Research Review Articles

Indian Journal of Agricultural Sciences 90 (11): 2043–50, November 2020/Review Article

Silicon application mitigates abiotic stresses in rice: A review

DINESH JINGER*¹, MOIRANGTHEM THOITHOI DEVI², SHIVA DHAR³, ANCHAL DASS³, V K SHARMA⁴, VIJAYA KUMAR S⁵, EKTA JOSHI⁶, HANUMAN SINGH JATAV⁷ and NEELAM SINGH⁸

ICAR-Indian Institute of Soil and Water Conservation, Research Centre, Vasad, Anand, Gujarat 388 306, India

Received: 20 January 2020; Accepted: 9 March 2020

ABSTRACT

Rice (*Oryza sativa* L.) is the paramount staple crop, providing food to more than 50% people globally. Although, India has attained the apex position in producing rice after China, however, its productivity is still below the world's average productivity due to several physical abiotic and chemical stress. Silicon (Si) is a multipurpose element that acts as a panacea for multiple stresses. Rice is a heavy accumulator (200–300 kg Si/ha) of Si. Addition of Si prevents movement of heavy metals and salts through cell wall (apoplastic) eventually decreasing their uptake, particularly when rice face iron (Fe) and manganese (Mn) toxicity and increase the rice yield by 20.5–72.7%. Studies have revealed that application of Si mitigates arsenic (As) stress in rice by diminishing its uptake and improving the antioxidants activities. Foliar application of Si increases rice production by 30% under As and cadmium (Cd) contamination conditions. Besides, Si reduces transpiration in rice crop by 30% and also eliminates the effect of heat stress (42.5°C). Further, application of Si in rice has been shown to increase culm strength, integrity and stability of vascular bundle thus, preventing crop against lodging. These review results clearly reveal the importance of Si in imparting abiotic stress tolerance and need for its application in rice crop.

Key words: Abiotic stresses, Mitigation, Rice, Silicon

Rice (*Oryza sativa* L.) is the most important staple food crop of more than 3.4 billion people worldwide (Khush 2004) and in India it is grown over an area of 43.9 mha with total production of 110 million tonnes (Jinger *et al.* 2018a) and productivity of 2505 kg/ha which is still below the world's average yield (FAOSTAT 2017). To ensure food and nutritional security of rice, the country ought to add 3 mt grain production every year by raising rice yield levels substantially (Dass *et al.* 2017a; b). There had been bumper productions of rice during green revolution (Chauhan and

*Corresponding author: dinesh.jinger@icar.gov.in; dineshjinger28@gmail.com

¹Scientist, ICAR-Indian Institute of Soil and Water Conservation, Research Centre, Vasad, Anand 388 306; ²Scientist, ICAR-Research complex for NEH Region, Umiam, Meghalaya 793 103; ³Principal Scientist, Division of Agronomy, ⁴Principal Scientist, Division of SSAC, ICAR-Indian Agricultural Research Institute, New Delhi 110 012; ⁵Scientist, ICAR-National Rice Research Institute, Cuttack, Odisha 753 006; ⁶Scientist, Rajmata Vijyaraje Scindia Krishi Vishva Vidhyalaya, College of Agriculture, Gwalior 474 002; ¬Assistant Professor, Division of SSAC, S K N Agriculture University, Jobner, Rajasthan; ⁶Ph D Scholar, Rajmata Vijyaraje Scindia Krishi Vishva Vidhyalaya, College of Agriculture, Gwalior 474 002.

Mahajan 2013). However, today, various physical abiotic (crop lodging, water-deficit, low- and high-temperature, etc.) and chemical stresses (salinity, heavy metal injury, etc.) are the major constraints in rice production. Moreover, declining water table, climate change, imbalanced use of fertilizers and lack of tolerant rice cultivars to biotic and abiotic stresses, also impose serious limitations to rice production (Vijayakumar et al. 2019a). Si is a beneficial element for rice crop and its application is imperative for rice production to minimize the yield gap (Ma and Yamaji 2006, Jinger et al. 2017). Rice has a tremendous capacity to absorb Si for growth and production. Inadequate uptake of Si reduces rice yield and quality as well (Jinger et al. 2018). Fig 1 shows several stresses attacking crops may be alleviated by Si (Richmond and Sussman 2003, Ma and Yamaji 2006). These advantages stem from the deposition of Si in cell walls of hulls, canopies, shoots and roots. Accumulation of Si in the roots minimizes the uptake and translocation of harmful heavy metals and salts, imparts toughness and integrity to plant cell walls and reduces transpiration thereby making the plant resistant to lodging, temperature and water stresses. Its antioxidant defence abilities minimizes water and salt stresses (Gong et al. 2005). Besides, Si application in soil influences the absorption, translocation and uptake of almost all micro and macro nutrients (Epstein 1999). Si application reduces nutrient losses like leaching of

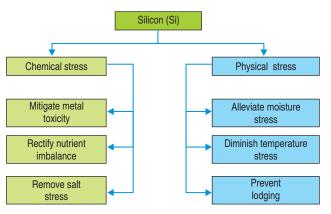


Fig 1 Abiotic stresses mitigated by silicon.

phosphate, nitrate and potash to a great extent (Matichenkov and Bocharnikova 2010).

Si in mitigating drought stress

Drought diminishes rate of growth and development and reduces yield of several crops (Showemimo and Olarewaju 2007). Si acts as an anti-transpirant which reduces water stress by supressing the transpirational process. Si application reduces transpiration rate up to 30% in rice (Ma et al. 2001a); the impact of Si on rice growth was more peculiar under water-stressed condition (Ma et al. 2001a). Rate of photosynthesis increases during drought stress (Trenholm et al. 2004) due to low transpiration caused by Si accumulation in leaves (Kamenidou et al. 2009). Si imparts drought resistance in crops plants by retaining water, CO₂ fixation efficiency, and uprightness of canopy and anatomy of water transporting tissues (Hattori et al. 2005).

The difference between the performance of plants grown under Si-deficient and Sisufficient condition was up to 30% (Lewin and Reimann 1969). Japanese researchers reported up to 30% reduction in transpiration loss due to application of Si. Si minimizes water loss by maintaining the optimum transpiration rate of the plant (Freitas et al. 2011). In plants the transpiration is conducted by the stomata present in leaves and cuticle present in shoot (Kerbauy 2004). Rice crop treated with Si showed improvement in transpiration rates by reducing water uptake (Marschner 1995, Takahashi 1996). Maximum Si is accumulated at epidermal cell walls on both adaxial (upper) and abaxial (lower) surfaces of the leaves after evaporation (Hodson and Sangster 1989). It has been reported that grain yield showed linear relationship with Si application rates at 60% FC. Thickness of silica gel layer is correlated with the cellulose in epidermal cell walls and it decides the water balance in plant as thickened layer reduces water loss through transpiration (Cheong et al. 1972). According to Agarie et al. (1998), increasing levels of Si in rice leaves reduces the electrolyte leakage from the leaf tissues as concentration of Si in leaves is correlated with level of polysaccharides in the cell wall. This finding suggests that Si in rice leaves plays a vital role in water relations of cells, like mechanical properties and water permeability. Si application significantly influences the size and number of matured grains in rice and barley (Ma and Takahashi 2002) which could be due to the eradication of water stress by Si. Si-containing spikelets lost only 7% water as compared to Si-deficient spikelets where loss was 20% higher during both milking and maturity phases (Ma et al. 2001a). For proper growth of panicles, a congenial water balance within the hull is essential for ripening and maturity. Si Application reduces the water loss from panicles up to 30% either at milking or maturity phases (Ma and Takahashi 1990). Si treatment improves chlorophyll and relative water content of rice to a great extent (Biglary et al. 2011).

Si and temperature stress

Si application can mitigate heat stress in rice plants by enabling the plant resistant to heat stress. Water loss caused by high temperature (> 42.5°C) was less conspicuous from the leaves of Si treated rice (Agarie *et al.* 1998) which indicates role of Si in maintaining the thermal stability of lipids in cell membranes. Rice is sensitive to not only high

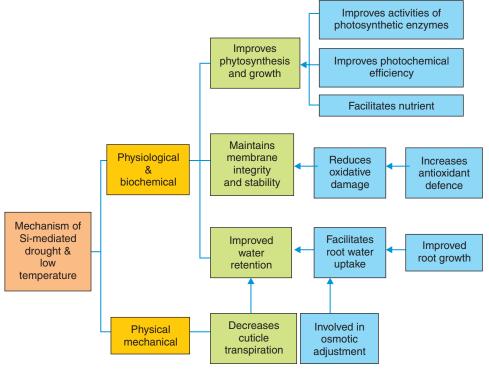


Fig 2 Mechanisms of Si-mediated drought and freezing tolerance in plants.

temperatures, but also to low temperature stress like frost. Organo-silicon compounds protect the rice plants from frost and only 0–5% rice plants succumb to frost injury. Active forms of Si protect crop plants from short-term frost (Loginov *et al.* 2011). Thus, Si can impart the resistance to temperature stress in crop plants due to physiological, biochemical and physical phenomenon illustrated in Fig 2.

Si, nitrogen (N) and lodging

Application of heavy doses of N-fertilizers for obtaining maximum grain yields reduces plant's tolerance to pest and diseases attack besides causing lodging and mutual shading. Lodging is a serious constraint for the cultivation of rice, especially in modern cultivars as it reduces yield and quality of produce leading to negative impact like hindrance in harvesting operation (Fallah 2012). Application of Si significantly increases the strength of rice stalk by nullifying the negative impacts of higher dose of N on stability of stalk and susceptibility to lodging (Balasta *et al.* 1989).

Si protects the rice crop from the negative impacts of lodging by increasing the culm rigidity and structure of the vascular bundles (Ma *et al.* 2001). Perpendicular orientation of leaves greatly influences the light interception by the plants. The erectness of rice leaves is either decreased or changed by heavy doses of N, whereas Si application increases erectness of leaves thus, enhancing plants ability to withstand the ill-effects of heavy dose of N on light interception and penetration (Marschner 1995).

Si and deficiency of phosphorus (P)

The promising results of Si under P deficiency have been detected in various crop plants like rice and barley. As reported by Ma and Takahashi (1990a), Si application significantly improves the dry biomass of rice at low amount of P as compared to medium level of P. Neither the P-fixation capability of P-deficient soil was influenced by silicic acid application (Ma and Takahashi 1990b) nor P-fixed in soil was desorbed by it which means it doesn't affect uptake and translocation of P at low level in both soil and solution culture (Ma and Takahashi 1991). However, Si improves P translocation to the rice panicles (Nagaoka 1998). Besides, it remarkably reduces Fe and Mn uptake by the plants leading to greater proportion of P/N and P/Fe (Ma and Takahashi 1990a). Hence, Si application increases availability and utilization of P (Ma et al. 2001) due to increased accessibility of P through reduction in the luxury uptake of Fe and Mn. The findings elaborate the beneficial effects of Si on the growth and development of crop plants under P-deficit situation.

Si and excess of P

Over abundance of P rarely occurs in natural soils. However, it was reported where P had been applied indiscriminately or in solution culture where a huge concentration of P is applied. Indiscriminate application of P leads to chlorophyll loss or death of plant cell in plant leaves by reducing accessibility to essential micro-nutrients like Fe

and Zn. Si can lessen this injury by reducing the immoderate uptake of P. The formation of apoplastic hurdle due to Si deposition on inner cells of roots (Lux et al. 1999; 2003) decreases the internal P content. Si induces reduction in P uptake in many non-Si- accumulating plants also (tomato, soybean, strawberry and cucumber (Ma et al. 2001a). The absorption, uptake and translocation of various essential nutrients are influenced by Si in nutrient culture (Epstein 1994). It improves the uptake of Zn, especially when the P is present in ample amount (Marschner et al. 1990). The application of amalgamation of active Si and P fertilisers can improve the phosphorus use efficiency by 40-60% (Matichenkov et al. 1997). Ghanbari-Malidarreh et al. (2011) revealed that various levels of P and Si significantly influenced the grain yield of rice by 23 % as compared to control besides increasing spikelets/panicle, straw and biological yields.

Si and potassium (K)

Addition of Si to K-deficit soybean increases growth and yield attributes, internal K status and mitigates the membrane lipid peroxidation and oxidative stress aggravated by K-deficiency by modulating antioxidant enzymes. Under K-deficient condition, it not only enhances K uptake in paddy but also removes K deficiency (Miao *et al.* 2010). Under salt stress condition, Si may not improve the K content in rice (Yin *et al.* 2013). The presence of anions in fertilizers affects the Si-K Interaction (Jones and Handreck 1967). For instance, Sulphate-based K-fertilizers enhance uptake and deposition of Si to a greater deal than the chloride-based K-fertilizers.

Si and heavy metal toxicity

Silicon enhances the plants resistance to toxic metals which may stimulate the antioxidant systems, mitigate the inhibition to photosynthesis and complexation of heavy metals with Si (Epstein and Bloom 2005, Liang et al. 2007). The accumulation of Si in the roots system decreases uptake and transport of toxic metals and salts from roots to the shoot system (Ma and Yamaji 2006). Application of Si improves plants tolerance to metals toxicity like aluminium (Al) (Ma 2004, Liang et al. 2001), boron (B) (Gunes et al. 2007), Cd (Inal et al. 2009), manganese (Mn) (Nwugol and Huerta 2008) and zinc (Zn) (Kaya et al. 2009). The Fe toxicity is a serious malady in rice, which leads to "bronzing" (brown leaves). The availability of optimum available Si at the root surface nullifies the lethal levels of Fe and Mn (Perry and Keeling-Tucker 1998) thereby, hampering the luxury consumption and mitigating Fe toxicity in rice (Okuda and Takahashi 1962). Li et al. (2011) reported that excess of Fe and Mn condition improves the rice yield by 21–73%. The deficiency of Si enhances the uptake of Mn causing deleterious effects in rice, barley, rye and ryegrass which can be corrected by applying Si-based fertilisers.

Si decreases the uptake of Mn by enhancing roots Mn oxidizing capacity and its redistribution (Okuda and Takahashi 1962, El-Jaoual and Cox 1998) and nullifies its toxicity by improving Mn fraction bound in cell wall (Rogalla and Romheld 2002). Tripathi et al. (2013) reported that application of Si removes oxidative stress caused by As in Triguna (rice variety) by decreasing its accumulation and improving the antioxidant system. The antioxidant defence power was improved due to foliar application of Si on rice grown under As or Cd stress (Liu et al. 2011). Application of Si removes the ill effects of Zn and Cd and increases the DMA and rice yields significantly and simultaneously reduces Cd and Zn concentration in rice. In addition, accumulation of heavy metals is significantly reduced in grain and root system.

The root attributes decreased by Cd and Zn stress in a hydroponic experiment were significantly improved by Si application (Wen and Cai 2011). Application of Si nullifies the lethal effects of Cd/Cu during various stress conditions. The

decreased heavy metals uptake in roots modulated the signalling of phyto-hormones imparts responses to stress and host defence, such as ABA, JA and salicylic acid (SA) (Kim *et al.* 2014). Reduction in lipid peroxidation and fatty acid desaturation in rice plant was also found. In fact, Si is the only nutrient which has the capability to increase resistance to multiple stresses because it binds the metals and arrests their concentration to lethal levels at localized sites. Si and heavy metal complexes in root cell walls prevent translocation of metals in non-Si accumulating crops. In saturated condition, it improves volume of air filled spaces in roots and shoots helping in oxygen translocation into the roots, oxidizing Fe and Mn into their less pernicious form (Ma and Takahashi 1990).

Si and salinity Ionic phyto-toxicity is one of the systems responsible for

Mitigate salt stress Reduces Na Decreases osmotic and boosts plant toxicity stress growth Minimize membrane permeability & sustain its structure and integrity **Improves** Increases K ABA, JA levels & Compartmentawater retention by uptake but antioxidant defence lizes salt into decreasing decreases Na activity & osmolytes vacuoles transpiration rate uptake Si controls biosynthesis of abscisic and jasmonic Regulates acid, antioxidant defence ATPase and enzymes, osmolytes Si deposition on PPase activities apopplast as SiO, opal in plasma membrane & Soluble Si in symplast tono-plast Si uptake by salt-stressed plants

Fig 3 A modus operandi of Si to alleviate the salt stress in plants.

salt toxicity in plants leading to accumulation of plethora of salt ions (Na⁺ and Cl⁻) in the plants (Liang and Ding 2002). The ability of Si to nullify the negative impacts of NaCl on plant growth and development are well elaborated. The advantageous impacts of Si under salt condition have been reported in rice (Liang et al. 2007). Application of Si reduces Na uptake through decreased transpiration, eventually impairing growth, development and PS actuated by salt stress (Yeo et al. 1999). An equal distribution of both Na and Cl ions due to Si in the whole root system, ultimately increases the salt tolerance ability of the plants (Liang and Ding 2002). According to Saqib et al. (2008), Si has potential to alleviate the salinity stress through improvement in Na exclusion and reduction in lipid membrane peroxidation. Application of Si enhances both shoot and root growth under salinity stress condition which ultimately imparts beneficial effect on the whole plant system (Yoshida 1965) leading to

Table 1 Mitigation of physical abiotic stress in crops by Si application

Physical abiotic stress	Reduction in stress (%)	Yield increase (%)	Crops	References
Lodging	66–90	10–34	Wheat	Jinger et al. (2018)
			Rice	Matoh et al. (1986)
			Rice	Liang et al. (1999)
			Rice	Wang et al. (2001)
Drought	31–40	25-30	Augustine grass	Brecht et al. (2004)
			Tomato	Romero-Aranda et al. (2006)
High temperature	42–45	40-50	Rice	Idris et al. (1975)
Freezing	88–94	24–38	Cucumber	Marschner et al. (1990)
			Rice	Loginove et al. (2011)
Radiation, UV	_	_	Soybean	Shen et al. (2010)

Table 2 Mitigation of chemical abiotic stress in crops by Si a	nnlication	

Chemical abiotic stress	Reduction in stress (%)	Yield increase (%)	Crops	References
Salinity	50–60	40–50	Rice Canola	Matoh <i>et al.</i> (1986) Hashemi <i>et al.</i> (2010)
Mn	20–30	20–70	Wheat Maize Rice	Ahmad <i>et al.</i> (1992) Parveen and Ashraf (2010) Li <i>et al.</i> (2011)
As	28–30	24–33	Rice	Li <i>et al.</i> (1989) Liu <i>et al.</i> (2011)
Fe	20–30	25–72	Sugarcane Rice	Fox <i>et al.</i> (1967) Li <i>et al.</i> (2011)
Cd	30–40	25–40	Rice Brassica	Nwugo and Huerta (2008) Liu <i>et al.</i> (2009)
Zn	32–38	59–80	Maize	Cunha et al. (2008)
Al	55	30–40	Wheat	Zsoldos et al. (2003)

increase in total DMA due to increased net ${\rm CO_2}$ assimilation (NCA) rates (Savvas *et al.* 2009). Gas exchange in PS is extremely sensitive to salt deposition on the leaves (Yeo *et al.* 1985). Application of Si reduced the Na⁺ content in leaves, however, NCA rate was increased significantly (Yin *et al.* 2013). A modus operandi of Si to alleviate the salt stress in plants is depicted through Fig 3.

Si and aluminium (Al) toxicity

Toxicity of Al is a serious constraint for the cultivation of rice, particularly in acid soils (Foy et al. 1978). Various processes for mitigation of Al toxicity by Si application has been reported in rice and other crops; encompassing co-deposition Si of with Al in the plant, activity in the protoplasm, impact on enzymatic activity (Cocker et al. 1998). Application of Si in maize crop significantly mitigates Al induced root elongation problem (Ma et al. 1997) and decreases toxic concentration of Al. It has also been reported that Si mitigates Al toxicity in crop plants by reducing the Al uptake and translocation by the plants and findings recommend that Si minimizes Al toxicity in rice (Singh et al. 2011). Some of the physical and chemical abiotic stresses mitigated by Si application are given in Table 1 and 2.

Conclusion

Rice has a high ability to absorb, accumulate and deposit Si among different parts of the plant. The factors limiting higher productivity of rice include a set of abiotic factors. Application of Si in rice crop could be a good alternative in this regard. Application of Si not only improves productivity but also mitigates all types of stresses in rice. Although, it is not considered as necessary component for the growth of rice crop, but it improves leaf angle and erectness thus reduces self-shading and lodging. Application of Si increases photosynthetic rate, number of spikelets, spikelet fertility, and reduces transpiration rate under water stress condition, resulting in higher productivity. Most of these effects are due to Si deposition on different plant parts like leaves,

stems and hulls. Thus, it can be concluded that Si may be a boon for sustainable rice production particularly under constraint conditions.

REFERENCES

Agarie S, Hanaoka N, Ueno O, Miyazaki A, Kubota F, Agata W and Kaufman P B. 1998. Effects of silicon on tolerance to water deficit and heat stress in rice plants (*Oryza sativa* L.) monitored by electrolyte leakage. *Plant Production Science* 1: 96–103.

Ahmad R, Zaheer S H and Ismail S. 1992. Role of silicon in salt tolerance of wheat (*Triticum aestivum* L.). *Plant Science* **85**: 43–50.

Balasta M L F C, Perez C M, Villareal C P, Lott J N A and Roxas D B. 1989. Effects of silica level on some properties of *Oryza sativa* straw and hull. *Canadian Journal of Botany* **67**: 2356–63.

Baylis A D, Gragopoulou C, Davidson K J and Birchall J D. 1994. Effects of silicon on the toxicity of aluminum to soybean. Communications in Soil Science and Plant Analysis 25: 537–46.

Biglary F, Haddad R, Hosseini R and Sotudehniya A. 2011. (In) *Proceedings of The 5th International Conference on Silicon in Agriculture*, p 9.

Brecht M O, Datnoff L E, Kucharek T A and Nagata R T. 2004. Influence of silicon and chlorothalonil on the suppression of Grey leaf spot and increase plant growth in St. Augustine grass. *Plant Disease* **88**: 338–44.

Chauhan, B S and Mahajan G. 2013. Strategies for boosting rice yield in the face of climate change in India. *Journal of Rice Research* 1(1): 1–5.

Cheong Y W, Heits A and Deville J. 1972. Foliar symptoms of silicon deficiency in the sugarcane plant. (In) 14th Cong. International Society of Sugar Cane Technology 14, pp 766–76.

Cocker K M, Evans D E and Hodson M J. 1998. The amelioration of aluminium toxicity by silicon in higher plants. *Plant Physiology* **104**: 608–14.

Corrales I, Poschenrieder C and Barcelo J. 1997. Influence of silicon pre-treatment on aluminium toxicity in maize roots. *Plant and Soil* **190**: 203–09.

Couch B C and Kohn L M. 2002. A multi locus gene genealogy concordant with host preference indicates segregation of a new species, *Magnaporthe oryzae*, from *M. grisea. Mycologia* **94**(4): 683–93.

Cunha K P V, Nascimento W A and Silva A J. 2008. Silicon

- alleviates the toxicity of cadmium and zinc for maize (*Zea mays* L.) grown on a contaminated soil. *Journal of Plant Nutrition and Soil Science* **171**: 849–53.
- Currie H A and Perry C C. 2007. Silica in plants: Biological, biochemical and chemical studies. *Annals of Botany* **100**: 1383–89.
- Dass A, Chandra S, Uphoff N, Choudhary A K, Battacharya R and Rana K S. 2017a. Agronomic fortification of rice grains with secondary and micronutrients under differing crop management and soil moisture regimes in the north Indian Plains. *Paddy and Water Environment* **15**(57): 1–16.
- Dass A, Shekhawat K, Choudhary A K, Sepat S, Rathore S S, Mahajan G and Chouhan B S. 2017b. Weed management in rice using crop competitions-a review. *Crop Protection* **95**: 45-52.
- Datnoff L E, Seebold K W and Correa-Victoria F J. 2001. Use of silicon for integrated disease management: reducing fungicide applications and enhancing host plant resistance. p 171-184. (*In*) Datnoff L E, Snyder G and Korndorfer G H (Eds.). *Silicon in Agriculture*. Elsevier Science, The Netherlands.
- El-Jaoual T and Cox D A. 1998. Manganese toxicity in plants. *Journal of Plant Nutrition* **21**: 353–86.
- Epstein E and Bloom A J. 2005. Mineral nutrition of plants: Principles and perspectives, Second Edition. Sinauer Associates, Sunderland, Massachusetts.
- Epstein E. 1994. The anomaly of silicon in plant biology. (In) Proceedings of the National Academy of Sciences of the United States of America 91: 11–17.
- Epstein E. 1999. Silicon. *Annual review of plant physiology and plant molecular biology* **50**(1): 641–664.
- Fallah A. 2012. Silicon effect on lodging parameters of rice plants under hydroponic culture. *International Journal of Agriculture Sciences* 2: 630–34.
- FAOSTAT. 2017. FAO Statistical Year book. World Food and Agriculture. http://www.fao.org/economic/ess/ess-publications/essvearbook/en/#.U68A8vmSziU/
- Faria R. 2000. Effect of silicon accumulation and the tolerance of rainforest rice plants to soil water deficit. M Sc thesis, Federal University of Lavras, Brazil, p 98.
- Fox R L, Silva J A, Younge O R, Plucknett D L and Sherman G D. 1967. Soil and plant silicon and silicate response by sugarcane. *Soil Science Society of America Journal* **31**: 775–79.
- Foy C D, Chaney R L and White M C. 1978. The physiology of metal toxicity in plants. *Annual Review of Plant Physiology* 29: 511–66.
- Freitas L B, Coelho E M, Maia S C M and Silva T R B. 2011. Foliar fertilization with silicon in maize. *Revista Ceres* **58**: 262–67.
- Gartner S and Paris-Pireyre N. 1984. Microanalysis of silica and resistance to mechanical lodging in soft wheat. *Journal de Physique Archives* **45**: 511–14.
- Ghanbari-Malidarreh A. 2009. The effect nitrogen and silicon rates on yield, agronomic and physiological characteristic of rice (*Oryza sativa* L.) in two irrigation systems (flooding and deficit). Ph D Thesis, Islamic Azad University, Science and research Tehran.
- Gong H. 2005. Silicon alleviates oxidative damage of wheat plants in pots under drought. *Plant Science* **169**: 313–21
- Gu H H, Hao Qiu, Tian Tian, Shu-Shun Zhan, Teng-Hao-Bo Deng, Chaney R L, Shi-Zhong Wanga, Ye-Tao Tang, Jean-Louis Morel and Rong-Liang Qiu. 2011. Mitigation effects of silicon rich amendments on heavy metal accumulation in rice (*Oryza sativa* L.) planted on multi-metal contaminated acidic soil. *Chemosphere* 83: 1234–40.

- Gunes A, Inal A, Bagci E G and Coban S. 2007. Silicon-mediated changes on some physiological and enzymatic parameters symptomatic of oxidative stress in barley grown in sodic-B toxic soil. *Journal of Plant Physiology* **164**: 807–11.
- Hammond K E, Evans D E and Hodson M J. 1995. Aluminium/silicon interactions in barley (*Hordeum vulgare* L.) seedlings. *Plant and Soil* **173**: 89–95.
- Hashemi A, Abdolzadeh A and Sadeghipour H R. 2010. Beneficial effects of silicon nutrition in alleviating salinity stress in hydroponically grown canola, *Brassica napus L.* plants. *Soil Science and Plant Nutrition* 56: 244–53.
- Hattori T, Inanaga S, Araki H, An P, Mortia S, Luxova M and Lux A. 2005. Application of silicon enhanced drought tolerance in *Sorghum bicolor*. *Physiologia Plantarum* **123**: 459–66.
- Hede A R, Skovmand B and Lopez-Cesati J. 2001. Acid soil and aluminum toxicity. (*In*) Raynolds M P, Ortiz-Monasterio J I, McNab A (Eds). *Application of Physiology in Wheat Breeding*, pp 172–182.
- Hodson M J and Sangster A G. 1989. Silica deposition in the inflorescence bracts of wheat (*Triticum aestivum*). II. X-Ray microanalysis and backscattered electron imaging. *Canadian Journal of Botany* 67(2): 281–87.
- Horiguchi T and Morita S. 1987. Mechanism of manganese toxicity and tolerance of plants. IV. Effect of silicon on alleviation of manganese toxicity of barley. Soil Science and Plant Nutrition 10: 2299–310.
- Horst W J and Marschner H. 1978. Effect of silicon on manganese tolerance of bean plants (*Phaseolus vulgaris*). *Plant and Soil* 50: 287–303.
- Idris M D, Hossaine M M and Choudhury F A. 1975. The effect of silicon on lodging of rice in presence of added nitrogen. *Plant and Soil* **43**: 691–695.
- Inal A, Pilbeam D J and Gunes A. 2009. Silicon increases tolerance to boron toxicity and reduces oxidative damage in barley. *Journal of Plant Nutrition* 32: 112–128.
- Iwasaki K and Matsumura A. 1999: Effect of silicon on alleviation of manganese toxicity in pumpkin (*Cucurbita moschata* Duch cv. Shintosa). Soil Science and Plant Nutrition 45: 909–20.
- Iwasaki K, Maier P, Fecht M and Horst W J. 2002. Leaf apoplastic silicon enhances manganese tolerance of cowpea (Vigna unguiculata). Journal of Plant Physiology 159: 167–73.
- Jinger D, Devi M T, Dhar S, Dass A, Rajanna G A, Upadhaya P and Raj R. 2017. Silicon in mitigating biotic stresses in rice (*Oryza sativa* L.) a review. *Annals of Agricultural Research* 38(1): 1–14.
- Jinger D, Dhar S, and Kaur R. 2018. Crop lodging: its causes and management for sustainable crop production. *Indian Farming* 68(2): 24–27.
- Jinger D, Dhar S, Dass A, Sharma V K, Joshi E, Vijayakumar S and Gupta G. 2018a. Effect of silicon and phosphorus fertilization on growth, productivity and profitability of aerobic rice (*Oryza sativa*). *Indian Journal of Agricultural Sciences* **88**(10): 1600–05.
- Jinger D, Dhar S, Dass A, Sharma V K, Joshi E, Vijayakumar S and Gupta G. 2018a. Effect of silicon and phosphorus fertilization on growth, productivity and profitability of aerobic rice (*Oryza sativa*). *Indian Journal of Agricultural Sciences* **88**(10): 1600–05.
- Jinger D, Dhar S, Dass A, Sharma V K, Vijayakumar S and Gupta G. 2020. Influence of residual silicon and phosphorus on growth, productivity, lodging and grain quality of succeeding wheat under rice-wheat cropping system. *Journal of Environmental*

- Biology 41(6): 1-9.
- Jones L H P and Handreck K A. 1965. Studies of silica in the oat plant. *Plant and Soil* 23: 79–95.
- Jones L H P and Handreck K A. 1967. Silica in soils, plants and animals. *Advances in Agronomy* **19**: 107–149.
- Kafi M and Rahimi Z. 2011. Effect of salinity and silicon on root characteristics, growth, water status, propline contents and ion accumulation of purslane (*Portulaca oleracea* L.). *Soil Science and Plant Nutrition* **57**: 341–47.
- Kamenidou S, Cavins T J and Marek S. 2009. Evaluation of silicon as a nutritional supplement for greenhouse zinnia production. *Scientia Horticulturae* **119**(3): 297–301.
- Kaya C, Tuna AL, Sonmez O, Ince F and Higgs D. 2009. Mitigation effects of silicon on maize plants grown at high zinc. *Journal of Plant Nutrition* **32**: 1788–98.
- Kerbauy G B. 2004. *Plant Physiology*. Guanabara Koogan, S A, Rio de Janeiro.
- Khush G S. 2004. Harnessing science and technology for sustainable rice-based production systems. (*In*) FAO Rice Conference 04/CRS.14, 12–13 February 2004, Rome, Italy, p 13.
- Kim Y H, Khan A L, Kim Duk-Hwan, Lee Seung-Yeol, Kim Kyung-Min, Waqas Muhammad, Jung Hee-Young, Shin Jae-Ho, Kim Jong-Guk and Lee In-Jung. 2014. Silicon mitigates heavy metal stress by regulating P-type heavy metal ATPases, *Oryza sativa* low silicon genes, and endogenous phytohormones. *BMC Plant Biology* 14: 1–13.
- Lewin J and Reimann B E F. 1969. Silicon and plant growth. Annual Review of Plant Physiology 20: 289–304.
- Li J and Leisner S M. 2008. Alleviation of copper toxicity in *Arabidopsis thaliana* by silicon addition to hydroponic solutions. *Journal of the American Society for Horticultural Science* **133**: 670–77.
- Li Y C, Alva A K and Summer M E. 1989. Response of cotton cultivars to aluminium in solutions with varying silicon concentrations. *Journal of Plant Nutrition* 12: 881–92.
- Li Y Y, Liu S Q, Ji J H, Tong Y X, Liu Y and Zhang M Y. 2011. Effect of silicon fertilizer on nutrition and yield of rice under the condition of iron and manganese stress. (*In*) *Proceedings of the* 5th *International Conference on Silicon in Agriculture*, p 107.
- Liang Y C and Ding R X. 2002. Influence of silicon on micro distribution of mineral ions in roots of salt-stressed barley as associated with salt tolerance in plants. Science China (Series C) Life Sciences 45: 298–308.
- Liang Y C, Chen Q, Liu Q, Zhang W H and Ding R X. 2003. Exogenous silicon (Si) increases antioxidant enzyme activity and reduces lipid peroxidation in roots of salt-stressed barley (Hordeum vulgare L.). Journal of Plant Physiology 160: 1157–64.
- Liang Y C, Sun W C, Zhu Y G and Christie P. 2007. Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: a review. *Environmental Pollution* **147**: 422–28.
- Liang Y, Wong J W and Wei L. 2005. Silicon-mediated enhancement of cadmium tolerance in maize (*Zea mays* L.) grown in cadmium contaminated soil. *Chemosphere* **58**: 475-83.
- Liang Y, Yang C and Shi H. 2001. Effects of silicon on growth and mineral composition of barley grown under toxic levels of aluminum. *Journal of Plant Nutrition* **24**: 229–43.
- Liebersbach H, Steingrobe B and Claassen N. 2004. Roots regulate ion transport in the rhizosphere to counteract reduced mobility in dry soil. *Plant and Soil* **260**:79–88.
- Liu C P, Li F B, Wu C G, Li H M and Xu X H. 2011. The mechanism of Si foliar application on alleviation As and

- Cd combined toxicity to rice. (*In*) Proceedings of the 5th International Conference on Silicon in Agriculture, p 112–113.
- Loginov S V, Matichenkov V V and Matichenkov I V. 2011. Effect of organo-silicon stimulators on the frost resistance of rice. (*In*) Proceedings of the 5th International Conference on Silicon in Agriculture, p 117.
- Lux A, Luxova M, Abe J, Tanimoto E, Hattori T and Inanaga S. 2003. The dynamics of silicon deposition in the sorghum root endodermis. *New Phytologist* **158**: 437–41.
- Lux A, Luxova M, Morita S, Abe J and Inanaga S. 1999. Endodermal silicification in developing seminal roots of lowland and upland cultivars of rice (*Oryza sativa* L.). *Canadian Journal of Botany* 77: 955–960.
- Ma J F and Takahashi E. 1990. Effect of silicon on the growth and phosphorus uptake of rice. *Plant and Soil* 126: 115–19.
- Ma J F and Takahashi E. 1990b. The effect of silicic acid on rice in a P-deficient soil. *Plant and Soil* 126: 121–25.
- Ma J F and Takahashi E. 1991. Effect of silicate on phosphate availability of rice in a P-deficient soil. *Plant and Soil* 133: 151–55.
- Ma J F and Takahashi E. 2002. Silicon uptake and accumulation in higher plants. *Soil, Fertiliser and Plant Silicon Research in Japan*, First Edition. Elsevier Science, p 294.
- Ma J F and Yamaji N. 2006. Silicon uptake and accumulation in higher plants. *Trends in Plant Science* 11: 342–97.
- Ma J F, Miyak Y and Takahashi E. 2001a. Silicon as a beneficial element for crop plants. (*In*) Silicon in Agriculture (Eds). Datonoff L F, Snyder G H and Korndorfer G H. Elsevier Science, Amsterdam, p 17–39.
- Ma J F, Miyake Y and Takahashi E. 2001. Silicon as a beneficial element for crop plants. *Studies in Plant Science* **8**: 17–39.
- Ma J F, Sasaki M and Matsumoto H. 1997: AI-induced inhibition of root elongation in corn (*Zea mays* L.) is overcome by Si addition. *Plant and Soil* **188**: 171–76.
- Ma J F, Tamai K, Yamaji N, Mitani N, Konishi S, Katsuhara M, Ishiguro M, Murata Y and Yano M. 2006. A silicon transporter in rice. *Nature* **440**: 688–91.
- Ma J F. 2004. Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Science and Plant Nutrition 50: 11–8.
- Marchner H. 1995. Mineral Nutrition of Higher Plants, 2nd edn. Academic Press, London, p 889.
- Marschener H, Oberle H, Cakmak I and Romheld V. 1990. Growth enhancement by silicon in cucumber plants depends on imbalance in phosphorous and zinc supply. *Plant and Soil* **124** (2): 211–19.
- Marschner H, Oberle H, Cakmar I and Romheld V. 1990. (In) Plant Nutrition-Physiology and Application M L van Bensichem (Ed), p 241–249.
- Matichenkov V V and Bocharnikova E A. 2010. Technology for natural water protection against pollution from cultivated areas by 2020. *Food Security from Sustainable Agriculture.* (*In*) Proceedings of the 15th Australian Agronomy Conference 2010 Lincoln, New Zealand, November, 15-18, 2010.
- Matichenkov V V, Dyakov V M and Bocharnikova E A. 1997. The complex silicon phosphate fertiliser, Russian patent, registration N97121543, December, 23, 1997.
- Matoh T, Kairusmee P and Takahashi E. 1986. Salt-induced damage to rice plants and alleviation effect of silicate. *Soil Science and Plant Nutrition* **32**: 295–304.
- Matoh T, Murata S and Takahashi E. 1991. Effect of silicate application on photosynthesis of rice (*Oryza sativa*) plants.

- *Japanese Journal of Soil Science and Plant Nutrition.* **62**(3): 248–51.
- Miao B H, Han XG and Zhang W H. 2010. The ameliorative effects of silicon on soybean seedling grown in potassium-deficient medium. *Annals of Botany* **105**: 967–973.
- Miyake K and Ikeda M. 1932. Influence of silica application on rice blast. *Japanese Journal of Soil Science and Plant Nutrition* **6**: 53–76.
- Nagaoka K. 1998. Study on interaction between P and Si in rice plants. Graduation thesis, Kinki University, Osaka, Japan.
- Neumann D and Zurnieden U. 2001. Silicon and heavy metal tolerance of higher plants. *Phyto Chemistry* **56**: 685–92.
- Nwugo C C and Huerta A J. 2008. Effect of silicon nutrition on cadmium uptake, growth and photosynthesis of rice plants exposed to low levels cadmium. *Plant and Soil* 311: 73–86.
- Nwugol C C and Huerta A J. 2008. Silicon-induced cadmium resistance in rice (*Oryza sativa*). *Journal of Plant Nutrition and Soil Science* 171: 841–48.
- Okuda A and Takahashi E. 1961. Studies on the physiological role of silicon in crop plants. *Journal of the Science of Soil and Manure* **32**: 623–26.
- Okuda A and Takahashi E. 1962. Effect of silicon supply on the injuries due to excessive amounts of Fe, Mn, Cu, As, AI, Co on barley and rice plant. *Soil Sci. Plant Nutrition* **33**: 1–8.
- Parveen N and Ashraf M. 2010. Role of silicon in mitigating the adverse effects of salt stress on growth and photosynthetic attributes of two maize (*Zea mays* L.) cultivars grown hydroponically. *Pakistan Journal of Botany* 42: 1684–1765.
- Perry C C and Keeling-Tucker T. 1998. Aspects of the bioorganic chemistry of silicon in conjunction with the bio metals calcium, iron and aluminium. *Journal of Inorganic Biochemistry* **69**: 181–91
- Richmond K E and Sussman M. 2003. Silicon: The non-essential beneficial plant nutrient. *Current Opinion in Plant Biology* **6**: 268–272.
- Rogalla H and Romheld V. 2002. Role of leaf apoplast in siliconmediated manganese tolerance of *Cucumis sativus L. Plant Cell Environment* **25**: 549–55.
- Romero-Aranda M R, Jurado O and Cuarterp J. 2006. Silicon alleviates the deleterious salt effect on tomato plant growth by improving plant water status. *Journal of Plant Physiology* **163**: 847–55.
- Sadanandan A K and Varghes E J. 1968. Studies on the silicate nutrition of rice in the laterite soil of Kerala. I. Effect on growth and yield. *Madras Agricultural Journal* 11: 261–4.
- Saqib M, Zorb C and Schubert S. 2008. Silicon-mediated improvement in the salt resistance of wheat (*Triticum aestivum*) results from increased sodium exclusion and resistance to oxidativestress. *Functional Plant Biology* **35**: 633–639.
- Savant N K, Snyder G H and Datnoff L E. 1997. Silicon management and sustainable rice production. Advances in Agronomy 58: 151–99.
- Savvas D, Giotis D, Chatzieustratiou E, Bakea M and Patakioutas G. 2009. Silicon supplied in soilless cultivations of zucchini alleviates stress induce by salinity and powdery mildew infection. *Environmental and Experimental Botany* 65: 11–17.
- Shen X, Li X, Li Z, Li J, Duan L and Eneji A E. 2010. Growth, physiological attributes and antioxidant enzyme activities in soybean seedlings treated with or without silicon under UV-B radiation stress. *Journal of Agronomy and Crop Science* **196**: 431–39.
- Showemimo F A and Olarewaju J D. 2007. Drought tolerance indices in sweet pepper (*Capsicum annuum* L.). *International*

- Journal of Plant Breeding and Genetics 1: 29–33.
- Singh V P, Tripathi D K, Kumar D and Chauhan D K. 2011. Influence of exogenous silicon addition on aluminium tolerance in rice seedlings. *Biological Trace Element Research* 144: 1260–74.
- Takahashi E. 1995. Uptake mode and physiological functions of silica. (*In*) Matusuo T, Kumazawa K, Ishii R, Ishihara K and Hirata H. *Science of Rice Plant Physiology*, Tokio, Nobunkyo, **2**(5): 420–33.
- Takahashi E. 1996. Uptake mode and physiological functions of silica. (*In*) Takahashi E and Hoshikawa K (Ed.). Science of the Rice Plant Physiology. Tokyo: Food and Agriculture Policy Research Centre 2:420–433.
- Trenholm L E, Datnoff L E and Nagata R T. 2004. Influence of silicon on drought and shade tolerance of St. Augustine grass. *Hort Technology* **14**(4): 487–90.
- Tripathi P, Tripathi R D, Pratap S R, Dwivedi S, Goutam D, Shri M, Trivedi P K and Chakrabarty D. 2013. Silicon mediates arsenic tolerance in rice (*Oryza sativa* L.) through lowering of arsenic uptake and improved antioxidant defence system. *Ecological Engineering* **52**: 96–103.
- Vijayakumar S, Dinesh Kumar, Y S Shivay, V K Sharma, D K Sharma, Saravanane P, Poornima S and Nain Singh. 2019. Energy budgeting of aerobic rice (*Oriza sativa*)-wheat (*Triticum aestivum*) cropping system as influenced by potassium fertilization. *Indian Journal of Agricultural Sciences* 89 (11): 1911–5.
- Wang H L, Li CH and Liang Y C. 2001. Agricultural utilization of silicon in China. In: Datnoff L E, Snyder G H and Korndörfer G H (Eds). *Silicon in Agriculture*. Amsterdam: Elsevier p. 343–52.
- Wen X H and Cai K Z. 2011. Silicon improves the tolerance of rice plants to cadmium and zinc complex stress. *Proceedings of the* 5th International Conference on Silicon in Agriculture, p 206.
- Williams D E and Vlamis J. 1957. The effect of silicon on yield and manganese uptake and distribution in the leaves of barley grown in culture solutions. *Plant Physiology* **32**: 404–09.
- Yeo A R, Caporn S J M and Flowers T J. 1985. The effects of salinity on photosynthesis in rice (*Oryz asativa* L.) gas exchange by individual leaves in relation to their salt content. *Journal of Experimental Botany* **36**: 1240–48.
- Yeo A R, Flowers S A, Rao G, Welfare K, Senanayake N and Flowers T J. 1999. Silicon reduces sodium uptake in rice (Oryz asativa L.) in saline conditions and this is accounted for by a reduction in the transpirational bypass flow. Plant Cell Environonment 22: 559–65.
- Yin L, Wang S, Li J, Tanaka K and Oka M. 2013. Application of silicon improves salt tolerance through ameliorating osmotic and ionic stresses in the seedling of *Sorghum bicolor*. *Acta Physiologiae Plantarum* 35: 3099–107.
- Yoshida S. 1965. Chemical aspects of the role of silicon in physiology of the rice plant. *Bull. Nat. Inst. Agr. Sci. Ser.* 15: 1–58.
- Zhang H, Li Y, Hu L, Wang S and Zhang F. 2008. Effects of exogenous nitric oxide donor on antioxidant metabolism in wheat leaves under aluminum stress. *Russian Journal of Plant Physiology* 55: 469–74.
- Zhu Z, Wei G, Li J, Qian Q and Yu J. 2004. Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber (*Cucumis sativus L.*). *Plant Science* 167: 527–33.
- Zsoldos F, Vashegyi A, Pecsvaradi A and Bona L. 2003. Influence of silicon on aluminium toxicity in common and durum wheat. *Agronomie* 23: 349–54.