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ABSTRACT

Soil properties vary spatially over short distances and sometimes prove detrimental to crop productivity in farmlands 
even after uniform application of balanced nutrients. In the present study, spatial variability of micronutrients was 
studied in Chakroi farm of Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu (SKUAST-
Jammu) during 2016 and 2017. Results indicated that mean concentrations of micronutrients were in the order of Fe 
> Mn > Cu > Zn both in surface and sub-surface layers. Exponential model was the best fit for all micronutrients in 
surface soil layer. Linear model was best fit for Cu and Gaussian model for Mn in the sub-surface layer. Whereas for 
Zn and Fe, the best fit was defined by exponential model. All the four micronutrients showed strong spatial dependence 
in surface layer, whereas in sub-surface layer Mn and Zn showed strong spatial dependence as compared to Cu. More 
than 60% of the area in the surface layer had Cu in the range of 2.0–2.8 mg/kg of soil. A very small area was under 
high range on the eastern side of the farm while in the sub-surface layer, Cu was unevenly distributed. The soil maps 
of Zn showed that it is above the critical value in surface layer while in sub-surface layer nearly 40% of the area had 
Zn in the deficient range. Fe was unevenly distributed and in the sub-surface layer it was higher in the southern and 
north-western parts of the farm. Mn was above the critical limit in both surface and sub-surface soils of the farm. 
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Micronutrient deficiency in soils may have detrimental 
impact on crop productivity. Micronutrient deficiencies 
such as those of zinc, copper, iron and manganese in soils 
around the world have been reported (Shukla et al. 2014). 
Micronutrient distribution vary spatially across management 
units (Mondal et al. 2007, Alaie et al. 2020, Wani et al. 2022) 
and their variability in Indian soils is high because of small 
land holdings and different practices adopted by individual 
farmers. These spatial variations over short distances can 
significantly impact the farm productivity under systems 
of uniform application of nutrients. 

At the field, catchment and regional scales, geostatistical 
methods are effective for evaluating the spatial variability 
of soil characteristics (Tripathi et al. 2015). Geostatistics 
is a powerful tool for characterization and quantification 
of spatial variability. Semivariograms are a crucial tool for 
describing spatial patterns, and kriging is commonly adopted 
for predicting the values of soil properties in untested places. 
Numerous workers overtime have employed geostatistics 
as a tool for addressing spatial variability of soil properties 
(Shi et al. 2008, Sharma et al. 2017). 

From a field to a bigger area scale, soil characteristics 
change both geographically and temporally, as they are 
affected by both intrinsic and extrinsic factors (such as 
the cultural practices adopted by farmers). In apparently 
homogeneous soil, the soil variability can be significantly 
altered by past land use (Hussain et al. 2019, Wani et al. 
2023). Even over short distances, there have been noticeable 
strong variances (Vasu et al. 2017). The Chakroi farm 
of Sher-e-Kashmir University of Agricultural Sciences 
and Technology of Jammu (SKUAST-J) has a history 
of predominantly paddy (Oryza sativa)-wheat (Triticum 
aestivum L.) cropping system. There are also some patches in 
the study area where waterlogging and hard pans have been 
encountered. Therefore, it is hypothesized that variations 
in soil micronutrients may exist. The present study under 
paddy-wheat cropping system of Jammu was carried out 
with the objective to measure the spatial variability of DTPA 
extractable copper, zinc, iron and manganese at farm level 
following ordinary kriging interpolation technique. 

MATERIALS AND METHODS
The present study was carried out at Chakroi farm 

of Sher-e-Kashmir University of Agricultural Sciences 
and Technology of Jammu (SKUAST-Jammu) during 
year 2016 and 2017 for studying the spatial variability 
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of micronutrients. The farm lies between 32°32'9.29" N, 
74°41'42.51" E and 32°31'38.28" N, 74°42'26.97" E having 
an area of 68 hectares. The dominant cropping system of 
the farm is paddy-wheat. 

Soil sampling and processing: Grid based soil sampling 
procedure was followed for the entire study area and a square 
grid of 75 m × 75 m was adopted. To digitize the farm map 
ArcGIS 10.3 was used and soil sampling points were created 
on the map on square grid basis (75 m apart) by using the 
sampling tool. The soil samples were then collected at the 
depths of 0–15 cm (surface) and 15–30 cm (sub-surface) 
layers from the identified points by using stainless steel soil 
augers. A total of 258 samples were collected, i.e. 129 each 
from surface layer and sub-surface layers. The collected 
soil samples were air dried and processed. 

Soil analysis: Basic properties such as soil pH, electrical 
conductivity (EC) and organic carbon (OC) level were 
measured by method given by Jackson (1973) while cation 
exchange capacity (CEC) and soil texture was determined 
following a method outlined by Piper (1966). The basic soil 
properties varied widely, i.e. pH, EC and OC varied from 
5.71–9.93; 0.03–1.51 dS/m and 0.51–1.47% with mean 
values of  7.38, 0.24 dS/m and 0.99%, respectively. The 
CEC varied from 6.97–21.76 cmol (p+)/kg with a mean of 
13.71 cmol (p+)/kg. The soil texture categories included 
silty clay loam, loam, silty clay, clay loam, clay and silt 
loam in the order of abundance. 

Diethylene triaminepenta acetic acid (DTPA) was 
used to extract the available Zn, Cu, Mn, and Fe from 
soils (Lindsay and Norvell 1978). The samples were run in 
triplicates with a soil to solution ratio of 1:2 and were shaken 
for 2 hours before filtering with a whatman 42 filter paper. 
After extraction, the micronutrient cations were analyzed 
with an atomic absorption spectrophotometer. 

Conventional statistical analysis: Descriptive statistics 
was worked out for the datasets that included mean, median, 
coefficients of variation (CV), minimum and maximum 
values, kurtosis, skewness, as well as standard error of mean 
using SPSS 13.5. Kormogorov-Shaprov test was carried out 
for testing normal distribution of data sets. 

Geo-statistical analysis: After testing the data for 
normality, the non-normal data sets were log transformed 
to reduce the skewness before subjecting it to krigging. 
To assist in the kriging process, semivariograms of the 
soil attributes were constructed. Appropriate models were 
fitted to the semivariograms to attain different geo-statistical 
parameters. 

Spatial dependence was quantified from nugget, 
range and sill obtained from a semi-variance analysis. 
Semivariogram were generated by following equation 
(Vieira et al. 1983):

� ( )
( )

[ ( ) ( )]h
N h

Z x Z x hu i
i

N

� � �
�
�1

2

2

1

Where, h is the lag distance; z(xi), the value of the 
variable Z at location xi and; N(h), the number of pairs of 
sample points [values Z(xi), Z(xi+h)] separated by a vector h. 
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These semi-variograms were generated in GS+ for different 
soil properties. Semivariograms were fitted with appropriate 
models based on the lowest statistical error values. 
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where, d, the maximum distance at which the semivariogram 
is defined. 
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Linear model =
γ (h) = C0 + [h(C/A0)]

Where, γ(h), semivariance for internal distance; C0, 
nugget variance ≥ 0; h, lag interval; A0, range parameter 
and; C, structural variance ≥ C0. Once the best fit model 
was determined for each variable, interpolation was carried 
out. To categorise the degrees of spatial variability in each 
soil feature, a nugget/sill ratio was determined (Cambardella 
et al. 1994). 

Prediction mapping: Prediction maps of the soil 
micronutrients were generated by Ordinary Kriging (OK). 
The kriging estimate is given as below:
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Where, n, the number of neighboring observations; 
Z(Xo), the estimate of unknown true value and; λi, the 
weighted coefficient. The process of digitization and 
development of prediction maps was carried out in a GIS 
environment with the help of ArcGIS 10.3. The goodness 
of fit for various models was calculated in GS+ and only 
the best models were selected. Cross validation indices of 
soil micronutrients were also determined to validate spatial 
analysis. 

RESULTS AND DISCUSSION
DTPA extractable micronutrients in soil: The DTPA 

extractable Cu for surface soils varied from 1.10–4.42 mg/kg  
of soil, with mean value of 2.62 mg/kg of soil. Whereas, 
the values varied from 0.75–3.24 mg/kg of soil for sub-
surface layers. The CV values were 22.03 and 27.44% 
and a negative skewness was observed for surface and 
sub-surface (-0.19 and -0.04) layers, respectively (Table 1). 
The DTPA extractable Zn varied from 0.33–1.90 mg/kg 
and 0.18–1.24 mg/kg of soil for surface and sub-surface 
layers having mean values of 0.93 and 0.62 mg/kg of soil, 
respectively. The CV value for surface layer was 35.59%, 
whereas it was 41.53% for sub-surface layers. The data for 
Fe varied from 18.78–76.22 mg/kg of soil for surface layers 
and 12.66–56.87 mg/kg of soil for sub-surface layers. The 
values of CV were 29.59 and 26.75%, with mean values of 
50.51 and 34.61 mg/kg of soil for surface and sub-surface 
layers, respectively. The data was positively skewed, with 
values close to zero and kurtosis being -1.22 and -0.44 
for surface and sub-surface layers. The values for DTPA 
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extractable Mn content varied from 11.60–46.20 mg/kg 
of soil and 7.58–36.54 mg/kg of soil for surface and sub-
surface layers, respectively. The mean value was 26.60 
mg/kg of soil and CV, 35.02% for surface layers, while 
mean for sub-surface layers was 18.88 mg/kg of soil and 
CV value was 37.85%. The data was positively skewed, 
with values being 0.20 and 0.53, and kurtosis being -0.94 
and -0.44 for surface and sub-surface layers, respectively. 
Low, moderate, and high variability are indicated by CV 
values of 10%, 10–100%, and >100%, respectively. The 
micronutrient concentrations followed the order: Fe > Mn 
> Cu > Zn both in surface and sub-surface layers. DTPA 
extractable micronutrients, except Zn, were above the critical 
limit for sufficiency range. Variation in soil management 
were the main causes of the observed heterogeneity in the 
concentrations of accessible micronutrients (Li et al. 2008). 

Spatial distribution of micronutrients: Geostatistics 
utilizes semivariogram to work out the geographic variation 
of a variable and outputs a set of parameters such as nugget, 
sill etc. These parameters are used as inputs for carrying 
out the spatial interpolation of variables using Kriging 
technique. However, an important criterion for kriging is 
that the data should be normal (Sepaskhah et al. 2005). This 
can be assessed from the skewness and kurtosis values. 
In the present study, the data was normal only for DTPA 
extractable Cu in surface layer, whereas in sub-surface it was 
normal for DTPA extractable Fe. Robinson and Metternicht 
(2006) has indicated that if the data has positive skewness 
of more than 0.5, transformation of data is required to 
reduce the skewness. Log transformed data was used for 
all other soil properties to make the semi-variograms. 
Typically, a theoretical model such as a spherical, linear, 
exponential, or Gaussian model is used to fit the experimental 
variograms. Using the deciding coefficient (R2) and the 
least residual sums of squares (RSS), the ideal theoretical 
model is identified. The models supply data about the 
spatial organisation as well as the Kriging interpolation's 
input parameters (Wang et al. 2009). Exponential model 
was the best fit for micronutrients in surface soil. The type 
of model fitted depends upon the data structure. Shi et al. 
(2008) observed based on the geostatistical data that the 

exponential model was the best for Mn, Cu, Zn, and Mo, 
whereas spherical and linear model provided the best fit for 
Fe and B, respectively. Linear model was the best fit for 
DTPA extractable Cu, Gaussian model for DTPA extractable 
Mn in the sub-surface layer. For the other two micronutrients, 
exponential model was the best fit. Geo-statistical parameters 
were obtained from these models, viz. nugget, sill, partial 
sill and range of spatial dependence (Table 2). The range 
values indicated the maximum scale of spatial dependence. 
In surface soils, the least range of spatial dependence was 
for Zn (99.0 m). The values close to this in increasing order 
were Cu (102 m) followed by Mn (192 m). Whereas, in 
sub-surface layer, the highest range of spatial dependence 
was observed for DTPA extractable Fe (3267 m) followed 
by Cu (705.6 m) and Mn (128.1 m). When compared to 
characteristics with lower ranges, a broad range suggests that 
a soil characteristic is more likely to be affected by natural 
influences over greater distances (Sharma et al. 2017). In the 
present study, smaller range values for soil micronutrients 
could be the result of the management practices. While 
partial sill (C) represents the degree of variation that may 
be described by spatial correlation structure, nugget (C0) 
describes the micro-scale variability and measurement error 
for the relevant soil characteristic. A nugget to sill ratio 
was obtained to classify the nature of spatial dependence. 
The nugget to sill ratio, two parameters derived from a 
semivariogram, is used to classify the spatial dependence 
of a soil property. When the nugget to sill ratio is equal to 
or lower than 0.25, the soil property is supposed to have 
strong spatial dependence (Cambardella et al. 1994). It is 
considered moderate for a ratio between 0.25 and 0.75 and 
weak if the ratio is greater than 0.75. Based upon this, all 
the four DTPA extractable micronutrients in surface layer 
showed strong spatial dependence, whereas in sub-surface 
layer DTPA extractable Cu showed weak spatial dependence 
while Zn and Mn showed strong spatial dependence. 

Cross-validation: Cross-validation is carried out to 
study the validity of the prediction models (Asa et al. 2012). 
Cross validation of observed values with predicted revealed 
a minor positive bias especially in case of Fe and Mn as 
observed from ME (mean error) values (Table 3). MSE 

Table 1	Statistical summary of DTPA extractable micronutrients in surface (0–15 cm) and sub-surface layer (15–30 cm)

Sub-surface (0–15 cm) Sub-surface (15–30 cm)
Cu Zn Fe Mn Cu Zn Fe Mn

(mg/kg) (mg/kg)
Minimum 1.10 0.33 18.78 11.60 0.75 0.18 12.66 7.58
Maximum 4.42 1.90 76.22 46.20 3.24 1.24 56.87 36.54
Mean 2.62 0.93 50.51 26.60 1.89 0.62 34.61 18.88
Standard deviation 0.58 0.33 14.94 9.31 0.52 0.26 9.26 7.15
Standard error of mean 0.05 0.03 1.32 0.82 0.05 0.02 0.82 0.63
Coefficient of variation (%) 22.03 35.59 29.59 35.02 27.44 41.53 26.75 37.85
Skewness -0.19 0.62 0.09 0.20 -0.04 0.52 0.12 0.53
Kurtosis 0.25 0.05 -1.22 -0.94 -0.16 -0.76 -0.44 -0.44
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(mean standardized error) needs to be close to zero for better 
predictions while RMSSE (root mean square standardized 
error) values need to be close to 1 for accuracy. Our cross-
validation data showed that MSE was close to zero for all 
parameters in surface as well as sub-surface samples. While 
RMSSE was closer to 1, except in case of Cu in sub-surface 
soils where the value was 0.867. Similarly, the root mean 
square error (RMSE) was on the lower side of the overall 
range of data for individual parameters indicating overall 
good predictions. Based on the error values, the overall 
predictions were found to be reliable. 

About 66% of the area (44.7 ha; 65.7% of the area) in 
the surface layer had DTPA extractable Cu between 2.0–2.8 
mg/kg of soil. A very small area (<1%) is under high range 
of 3.6–4.3 mg/kg of soil on the eastern side of the farm (Fig 1). 
In the sub-surface layer, the Cu was unevenly distributed. 
Overall, it was in the sufficiency range when considering 
0.2 mg/kg as the critical limit.The soil maps of DTPA 
extractable Zn are presented in the (Fig 1). In the surface 
layer, the major portion of the farm (44.2 ha; 65%) was 
in the range of 0.6–1.0 mg/kg followed by 1.0–1.5 mg/kg  
(20.9 ha; 30.7%) of soil indicating that the soils have Zn 

Table 2  Best fit models, data transformation and the obtained semivariogram parameters for the DTPA extractable micronutrients

Soil properties Transformation Model R2 Partial Sill 
(C1)

Range Nugget  
(C0)

Sill 
(C0 + C1)

Nugget/Sill  
ratio

Spatial 
dependence

Surface
DTPA-Cu None Exponential 0.209 0.3045 102.0 0.0305 0.3350 0.09 Strong
DTPA-Zn Log Exponential 0.251 0.1217 99.0 0.0087 0.1304 0.07 Strong
DTPA-Fe Log Exponential 0.313 0.0886 195.0 0.0136 0.1022 0.13 Strong
DTPA-Mn Log Exponential 0.795 0.1303 192.0 0.0093 0.1396 0.07 Strong

Sub-surface
DTPA-Cu Log Linear 0.266 0.00 705.6 0.0959 0.0959 1.00 Weak
DTPA-Zn Log Exponential 0.312 0.1647 111.0 0.0137 0.1784 0.08 Strong
DTPA-Fe None Exponential 0.815 67.20 3267.0 67.10 134.30 0.50 Moderate
DTPA-Mn Log Gaussian 0.667 0.1372 128.1 0.0132 0.1504 0.09 Strong

DTPA, Diethylene triamine pentaacetic acid.

Fig 1	 DTPA extractable Cu and Zn at surface and sub-surface soil depths of Chakroi farm.
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above the critical limit of 4.5 mg/kg. In the sub-surface 
layer, DTPA extractable Fe was higher in the southern and 
north-western parts of the farm. In the surface layer, the Mn 
was mainly between 20–30 mg/kg of soil (34.8 ha; 51% of 
the area), with some area (19.7 ha; 30% of the area) in the 
central and north-western side had range of 30–40 mg/kg 
of soil (Fig 2). In sub-surface layer, the Mn was mainly in 
the range of 10–20 mg/kg of soil. Overall, it was above the 
critical limit of 2 mg/kg. 

The study concludes that not all data sets of soil 
properties and micronutrients show normal distribution 
and transformations must be carried out to make it suitable 
for krigging. Also, within farm level wide variations 
exist in micronutrients due to ecological conditions such 
as waterlogging and high pH as high as over 9.0 in this 
case. As such, a uniform dose may not be economically 
effective to produce the desired yield even at farm level. 
Zinc application is generally recommended here in these 
basmati producing soils. As far as other micronutrients (Fe, 
Mn and Cu) are concerned their values were much above 
the critical limits and hence are not recommended for the 
commonly followed rice-wheat system on the farm. 
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