution respectively.

Out of a total 0f 439 genes identified with single normal
distribution, 97 genes were down-regulated genes with cut-
off value as -1.61465 in case of single normal i.c. these
genes had difference values less than -1.61465 whereas
342 genes were up-regulated genes with cut-off value as
1.64007, i.e. these genes had difference values more than
1.64007. On the other hand, when a two-component mixture
normal model was fitted to the data, 43 genes were identified
as down-regulated out of a total of 246 genes as they had
difference values less than the cut-off value -1.98774. The
remaining 203 genes were up-regulated genes as they had
difference values more than the cut-off value 2.03255.
Therefore, the number of genes identified as down-regulated
and up-regulated while fitting mixture normal distribution
is less as compared to that of a single normal distribution.
Thus, it can be concluded that mixture model is capable
of capturing more variability and hence able to identify
differentially expressed genes more accurately.
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