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Mixture distribution approach for identifying differentially expressed 
genes in microarray data of Arabidopsis thaliana
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ABSTRACT

The basic aim of analyzing gene expression data is to identify genes whose expression patterns differ in the treatment 
samples, with respect to the control or healthy samples. Microarray technology is a tool for analyzing simultaneous 
relative expression of thousands of genes within a particular cell population or tissue in a single experiment through the 
hybridization of RNA. Present paper deals with mixture distribution approach to investigate differentially expressed 
genes for sequence data of Arabidopsis thaliana under two conditions, salt-stressed and control. Two-component 
mixture normal model was fitted to the normalized data and the parameters were estimated using EM algorithm. 
Likelihood Ratio Test (LRT) was performed for testing goodness-of-fit. Fitting of two-component mixture normal 
model was found to be capable of capturing more variability as compared to single component normal distribution 
and was able to identify the differentially expressed genes more accurately.
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Differential Gene expression (DGE) provides the 
power to understand the biological variations between 
two different conditions or states like healthy or diseased, 
treated or control etc. Genes identified from DGE analysis 
are known as differentially expressed genes (DEGs) that 
are responsible for different expressions than rest of the 
genes in genome. In clinical research, DEGs are important 
to identify candidate biomarkers and therapeutic targets for 
drug designing.

Methods available for generating the expression data 
are DNA Microarray, RNA seq, Chip Seq etc. For RNA 
seq data, distributional approaches have been applied for 
expression analysis (Marioni et al. 2008, Mortazavi et al. 
2008, Nagalakshmi et al. 2008, Anders and Huber 2010, 
Anjum et al. 2016). Other than RNA seq, microarray 
data is most commonly used for transcriptome/expression 
analysis. Microarray technique is a powerful technique that 
increases the speed at which differentially expressed genes 
are analysed and to determine its function. This technique 
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is used for comparing the expression level of thousands of 
genes at a time. 

The most common methods for microarray data 
analysis are clustering and heatmap approach (Brazma 
and Vilo 2000). Other than this, statistical techniques like 
t-test, multiple hypothesis testing, Baye’s method have
also been used on microarray data (Jeffery et al. 2006).
Mixture distribution approach is another technique that can
be applied on this data for expression analysis as within
a whole data set there are different subsets that possess
different properties that can be modelled separately. To
know statistically significant evidence that any of the genes
under study possesses a difference in expression across the
groups/conditions/subpopulations is the main concern. The
theory of mixture distribution model can be an effective
tool in such situations.

A mixture distribution is a mixture of statistical 
distributions with a different probability density function 
in each component. This distribution is used in the 
situation when a population (complete set of genes) has 
subpopulations (like, up-regulated and down-regulated 
genes). Here components of mixture probability density 
are the densities of the subpopulations along with the 
weights as the proportion of each subpopulation in the 
overall population (Karim et al. 2011). Mixture model has 
become popular because they provide a simple mechanism 
to incorporate extra variation and correlation in the model 
along with model flexibility (McLachlan and Peel 2000, 
Yang et al. 2007).

139

https://doi.org/10.56093/ijas.v90i10.107977



1976 [Indian Journal of Agricultural Sciences 90 (10)

Pearson (1895) studied mixture distribution by mixing 
of different crab species and modelled mixture of two 
normal distributions and found that about 28% of genes 
appear to have an expression pattern that follows a mixture 
distribution. A mixture analysis approach was introduced 
by McLachlan et al. (2002) to the clustering of microarray 
expression data with respect to tissue samples on a very 
large number of genes. 

In this article, mixture distribution approach is applied 
to microarray data of Arabidopsis thaliana for performing 
differential expression analysis. Joint likelihood density 
function is obtained and the parameters of the mixture 
model including the mixing weights (mixing proportions) 
are estimated. The performance of the mixture distribution 
model is compared with single distribution model. Further, R 
codes have been developed for fitting of mixture distribution 
and its testing.

MATERIALS AND METHODS
For this study, the data of Arabidopsis thaliana was 

used. It is known that Arabidopsis thaliana is a model 
organism for study because of its relative genetic simplicity, 
convenience and abundance, massive seed production, 
susceptibility to T-DNA insertions and basic life processes. 
The microarray data under two conditions, salt-stressed 
and control, was taken from Gene Expression Omnibus, 
with accession ID-GDS 3927 (https://www.ncbi.nlm.nih.
gov/sites/GDSbrowser?acc=GDS3927) and with platform 
GPL 198 (http://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GPL198). 

To model the variations with respect to expression 
levels, a class of mixture models are utilized that make use 
of a random threshold value for accommodating variations in 
the gene expression distribution. Distribution of expression 
scores/index (Z) can be considered as a mixture of two 
probability functions, representing the density function 
under two conditions as

g(Z) = pfi (Z) + (1  – p) f2 (Z)	 (1)

where, p is the proportion of subpopulation in the overall 
population, fi(Z) is the ith  component density which may 
be continuous or discrete for i = 1,2. An extension of 
this problem is to model genes that are under-expressed, 
expressed and over-expressed, leading to a three component 
mixture. 

The mixture distribution for a random variable X that 
takes values in a sample space Θ, can be represented by a 
probability density function (or mass function in the case 
of discrete Θ) of the form 

g(x) = p1fi(x) + ... + pkfk(x), (x ∈Θ)	 (2)

where, 0 ≤ πi ≤ 1 for i = 1,..., k and π1 + π2 + ... + πk = 
1. The parameters π1, π2, ... , πk  are the mixing weights 
or mixing proportions and f1(.),..., fk(.) are the component 
densities of the mixture respectively. The component 
densities f1(x), ...,fk(x) can belong to the same or different 
parametric family. When there is a common functional form 

with different parameters, then 

fi(x) = f(x|qi)	 (3)

where, θi denotes the parameters occurring in fi(x). The 
finite mixture density function will have the form

g x f x xi
i

k
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where, Ψ = (π1,...,πk, θ1,...,θk) is the complete collection 
of all distinct parameters occurring in the mixture model. 

A random variable X has mixture normal distribution 
if f1(x) is normally distributed with mean µ1 and variance 
σ1

2 with mixing proportion π1 = p and f2(x) is normally 
distributed with mean µ2 and variance σ2

2 with mixing 
proportion π2 =(1-p). The mixture distribution of two normal 
distributions given above has five parameters, namely p, µ1, 
µ2, σ1

2, σ2
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where π1 = p and π2 = 1-p is a mixture of two normal 
densities. 

The mean and variance of the mixture distribution with 
k components are as follows:
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The total number of parameters to be estimated depends 
on the distributions that are combined to form mixture 
distribution. The maximum likelihood estimation (MLE) 
method for parameter estimation is used in which the 
likelihood function is taken as the starting point. Incomplete 
data gives complicated likelihood functions, where MLE’s 
usually have to be computed iteratively. The Expectation-
Maximization algorithm, known as the EM algorithm, is 
a broadly applicable approach to the iterative computation 
of MLE’s.

EM algorithm: Each iteration of the EM algorithm 
consists of two steps: the Expectation step (E-step) and the 
Maximization step (M-step). In the E-step, the algorithm 
finds the expected value of the log-likelihood, given the 
observed data and the initial parameter estimates. The M-step 
of the algorithm maximizes the expected log-likelihood 
obtained from the E-step and updates the parameter 
estimates. Unless it comes to some convergence criteria, 
the E- and M-steps are alternated repeatedly. After each, 
the log-likelihood is increased and thus the algorithm is 
guaranteed to converge to a local maximum.

The 'mixtools'  (https://CRAN.R-project.org/
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package=mixtools) package of R (Benaglia et al. 2009) 
provides a set of functions for analyzing a variety of finite 
mixture models. Many of the algorithms of the 'mixtools' 
package use EM algorithm. The function 'normalmixEM' 
implements the algorithm in mixtools. It returns the EM 
algorithm output for mixture of normal distributions. Other R 
packages are also available for Mixture of distributions like 
'mixtNB' for the mixture of negative binomial distribution 
(Bonafede et al. 2016).

Likelihood Ratio Test (LRT): It is useful for comparing 
goodness-of-fit of two different distributions to the same set 
of data. The LRT statistic is given by following expression

( )
( )

ˆ
2log ˆ

s
e

m

l
LRT

l

q

q
= − 	 (7)

LRT is the ratio of two likelihood functions; the single 
(s) distribution model has fewer parameters than the mixture 
(m) distribution model. Asymptotically, the test statistic is 
distributed as a χ2 random variable, with degrees of freedom 
equal to the difference in the number of parameters between 
the two models. LRT compares two models provided the 
single model is a special case of the more complex model. 
LRT can be presented as a difference in the log-likelihoods 
as follows:

( ) ( )ˆ ˆ2 log loge s e mLRT l lq q = − − 
	 (8)

Following steps are followed for analyzing differential 
gene expression:
i.	 For different genes, expression data for the two different 

conditions [control (C) and treated (T), i.e. salt-stressed] 
is taken. Fold change is then calculated as the ratio 
of the final value to the initial value, which describes 
how much a quantity changes from an initial to a final 
value.

ii.	 log2-fold change is calculated as follows:

log2FC = log2(T) – log2(C)	 (9)

	 Fold changes greater than 1 (when T > C) become 
positive, while those lesser than 1 (C > T) become 
negative. 

iii.	 The appropriate mixture distribution is fitted to the 
log2-fold change data and accordingly the parameters 
of the distribution are estimated.

iv.	 The goodness-of-fit of the model is tested and the 
fitted mixture distribution is compared with the single 
component distribution using likelihood ratio test.
R code has been developed for performing above steps 

of fitting mixture distribution.

RESULTS AND DISCUSSION
Gene expression data of two replicates under the two 

different conditions [Control (C) and Salt stressed (T)] for 
22810 genes was taken and fold change was calculated. The 
log2-fold change was calculated. The one’s with positive 
sign were up-regulated genes and the negative one’s are 
down-regulated genes. Fig 1 and Fig 2 shows the histogram 
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Fig 1	 Histogram of log2-fold change values.

Fig 2	 Plot of log2-fold change values.

and plot of fold changes.
Normal distribution was fitted to the data and the 

parameters were estimated as mean (µ) = 0.02297 and 
standard deviation (σ) = 0.53839. The fitted plot is shown 
in Fig 3.

The distribution of probabilities corresponding to 
different log2-fold change values is calculated and shown 
in Table 1.

It can be seen that the probability is ranging from 0 to 
0.90. It clearly indicates that the distribution of probabilities 
cover a wide range of values and hence make it difficult to 
identify genes with differentially expressed value or reject 
genes which are not differentially expressed. If the genes 
are selected based on the probabilities, it will give a good 
selection only if the distribution covers probabilities in a 
smaller range. Therefore, the data was subjected to fitting 
of mixture normal distribution. The fitted two-component 
mixture plot is shown in Fig 4. 
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The parameters of the two-component mixture model 
are estimated as follows:

Component 1 Component 2
Mean 1 = 0.258905 µ2 = -0.0478084
Standard deviation σ1 = 0.972783 σ2 = 0.2668608
Proportion (weights) π1 = 0.230776 π2 = 0.7692240

Likelihood ratio test was performed to compare the 
goodness of fit of two models, one of which (the null model, 
single component normal model) is a special case of the 
other (the alternative model, two-component mixture normal 
model). The test based on the likelihood ratio expresses how 
likely the data can be fitted under single component normal 

model than the two-component mixture normal model. In 
case of significance, the likelihood ratio test indicates that 
fitting of single component normal model is less appropriate 
as compared to two-component mixture normal model. For 
the given data set, LRT=  9176.395 which follows a chi-
square with 4 degrees of freedom. Thus, it is found that the 
null model is rejected in favour of the alternative model as 
the calculated value of the LRT is much more higher than 
the tabulated value of χ2 at 4 degrees of freedom and 5% 
level of significance which is 9.488. Hence, the alternative 
model of two-component mixture normal distribution fits 
the data more accurately as compared to a single component 
normal distribution. 

The distribution of probabilities corresponding to 
different log2-fold change values are calculated and shown 
in Table 2. It can be seen that the probability is ranging 
from 0 to 0.50 with maximum number of genes falling in 
the range of 0.05 to 0.35. It clearly indicates the distribution 
probabilities of genes covering a small range of values and 
hence enabling the selection of genes which are differentially 
expressed.
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Fig 3	 Fitted single normal plot.
Fig 4	 Fitted two-component mixture normal plot.
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Table 1	 Distribution of the number of genes with respect to the 
probabilities

Probability interval Frequency (No. of genes)
0.00 – 0.05 21
0.05 – 0.10 16230
0.10 – 0.15 4028
0.15 – 0.20 1358
0.20 – 0.25 595
0.25 – 0.30 286
0.30 – 0.35 132
0.35 – 0.40 68
0.40 – 0.45 41
0.45 – 0.50 21
0.50 – 0.55 11
0.55 – 0.60 12
0.60 – 0.65 2
0.65 – 0.70 3
0.70 – 0.75 1
0.75 – 0.80 0
0.80 – 0.85 0
0.85 – 0.90 1
Total    22810
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Table 2	 Distribution of the number of genes with respect to the 
probabilities

Probability interval Frequency (No. of genes)
0.00 – 0.05 12
0.05 – 0.10 15517
0.10 – 0.15 4875
0.15 – 0.20 1584
0.20 – 0.25 521
0.25 – 0.30 188
0.30 – 0.35 80
0.35 – 0.40 22
0.40 – 0.45 6
0.45 – 0.50 5
Total  22810
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Table 3  Number of genes identified

Number of genes Single normal 
(± 3σ)

Mixture normal 
(m± 3σm)

Total genes identified 439 246
Number of down-regulated 

genes identified 
  97 

(<-1.61465)
43 

(<-1.98774)

Number of up-regulated 
genes identified 

342 
(>1.64007)

203 
(>2.03255)
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The total number of genes identified as differentially 
expressed are shown in Table 3 along with the cut-off 
values (within bracket) under the single normal and two-
component mixture normal distributions. These cut-off 
values are obtained from (µ ± 3σ) and (µm ± 3σm) for single 
and mixture normal distribution respectively.

Out of a total of 439 genes identified with single normal 
distribution, 97 genes were down-regulated genes with cut-
off value as -1.61465 in case of single normal i.e. these 
genes had difference values less than -1.61465 whereas 
342 genes were up-regulated genes with cut-off value as 
1.64007, i.e. these genes had difference values more than 
1.64007. On the other hand, when a two-component mixture 
normal model was fitted to the data, 43 genes were identified 
as down-regulated out of a total of 246 genes as they had 
difference values less than the cut-off value -1.98774. The 
remaining 203 genes were up-regulated genes as they had 
difference values more than the cut-off value 2.03255. 
Therefore, the number of genes identified as down-regulated 
and up-regulated while fitting mixture normal distribution 
is less as compared to that of a single normal distribution. 
Thus, it can be concluded that mixture model is capable 
of capturing more variability and hence able to identify 
differentially expressed genes more accurately.
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