Microbial population dynamics and dehydrogenase activity in response to integrated use of zinc oxide and zinc solubilizers

MOUMITA ASH1, JANARDAN YADAV2 and JAY SHANKAR YADAV3

ICAR-Indian Agricultural Research Institute, New Delhi 110 012, India

Received: 24 February 2020; Accepted: 16 March 2020

ABSTRACT

Soil microorganisms play a key role in nutrient transformation, nutrient cycling, organic matter decomposition, water movement and various other processes essential for maintaining soil quality. In view of scanty information, a pot experiment was carried out at the Department of Soil Science and Agricultural Chemistry, Institute of Agricultural Sciences, BHU, Varanasi, UP during *kharif*, 2018-19 to evaluate the effect of zinc solubilizers in combination with zinc oxide (ZnO) on microbial population dynamics and dehydrogenase activity of soil at 30 DAT, 60 DAT and after harvesting of rice. In this experiment, three different doses of ZnO (Z_0 =0, Z_1 =1.85, and Z_2 =3.7 mg kg⁻¹) and three types of microbial inoculation, viz. No inoculation (M_0), *Enterobacter clocae* strain ZnPSBJ-6 (M_1) and zinc solubilizing fungi (M_2) were employed in various combinations. It has found that at 60 DAT, inoculation of M_1 resulted in 4.1% and 12.8% increase in soil bacterial count while treated with Z_1 and Z_2 , respectively. Whereas, in the case of M_2 , the fungal count increased by around 40% and 48% at 30 DAT while treated with Z_1 and Z_2 , respectively over Z_0 . After harvesting, the actinomycetes population increased significantly by 45.5% in Z_1 treated soil. At 30 DAT, dehydrogenase activity increased significantly in M_2 treated soil by 7.3% and 27.3% with increasing level of ZnO, i.e. from Z_1 to Z_2 over Z_0 .

Key words: Nutrient transformation, Nutrient cycling, Organic matter decomposition, Soil dehydrogenase activity

Zn plays an important role in several metabolic and enzymatic activity in crop plants. Use of high yielding varieties (HYVs), micronutrient free high analysis fertilizer, heavy irrigation, hazardous agrochemicals in the post green revolution era not only aggravated Zn deficiency in soil but also facilitated the shift in microflora which vis-à-vis deteriorates the soil quality. One of the major constraint of alleviating Zn deficiency through application of chemical fertilizers that these are having very low use efficiency (2%) due to rapid conversion of soluble Zn compound to different insoluble pools like oxide bound, carbonate bound, or other occluded forms (Sarathambal et al. 2010). Whereas, Zn deficiency is more pronounced in case of low land rice due to submergence condition. Zinc solubilizers are special kind of plant growth promoting rhizobacteria (PGPR), which selectively solubilize Zn

¹Ph D scholar (e mail: moon.ash95@gmail.com), Division of Soil Science and Agricultural Chemistry, ICAR-IARI; ²Professor (e mail: janardanbhu@gmail.com), Department of Soil Science and Agricultural Chemistry, Institute of Agricultural Science, ³Ph D scholar (e mail: yadav.jayshankar994@gmail.com), Department of Botany, Banaras Hindu University, Varanasi, UP 221 005.

through production of some organic acid which lowers pH or form soluble chelate with Zn. During past few years, solubilization of insoluble Zn compounds [ZnO, ZnCO₃, $Zn_3(PO_4)_2$] by plant growth promoting rhizobacteria (PGPR) has been reported worldwide (Krithika and Balachandar 2016; Gontia-Mishra et al. 2016). Therefore, the use of zinc solubilizers are hypothesized to be an effective mean to enhance the Zn availability to plant. Apart from this, zinc solubilizing microbes are also responsible for biochemical modification of rhizospheric soil, e.g. increase in microbial count, dehydrogenase activity (Wamberg et al. 2003). Microbial biomass constitutes about 2 to 4% of soil organic matter (Alexander 1978). Dehydrogenase enzyme is an oxidoreductase type of enzyme, takes part in oxidation-reduction reactions and indicates soil microbial activity (Quilchano and Marañon 2002; Gu et al. 2009; Salazar et al. 2011). This enzyme is generally produced intracellularly by soil microbes (Moeskops et al. 2010; Zhao et al. 2010; Yuan and Yue 2012). It also play a significant role in the biological oxidation of soil organic matter (OM) by transferring hydrogen from organic substrates to inorganic acceptors (Zhang et al. 2010). Brzezińska et al. (1998) revealed that active dehydrogenases are capable of utilizing both O₂ and other compounds as terminal electron acceptors, although most of the dehydrogenases are produced by anaerobic microorganisms. Therefore, it reflects the rate

Table 1 Initial characteristics of experimental soil

Parameter	Value
pH _{1:2}	7.8
EC _{1:2} (dS m ⁻¹)	0.48
Clay %	15.7
Silt %	23.1
Sand %	61.2
Texture	Sandy loam
Organic carbon (g kg ⁻¹)	16
Cation exchange capacity [cmol (p ⁺) kg ⁻¹]	20.3
Dehydrogenase activity (μg TPF g ⁻¹ soil day ⁻¹)	21.64
DTPA extractable Zn	0.54
Soil bacterial count (cfu g ⁻¹ × 10 ⁶)	13.2
Soil fungal count (cfu g ⁻¹ × 10 ⁴)	12.6
Soil actinomycetes count (cfu $g^{-1} \times 10^4$)	10.2

of metabolic activity of soil and its activity has always found to be proportional to soil microbial biomass. Keeping the above fact in mind, the present study was undertaken with following hypothesis, i.e. to check influence of Zn solubilizing microbes in combination with varying level of zinc oxide (ZnO) on microbial population dynamics and dehydrogenase activity in soil.

MATERIALS AND METHODS

Collection of soil sample: One bulk surface (0-15 cm) soil (Typic Haplusteps) was collected from the Agricultural Research Farm, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, UP.

Pot experiment: A pot experiment was conducted at Department of Soil Science and Agricultural Chemistry, Institute of Agricultural Sciences, BHU, Varanasi, UP during kharif, 2018-19 with a rice cultivar characterized as dwarf non-aromatic high yielding variety (HYV), viz. Swarna-sub-1. Seedlings of four-leaf stage were obtained from the Agricultural Research Farm, IAS, BHU. For this purpose, earthen pots were filled with 10 kg of processed soil. Zinc oxide (ZnO) was added at the rates of 0 (Z_0), 1.85 (\mathbb{Z}_2) and 3.7 (\mathbb{Z}_3) mg kg⁻¹ of soil, which are equivalent to field application of 0, 4.16 and 8.33 kg ha⁻¹. Seedling root dip was done with desired microbial inoculation, viz. No inoculation (M₀), Enterobacter clocae strain ZnPSBJ-6 (M₁) and a zinc solubilizing fungi (M₂) with the aid of some adhering substances like jaggary and gum acacia. Transplanting was done in such a way that each pot consists of four hills and each hill contains two to three seedlings. All treatment combinations (nine) replicated thrice and the experiment was laid out in factorial completely randomized design. The uniform basal dose of N: P₂O₅: K₂O @ 40.1: 40.2: 26.8 mg kg⁻¹ were added in solution form in each pot through urea, potassium dihydrogen phosphate and muriate of potash, respectively. After establishment of plant, thinning was done to maintain a uniform population of four plants per pot. Water level was maintained at 3 cm above the soil surface until harvest. Two top dressings of N, each at the rate of 20.1 mg kg⁻¹ were done at 30 and 60 days after transplanting (DAT). For enumerating the microbial population of soil, composite soil samples were prepared by mixing together the samples of soil from the pots under each treatment.

Culture media: Three distinct medium, viz. Thornton medium (Thornton 1922), Rose Bengal Agar Medium (pH 7.2), Kenknight and Munaier's medium (Ram et al. 2013), were used for proliferation of bacteria, fungi, actinomycetes and zinc solubilizing bacteria, respectively.

Total microbial count by serial dilution and standard plate count method: Total bacteria, fungi, actinomycetes and Zn solubilizing bacterial population were determined by serial dilution and pouring technique. Serial dilution was done in laminar flow chamber. The 10 g of test soil sample under aseptic conditions was weighed in a sterile paper and transferred it to 250 ml conical flask containing 90 ml sterilized 0.85% solution NaCl and shaken for thorough mixing. From this suspension, 1 ml of suspension was transferred to first culture tube with the help of sterile pipette containing 9 ml of sterile saline water and thoroughly shaken. Here dilution was 10 times. From this, further dilution was made by transferring 1 ml to another 2nd, 3rd and 4th sterile culture tube containing 9 ml sterilized saline water aseptically to desired level as 10⁻⁴ and 10⁻⁵.

Plating: With the help of sterilized pipette, 1 ml of suspension from desired dilution was transferred to petri plates. About 20 ml of specific media was poured into petri plates in three replication followed by rotating the plate clock wise and anti-clock wise. After solidifying the media, petri plates were inverted and kept in BOD Incubator at 28±1°C. Microbial counts were recorded when colonies were developed by observing their specific colony characteristics.

Counting: Microbial colonies were counted depending upon morphological features. Colonies characterized as slimy and shiny with smooth boundary were counted as bacteria. For the fungal colony, cottony appearance was observed and for actinomycetes those colonies were counted which were appeared in the media having concentric ring with star appearance. ZSB colonies were counted by observing the clear halo zone around the colony. The colonies were counted and expressed by multiplying colony forming unit (cfu) by dilution factor. Colony forming unit in the plates for each soil were counted and averaged. Population was expressed as number per gram of oven dry basis.

Dehydrogenase activity: Soil dehydrogenase activity was determined by the standard procedure given by Casida et al. (1964). The 1 g of air-dried soil sample was taken in air tight screw capped test tube (15 ml capacity). 1.5 ml of 1% glucose solution and 1 ml of 3% triphenyl tetrazolium chloride (TTC) solution and 2.5 ml distilled water were added in each of the tubes. Incubation was done at 28°C for 24 hours. After incubation, 10 ml of methanol was added and shaken vigorously then allowed to stand for 6 hours. Clear pink coloured supernatant was removed and readings were taken with a spectrophotometer at a wave length of 485 nm (blue filter). Results were estimated by

multiplying with dilution factor and expressed in terms of $\mu g TPF g^{-1} day^{-1}$ soil.

Satistical analysis: Data obtained from the experiments were subjected to statistical analysis by adopting Factorial Completely Randomized Design. Interpretation of the data was carried out in accordance with Panse and Sukhatme (1985). The critical difference values were calculated wherever the 'F' test values were significant at 5% level of significance.

RESULTS AND DISCUSSION

Soil bacterial count: It was found that at 60 DAT, bacterial count has increased in treatment inoculated with M_1 (27.3 cfu g⁻¹ × 10⁶) as compared to M_2 (18.5 cfu g⁻¹ \times 10⁶) when treated with similar doses of Zn, i.e. 3.7 mg kg⁻¹ (Table 3). Even higher level of Zn (\mathbb{Z}_2) also resulted significant increase in bacterial count, i.e. 25.2 cfu g⁻¹ × 10^6 when inoculated with M_1 as compared to lower dose of Zn (Z_1) . Bacterial count was found to be drastically reduced in T_0 as compared to absolute control (T_1) . This may be due to the fact that, zinc solubilizing fungi in case of To had somehow resulted in lowering of pH (data not presented) which was not conducive for survival of soil bacteria. Bacterial proliferation follows a typical sigmoidal pattern over total crop growing period which is may be due to the fact that optimum survival condition such as pH, temperature, soil wetness or lesser degree of competition prevail at 60 DAT. Similar result was found by Poonam et al. (2014). The results pertaining to soil bacterial population followed invariably similar kind of trend even at 30 DAT (Table 2) as well as after harvesting (Table 4) which is in parallel with the findings reported by Ghodpage et al. (2009). Treatment interaction also significantly increases the bacterial population because it is probable that Zn plays a catalytic activity in microbial metabolism.

Soil fungal count: Results showed that soil fungal count at 30 DAT, 60 DAT as well as after harvesting has increased significantly due to integrated use of ZnO and zinc solubilizers. At 30 DAT, in case of M₁ treated soil fungal count increased significantly with increasing level of zinc, i.e. from Z_1 (13.5 cfu $g^{-1}\times 10^4$) to Z_2 (15.5 cfu $g^{-1}\times 10^4$) over T_2 (13.3 cfu $g^{-1}\times 10^4$) where no zinc was applied (Table 2). Maximum fungal population (18.5 cfu $g^{-1} \times 10^4$) was observed in T_o where zinc solubilizing fungi was inoculated with higher level of zinc (i.e. ZnO at the rate 3.7 mg kg⁻¹). However, in case of T₃ fungal population declined significantly and found to be minimum (12.5 cfu $g^{-1} \times 10^4$) as compared to absolute control (13.3 cfu $g^{-1} \times 10^4$) 10⁴). The results followed invariably similar kind of pattern at 60 DAT (Table 2) as well as after harvesting (Table 4) which is in parallel with the findings reported by Kelly et al. (1999). This is may be due to the fact that, high level of zinc along with zinc solubilizing microbes induces microbial shift in soil as well as microbial tolerance towards high concentration of zinc.

Actinomycetes count: A distinct kind of response was found in case of soil actinomycetes count while inoculated

with different type microbial strain along with varying doses of Zn in all the three stages, i.e. at 30 DAT, 60 DAT, and after harvesting. At 30 DAT, in case of M₁ treated soil, actinomycetes count increased significantly with increasing level of zinc, i.e. from Z_1 (14.5 cfu $g^{-1} \times 10^4$) to Z_2 (16.5 cfu $g^{-1} \times 10^4$) over Z_0 (13.6 cfu $g^{-1} \times 10^4$) (Table 2). Maximum actinomycetes population (18.2 cfu g⁻¹ × 10⁴) has been observed in T_o where Enterobacter clocae strain ZnPSBJ-6 and zinc solubilizing fungi were inoculated with higher level of zinc (i.e. ZnO at the rate 3.7 mg kg⁻¹). However, after harvesting, in case of M2, actinomycetes population increased significantly by 45.5% with the ZnO dose at the rate 1.85 mg kg⁻¹ but further increment in Zn level could not make any significant difference (Table 4). On the other hand, treatments like T₁, T₂ and T₈ have found to be statistically at par with T_3 , T_4 and T_9 respectively. A similar kind of trend has observed at 60 DAT as well as after harvesting which was in consonance with the findings of Kelly et al. (1999). This may be due to the fact high level of zinc has stimulated proliferation soil microbes.

Dehydrogenase activity: Data pertaining to the effect of ZnO in combination with zinc solubilizers reveal that at 30 DAT, both the level Zn had not been able to enhance soil dehydrogenase activity of soil treated with $\rm M_1$. On the other hand, at 30 DAT, in case of $\rm M_2$ treated soil dehydrogenase activity increased significantly by 7.3% and 27.3% with increasing level of zinc, i.e. from $\rm Z_1$ (24.7 $\rm \mu g$ TPF g⁻¹ day⁻¹) to $\rm Z_2$ (29.3 $\rm \mu g$ TPF g⁻¹ day⁻¹) over $\rm Z_0$ (23 $\rm \mu g$ TPF g⁻¹ day⁻¹). A similar kind of trend was observed at 60 DAT as well as after harvesting. It is well known, that redox potential (Eh) play a crucial role in regulating microbial activity as well as community structure (Song *et al.* 2008) and affecting on soil enzymatic activity, especially dehydrogenase activity. Apart from Eh of soil system, there

Table 2 Effect of ZnO and zinc solubilizers on soil microbial count and dehydrogenase in soil at 30 DAT

Treatment	Bacterial count (cfu g ⁻¹ × 10 ⁶)	Fungal count (cfu g ⁻¹ × 10 ⁴)	Actinomy- cetes count (cfu g ⁻¹ × 10 ⁴)	Dehydrogenase activity (µg TPF g ⁻¹ day ⁻¹)
$T_1 (M_0 Z_0)$	14.0	13.3	12.5	19.4
$T_2(M_1Z_0)$	15.5	13.3	13.6	26.3
$T_3 (M_2 Z_0)$	14.4	12.5	12.5	23.0
$T_4(M_0Z_1)$	15.2	15.3	13.5	23.5
$T_5(M_1Z_1)$	18.4	13.5	14.5	27.3
$T_6(M_2Z_1)$	13.5	17.5	17.4	24.7
$T_7(M_0Z_2)$	15.5	15.8	15.5	23.5
$T_8(M_1Z_2)$	18.6	15.5	16.5	26.6
$T_9(M_2Z_2)$	13.5	18.5	18.2	29.3
SEm±	0.16	0.24	0.18	0.73
CD(0.05)	0.46	0.70	0.54	2.16

SEm±: Standard error of mean (both positive and negative), CD (0.05): Critical difference at 5% level of significance

Table 3 Effect of ZnO and zinc solubilizers on soil microbial count and dehydrogenase activity at 60 DAT of rice

			-	
Treatment	Bacterial count (cfu $g^{-1} \times 10^6$)	Fungal count (cfu g ⁻¹ × 10 ⁴)	Actinomy- cetes count (cfu g ⁻¹ × 10 ⁴)	Dehydrogenase activity (µg TPF g ⁻¹ day ⁻¹)
$T_1 (M_0 Z_0)$	22.5	19.5	14.6	29.0
$T_2\left(M_1Z_0\right)$	24.2	19.7	15.6	33.6
$T_3 (M_2 Z_0)$	23.2	19.3	15.3	30.9
$T_4(M_0Z_1)$	24.4	21.3	16.2	31.3
$T_5(M_1Z_1)$	25.2	20.6	16.2	31.3
$T_6(M_2Z_1)$	27.2	24.5	21.1	33.0
$T_7(M_0Z_2)$	25.7	22.2	19.5	31.4
$T_8(M_1Z_2)$	27.3	22.4	19.5	33.3
$T_9(M_2Z_2)$	18.5	26.3	21.6	37.0
SEm±	0.16	0.16	0.26	0.68
CD(0.05)	0.47	0.49	0.77	2.01

SEm±: Standard error of mean (both positive and negative), CD (0.05): Critical difference at 5% level of significance

are several factors mediated by microbial activity such as moisture content, oxygen diffusion rate (ODR) also play a major role governing dehydrogenase activity. Nihorimbere *et al.* (2011) reported that microbial activities increase the dehydrogenase activity in the rhizosphere with increasing availability of food materials for its growth.

It has found that soil microbial count increased gradually and reached to maximum at 60 DAT in response to various treatments due to higher microbial activity during reproductive stage of crop growth. At 60 DAT, inoculation of M₁ resulted in 4.1% and 12.8% increase in soil bacterial count while treated with Z_1 and Z_2 , respectively (Table 2). However, this degree of increment is less conspicuous at 30 DAT as well as after harvesting. However, in case of M₂, fungal count increased by around 40% and 48% at 30 DAT while treated with Z_1 and Z_2 , respectively, as compared to Z_0 . Whereas, after harvesting, in case of M_2 actinomycetes population increased significantly by 45.5% with the ZnO dose at the rate 1.85 mg kg⁻¹ but further increment in Zn level could not make any significant difference. Whereas at 30 DAT, in case of M₂ treated soil dehydrogenase activity increased significantly by 7.3% and 27.3% with increasing level of zinc, i.e. from Z_1 (24.7 μg TPF g^{-1} day $^{-1}$) to Z_2 (29.3 μg TPF g^{-1} day $^{-1}$) over Z_0 (23 μg TPF g^{-1} day $^{-1}$). Therefore, it can be concluded that, application of zinc solubilizing microbes in combination with practically realizable doses of ZnO has a positive influence on soil microbial population vis-à-vis soil quality, which should be exploited by farmers particularly in the alluvial plain of UP.

REFERENCES

Alexander M. 1978. Introduction to soil microbiology. *Soil Science*

Brzezińska M, Stępniewska Z and Stępniewski W. 1998. Soil

Table 4 Effect of ZnO and zinc solubilizers on soil microbial count and dehydrogenase activity after harvesting of

Treatment	$\begin{array}{c} Bacterial \\ count \ (cfu \\ g^{\text{-}1} \times 10^6) \end{array}$		Actinomy- cetes count (cfu g ⁻¹ ×	Dehydrogenase activity (µg TPF g ⁻¹
		104)	104)	day-1)
$T_1 \left(M_0 Z_0 \right)$	18.3	17.6	13.6	27.1
$T_2\left(M_1Z_0\right)$	19.5	18.4	14.4	26.7
$T_3 (M_2 Z_0)$	18.5	17.4	13.6	26.2
$\mathrm{T_4}(\mathrm{M_0Z_1})$	20.4	19.4	14.7	28.1
$T_5(M_1Z_1)$	20.5	18.4	15.3	29.5
$\mathrm{T_6}(\mathrm{M_2Z_1})$	18.2	21.4	19.8	27.7
$T_7(M_0Z_2)$	21.3	20.3	18.8	26.4
$T_8(M_1Z_2)$	22.5	20.4	19.9	28.9
$T_9(M_2Z_2)$	15.5	23.4	19.9	32.9
SEm±	0.17	0.12	0.36	0.78
CD(0.05)	0.49	0.35	1.08	2.32

SEm±: Standard error of mean (both positive and negative) CD (0.05): Critical difference at 5% level of significance

oxygen status and dehydrogenase activity. Soil Biology & Biochemistry 30: 1783-1790.

Casida Jr L E, Klein D A and Santoro T. 1964. Soil dehydrogenase activity. Soil Science 98: 371-376.

Ghodpage R M, Balpande S S, Harale M A, and Mandle M G 2009. Effect of Amrutpani and biofertilizer with fertilizer and vermicompost on soil microbiota and yield of rainfed cotton. *Journal of Soils and Crops* **19**: 343-346.

Gontia-Mishra I, Sapre S, Sharma A and Tiwari S. 2016. Amelioration of drought tolerance in wheat by the interaction of plant growth-promoting rhizobacteria. *Plant Biology* 18: 992-1000

Gu Y, Wag P and Kong C. 2009. Urease, invertase, dehydrogenase and polyphenoloxidase activities in paddy soils influenced by allelophatic rice variety. *European Journal of Soil Biology* **45**: 436-441.

Jackson M L. 2005. Soil Chemical Analysis: Advanced Course. UW-Madison Libraries Parallel Press.

Kelly J J, Häggblom M and Tate Iii R. L. 1999. Changes in soil microbial communities over time resulting from one time application of zinc: a laboratory microcosm study. *Soil Biology* and *Biochemistry* 31: 1455-1465.

Krithika S, Prasad G and Balachandar D. 2016. Zinc solubilizing potential of *Enterobacter cloacae* strain ZSB14 in three different semi-arid tropical soils. *International Journal of Plant and Soil Science* 11: 1-12.

Moeskops B, Buchan D, Sleutel S, Herawaty L, Husen E, Saraswati R, Setyorini D and De Neve S. 2010. Soil microbial communities and activities under intensive organic and conventional vegetable farming in West Java, Indonesia. *Applied Soil Ecology* **45**: 112-120

Nihorimbere V, Ongena M, Smargiassi M and Thonart P. 2011. Beneficial effect of the rhizosphere microbial community for plant growth and health. *Biotechnologie, Agronomie, Société et Environnement* 15: 327-337.

Panse V G and Sukhatme. 1985. Statistical Methods for Agricultural Workers. ICAR, New Delhi.

- Poonam S, Kumawat K C, Sabhjeet C and Navprabhjot K. 2014. Assesment of zinc solubilization by endophytic bacteria in legume Rhizosphere. *Indian Journal of Applied Research* 22: 12-14
- Quilchano C and Marañon T. 2002. Dehydrogenase activity in Mediterranean forest soils. Biology & Fertility of Soils 35: 102-107
- Ram R L, Maurya B R and Sharma P K. 2013. Seasonal variation in microbial population at different depths of normal and sodic soils of Varanasi. *International Journal of Innovative Research and Development*.
- Salazar S, Sanchez L, Alvarez J, Valverde A, Galindo P, Igual J, Peix A and Santa Regina I. 2011. Correlation among soil enzyme activities under different forest system management practices. *Ecological Engineering* **37**: 1123-1131.
- Sarathambal C, Thangaraju M, Paulraj C and Gomathy M. 2010. Assessing the zinc solubilization ability of *Gluconacetobacter diazotrophicus* in maize rhizosphere using labelled 65 Zn compounds. *Indian Journal of Microbiology* **50**: 103-109.
- Song Y, Deng S, Acosta-Martinez V and Katsalirou E. 2008. Characterization of redox related soil microbial communities along a river floodplain continuum by Fatty Acid Methyl

- Ester (FAME) and 16S rRNA Genes. Applied Soil Ecology 40: 499-509.
- Thornton H G. 1922. On the development of a standardized agar medium for counting of soil bacteria, with special regard to the repression of spreading colonies 1. *Annals of Applied Biology* 9: 241-274.
- Wamberg C, Christensen S, Jakobsen I, Müller A K and Sørensen S J. 2003. The mycorrhizal fungus (Glomus intraradices) affects microbial activity in the rhizosphere of pea plants (Pisum sativum). Soil Biology and Biochemistry 35: 1349-1357.
- Yuan B and Yue D. 2012. Soil microbial and enzymatic activities across a chronosequence of Chinese pine plantation development on the Loess Plateau of China. *Pedosphere* 22: 1-12
- Zhang N, He X, Gao Y, Li Y, Wang H, Ma D, Zhang R and Yang S. 2010. Pedogenic carbonate and soil dehydrogenase activity in response to soil organic matter in *Artemisia ordosica* community. *Pedosphere* **20**: 229-235.
- Zhao B, Chen J, Zhang J and Qin S. 2010. Soil microbial biomass and activity response to repeated drying-rewetting cycles along a soil fertility gradient modified by long-term fertilization management practices. *Geoderma* **160**: 218-224.