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ABSTRACT

Soil properties vary spatially over short distances and sometimes prove detrimental to crop productivity in farmlands
even after uniform application of balanced nutrients. In the present study, spatial variability of micronutrients was
studied in Chakroi farm of Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu (SKUAST-
Jammu) during 2016 and 2017. Results indicated that mean concentrations of micronutrients were in the order of Fe
> Mn > Cu > Zn both in surface and sub-surface layers. Exponential model was the best fit for all micronutrients in
surface soil layer. Linear model was best fit for Cu and Gaussian model for Mn in the sub-surface layer. Whereas for
Zn and Fe, the best fit was defined by exponential model. All the four micronutrients showed strong spatial dependence
in surface layer, whereas in sub-surface layer Mn and Zn showed strong spatial dependence as compared to Cu. More
than 60% of the area in the surface layer had Cu in the range of 2.0-2.8 mg/kg of soil. A very small area was under
high range on the eastern side of the farm while in the sub-surface layer, Cu was unevenly distributed. The soil maps
of Zn showed that it is above the critical value in surface layer while in sub-surface layer nearly 40% of the area had
Zn in the deficient range. Fe was unevenly distributed and in the sub-surface layer it was higher in the southern and
north-western parts of the farm. Mn was above the critical limit in both surface and sub-surface soils of the farm.
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Micronutrient deficiency in soils may have detrimental
impact on crop productivity. Micronutrient deficiencies
such as those of zinc, copper, iron and manganese in soils
around the world have been reported (Shukla et al. 2014).
Micronutrient distribution vary spatially across management
units (Mondal et al. 2007, Alaie et al. 2020, Wani et al. 2022)
and their variability in Indian soils is high because of small
land holdings and different practices adopted by individual
farmers. These spatial variations over short distances can
significantly impact the farm productivity under systems
of uniform application of nutrients.

Atthe field, catchment and regional scales, geostatistical
methods are effective for evaluating the spatial variability
of soil characteristics (Tripathi et al. 2015). Geostatistics
is a powerful tool for characterization and quantification
of spatial variability. Semivariograms are a crucial tool for
describing spatial patterns, and kriging is commonly adopted
for predicting the values of soil properties in untested places.
Numerous workers overtime have employed geostatistics
as a tool for addressing spatial variability of soil properties
(Shi et al. 2008, Sharma et al. 2017).
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From a field to a bigger area scale, soil characteristics
change both geographically and temporally, as they are
affected by both intrinsic and extrinsic factors (such as
the cultural practices adopted by farmers). In apparently
homogeneous soil, the soil variability can be significantly
altered by past land use (Hussain et al. 2019, Wani et al.
2023). Even over short distances, there have been noticeable
strong variances (Vasu et al. 2017). The Chakroi farm
of Sher-e-Kashmir University of Agricultural Sciences
and Technology of Jammu (SKUAST-J) has a history
of predominantly paddy (Oryza sativa)-wheat (Triticum
aestivum L.) cropping system. There are also some patches in
the study area where waterlogging and hard pans have been
encountered. Therefore, it is hypothesized that variations
in soil micronutrients may exist. The present study under
paddy-wheat cropping system of Jammu was carried out
with the objective to measure the spatial variability of DTPA
extractable copper, zinc, iron and manganese at farm level
following ordinary kriging interpolation technique.

MATERIALS AND METHODS

The present study was carried out at Chakroi farm
of Sher-e-Kashmir University of Agricultural Sciences
and Technology of Jammu (SKUAST-Jammu) during
year 2016 and 2017 for studying the spatial variability
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of micronutrients. The farm lies between 32°32'9.29" N,
74°41'42.51" E and 32°31'38.28" N, 74°42'26.97" E having
an area of 68 hectares. The dominant cropping system of
the farm is paddy-wheat.

Soil sampling and processing: Grid based soil sampling
procedure was followed for the entire study area and a square
grid of 75 m x 75 m was adopted. To digitize the farm map
ArcGIS 10.3 was used and soil sampling points were created
on the map on square grid basis (75 m apart) by using the
sampling tool. The soil samples were then collected at the
depths of 0-15 cm (surface) and 15-30 cm (sub-surface)
layers from the identified points by using stainless steel soil
augers. A total of 258 samples were collected, i.e. 129 each
from surface layer and sub-surface layers. The collected
soil samples were air dried and processed.

Soil analysis: Basic properties such as soil pH, electrical
conductivity (EC) and organic carbon (OC) level were
measured by method given by Jackson (1973) while cation
exchange capacity (CEC) and soil texture was determined
following a method outlined by Piper (1966). The basic soil
properties varied widely, i.e. pH, EC and OC varied from
5.71-9.93; 0.03—1.51 dS/m and 0.51-1.47% with mean
values of 7.38, 0.24 dS/m and 0.99%, respectively. The
CEC varied from 6.97-21.76 cmol (p*)/kg with a mean of
13.71 cmol (p*)/kg. The soil texture categories included
silty clay loam, loam, silty clay, clay loam, clay and silt
loam in the order of abundance.

Diethylene triaminepenta acetic acid (DTPA) was
used to extract the available Zn, Cu, Mn, and Fe from
soils (Lindsay and Norvell 1978). The samples were run in
triplicates with a soil to solution ratio of 1:2 and were shaken
for 2 hours before filtering with a whatman 42 filter paper.
After extraction, the micronutrient cations were analyzed
with an atomic absorption spectrophotometer.

Conventional statistical analysis: Descriptive statistics
was worked out for the datasets that included mean, median,
coefficients of variation (CV), minimum and maximum
values, kurtosis, skewness, as well as standard error of mean
using SPSS 13.5. Kormogorov-Shaprov test was carried out
for testing normal distribution of data sets.

Geo-statistical analysis: After testing the data for
normality, the non-normal data sets were log transformed
to reduce the skewness before subjecting it to krigging.
To assist in the kriging process, semivariograms of the
soil attributes were constructed. Appropriate models were
fitted to the semivariograms to attain different geo-statistical
parameters.

Spatial dependence was quantified from nugget,
range and sill obtained from a semi-variance analysis.
Semivariogram were generated by following equation
(Vieira et al. 1983):

H= S (2~ 2+
AN ’

Where, h is the lag distance; z(xi), the value of the
variable Z at location xi and; N(h), the number of pairs of
sample points [values Z(x;), Z(x;+h)] separated by a vector h.
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These semi-variograms were generated in GS™ for different
soil properties. Semivariograms were fitted with appropriate
models based on the lowest statistical error values.

Exponential model =

y(h)=C,+ Cl(l—exp[ihjjo <h<d
a

where, d, the maximum distance at which the semivariogram
is defined.

Gaussian model =

y(h)=C,+C, [l—exp{_}iz JJ
a

Linear model =
y (h) = Cy + [h(C/A,)]

Where, y(h), semivariance for internal distance; C,
nugget variance > 0; h, lag interval; A, range parameter
and; C, structural variance > C,. Once the best fit model
was determined for each variable, interpolation was carried
out. To categorise the degrees of spatial variability in each
soil feature, a nugget/sill ratio was determined (Cambardella
et al. 1994).

Prediction mapping: Prediction maps of the soil
micronutrients were generated by Ordinary Kriging (OK).
The kriging estimate is given as below:

Z(X,) =Y AZ(X,)

Where, n, the number of neighboring observations;
Z(X,), the estimate of unknown true value and; 2;, the
weighted coefficient. The process of digitization and
development of prediction maps was carried out in a GIS
environment with the help of ArcGIS 10.3. The goodness
of fit for various models was calculated in GS* and only
the best models were selected. Cross validation indices of
soil micronutrients were also determined to validate spatial
analysis.

RESULTS AND DISCUSSION

DTPA extractable micronutrients in soil: The DTPA
extractable Cu for surface soils varied from 1.10-4.42 mg/kg
of soil, with mean value of 2.62 mg/kg of soil. Whereas,
the values varied from 0.75-3.24 mg/kg of soil for sub-
surface layers. The CV values were 22.03 and 27.44%
and a negative skewness was observed for surface and
sub-surface (-0.19 and -0.04) layers, respectively (Table 1).
The DTPA extractable Zn varied from 0.33—1.90 mg/kg
and 0.18-1.24 mg/kg of soil for surface and sub-surface
layers having mean values of 0.93 and 0.62 mg/kg of soil,
respectively. The CV value for surface layer was 35.59%,
whereas it was 41.53% for sub-surface layers. The data for
Fe varied from 18.78—76.22 mg/kg of soil for surface layers
and 12.66-56.87 mg/kg of soil for sub-surface layers. The
values of CV were 29.59 and 26.75%, with mean values of
50.51 and 34.61 mg/kg of soil for surface and sub-surface
layers, respectively. The data was positively skewed, with
values close to zero and kurtosis being -1.22 and -0.44
for surface and sub-surface layers. The values for DTPA
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extractable Mn content varied from 11.60-46.20 mg/kg
of soil and 7.58-36.54 mg/kg of soil for surface and sub-
surface layers, respectively. The mean value was 26.60
mg/kg of soil and CV, 35.02% for surface layers, while
mean for sub-surface layers was 18.88 mg/kg of soil and
CV value was 37.85%. The data was positively skewed,
with values being 0.20 and 0.53, and kurtosis being -0.94
and -0.44 for surface and sub-surface layers, respectively.
Low, moderate, and high variability are indicated by CV
values of 10%, 10-100%, and >100%, respectively. The
micronutrient concentrations followed the order: Fe > Mn
> Cu > Zn both in surface and sub-surface layers. DTPA
extractable micronutrients, except Zn, were above the critical
limit for sufficiency range. Variation in soil management
were the main causes of the observed heterogeneity in the
concentrations of accessible micronutrients (Li e al. 2008).

Spatial distribution of micronutrients: Geostatistics
utilizes semivariogram to work out the geographic variation
of a variable and outputs a set of parameters such as nugget,
sill etc. These parameters are used as inputs for carrying
out the spatial interpolation of variables using Kriging
technique. However, an important criterion for kriging is
that the data should be normal (Sepaskhah et al. 2005). This
can be assessed from the skewness and kurtosis values.
In the present study, the data was normal only for DTPA
extractable Cu in surface layer, whereas in sub-surface it was
normal for DTPA extractable Fe. Robinson and Metternicht
(2006) has indicated that if the data has positive skewness
of more than 0.5, transformation of data is required to
reduce the skewness. Log transformed data was used for
all other soil properties to make the semi-variograms.
Typically, a theoretical model such as a spherical, linear,
exponential, or Gaussian model is used to fit the experimental
variograms. Using the deciding coefficient (R?) and the
least residual sums of squares (RSS), the ideal theoretical
model is identified. The models supply data about the
spatial organisation as well as the Kriging interpolation's
input parameters (Wang et al. 2009). Exponential model
was the best fit for micronutrients in surface soil. The type
of model fitted depends upon the data structure. Shi et al.
(2008) observed based on the geostatistical data that the
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exponential model was the best for Mn, Cu, Zn, and Mo,
whereas spherical and linear model provided the best fit for
Fe and B, respectively. Linear model was the best fit for
DTPA extractable Cu, Gaussian model for DTPA extractable
Mn in the sub-surface layer. For the other two micronutrients,
exponential model was the best fit. Geo-statistical parameters
were obtained from these models, viz. nugget, sill, partial
sill and range of spatial dependence (Table 2). The range
values indicated the maximum scale of spatial dependence.
In surface soils, the least range of spatial dependence was
for Zn (99.0 m). The values close to this in increasing order
were Cu (102 m) followed by Mn (192 m). Whereas, in
sub-surface layer, the highest range of spatial dependence
was observed for DTPA extractable Fe (3267 m) followed
by Cu (705.6 m) and Mn (128.1 m). When compared to
characteristics with lower ranges, a broad range suggests that
a soil characteristic is more likely to be affected by natural
influences over greater distances (Sharma et al. 2017). In the
present study, smaller range values for soil micronutrients
could be the result of the management practices. While
partial sill (C) represents the degree of variation that may
be described by spatial correlation structure, nugget (C,)
describes the micro-scale variability and measurement error
for the relevant soil characteristic. A nugget to sill ratio
was obtained to classify the nature of spatial dependence.
The nugget to sill ratio, two parameters derived from a
semivariogram, is used to classify the spatial dependence
of a soil property. When the nugget to sill ratio is equal to
or lower than 0.25, the soil property is supposed to have
strong spatial dependence (Cambardella et al. 1994). It is
considered moderate for a ratio between 0.25 and 0.75 and
weak if the ratio is greater than 0.75. Based upon this, all
the four DTPA extractable micronutrients in surface layer
showed strong spatial dependence, whereas in sub-surface
layer DTPA extractable Cu showed weak spatial dependence
while Zn and Mn showed strong spatial dependence.
Cross-validation: Cross-validation is carried out to
study the validity of the prediction models (Asa et al. 2012).
Cross validation of observed values with predicted revealed
a minor positive bias especially in case of Fe and Mn as
observed from ME (mean error) values (Table 3). MSE

Table 1 Statistical summary of DTPA extractable micronutrients in surface (0—15 cm) and sub-surface layer (15-30 cm)

Sub-surface (0—15 cm)

Sub-surface (15-30 cm)

Cu Zn Fe Mn Cu Zn Fe Mn
(mg/kg) (mg/kg)
Minimum 1.10 0.33 18.78 11.60 0.75 0.18 12.66 7.58
Maximum 442 1.90 76.22 46.20 3.24 1.24 56.87 36.54
Mean 2.62 0.93 50.51 26.60 1.89 0.62 34.61 18.88
Standard deviation 0.58 0.33 14.94 9.31 0.52 0.26 9.26 7.15
Standard error of mean 0.05 0.03 1.32 0.82 0.05 0.02 0.82 0.63
Coefficient of variation (%) 22.03 35.59 29.59 35.02 27.44 41.53 26.75 37.85
Skewness -0.19 0.62 0.09 0.20 -0.04 0.52 0.12 0.53
Kurtosis 0.25 0.05 -1.22 -0.94 -0.16 -0.76 -0.44 -0.44
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Table 2 Best fit models, data transformation and the obtained semivariogram parameters for the DTPA extractable micronutrients

Soil properties  Transformation Model R2 Partial Sill Range Nugget Sill Nugget/Sill ~ Spatial
(CD) (CO) (Co+C1) ratio dependence
Surface

DTPA-Cu None Exponential  0.209 0.3045 102.0 0.0305 0.3350 0.09 Strong

DTPA-Zn Log Exponential ~ 0.251 0.1217 99.0 0.0087 0.1304 0.07 Strong

DTPA-Fe Log Exponential  0.313 0.0886 195.0 0.0136 0.1022 0.13 Strong

DTPA-Mn Log Exponential ~ 0.795 0.1303 192.0 0.0093 0.1396 0.07 Strong

Sub-surface

DTPA-Cu Log Linear 0.266 0.00 705.6 0.0959 0.0959 1.00 Weak

DTPA-Zn Log Exponential  0.312 0.1647 111.0 0.0137 0.1784 0.08 Strong

DTPA-Fe None Exponential ~ 0.815 67.20 3267.0 67.10 134.30 0.50 Moderate

DTPA-Mn Log Gaussian 0.667 0.1372 128.1 0.0132 0.1504 0.09 Strong

DTPA, Diethylene triamine pentaacetic acid.

(mean standardized error) needs to be close to zero for better
predictions while RMSSE (root mean square standardized
error) values need to be close to 1 for accuracy. Our cross-
validation data showed that MSE was close to zero for all
parameters in surface as well as sub-surface samples. While
RMSSE was closer to 1, except in case of Cu in sub-surface
soils where the value was 0.867. Similarly, the root mean
square error (RMSE) was on the lower side of the overall
range of data for individual parameters indicating overall
good predictions. Based on the error values, the overall
predictions were found to be reliable.

About 66% of the area (44.7 ha; 65.7% of the area) in
the surface layer had DTPA extractable Cu between 2.0-2.8
mg/kg of soil. A very small area (<1%) is under high range
of 3.6-4.3 mg/kg of soil on the eastern side of the farm (Fig 1).
In the sub-surface layer, the Cu was unevenly distributed.
Overall, it was in the sufficiency range when considering
0.2 mg/kg as the critical limit.The soil maps of DTPA
extractable Zn are presented in the (Fig 1). In the surface
layer, the major portion of the farm (44.2 ha; 65%) was
in the range of 0.6—1.0 mg/kg followed by 1.0-1.5 mg/kg
(20.9 ha; 30.7%) of soil indicating that the soils have Zn
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DTPA Cu (mg/kg)
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Fig 1 DTPA extractable Cu and Zn at surface and sub-surface soil depths of Chakroi farm.
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Fig 2 DTPA extractable Fe and Mn at surface and sub-surface soil depths of Chakroi farm.

Table 3  Errors generated through cross-validation of predicted
and observed values

Parameter ME RMSE MSE RMSSE
Surface

Zn 0.008 0.336 -0.015 0.946
Cu 0.001 0.565 0.001 0.981
Fe 0.239 13.84 0.001 0.935
Mn 0.244 8.168 0.016 0.908
Sub-surface

Zn 0.005 0.266 -0.040 0.995
Cu 0.004 0.537 -0.010 0.867
Fe 0.077 8.544 0.008 0.972
Mn 0.126 6.562 -0.033 1.0361

ME, Mean error; RMSE, Root mean square error; MSE, Mean
standardized error and; RMSSE, Root mean square standardized
error.

above the critical value (0.6 mg/kg). However, in sub-surface
layers nearly 40% had DTPA Zn in the deficient range. Zinc
is an important nutrient especially with respect to rice crop.
Low Zn content was associated with areas having high
pH content and were sodic in nature. This is validated by
significantly negative correlation (r = -0.224**) between
pH and Zn observed in the present study as well as studies
conducted by various other workers (Miihlbachova et al.
2011). DTPA extractable Fe was distributed unevenly with
a range of 25-75 mg/kg of soil (Fig 2) which was well

above the critical limit of 4.5 mg/kg. In the sub-surface
layer, DTPA extractable Fe was higher in the southern and
north-western parts of the farm. In the surface layer, the Mn
was mainly between 20-30 mg/kg of soil (34.8 ha; 51% of
the area), with some area (19.7 ha; 30% of the area) in the
central and north-western side had range of 30-40 mg/kg
of soil (Fig 2). In sub-surface layer, the Mn was mainly in
the range of 10-20 mg/kg of soil. Overall, it was above the
critical limit of 2 mg/kg.

The study concludes that not all data sets of soil
properties and micronutrients show normal distribution
and transformations must be carried out to make it suitable
for krigging. Also, within farm level wide variations
exist in micronutrients due to ecological conditions such
as waterlogging and high pH as high as over 9.0 in this
case. As such, a uniform dose may not be economically
effective to produce the desired yield even at farm level.
Zinc application is generally recommended here in these
basmati producing soils. As far as other micronutrients (Fe,
Mn and Cu) are concerned their values were much above
the critical limits and hence are not recommended for the
commonly followed rice-wheat system on the farm.
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