An insight: Impact of reduced Rubisco on plant physiology and biochemistry

CHIRAG MAHESHWARI, NITIN KUMAR GARG, MUZAFFAR HASSAN and ARUNA TYAGI*

ICAR-Central Institute of Agricultural Engineering, Bhopal 462 038, India

Received: 25 June 2020; Accepted: 22 September 2020

ABSTRACT

Photosynthesis is a process of conversion of sunlight energy and atmospheric carbon to organic molecules with the help of a key and that is Ribulose-1,5-bisphosphate carboxylase/oxygenase. Ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCo) is one of the most abundant proteins in the biosphere and a key enzyme in the global carbon cycle and its assimilation. RubisCo has been extensively studied regarding its structure, kinetics, evolution, etc. But still, many questions remain an illusion such as why plants maintain a large pool of RubisCo protein and its many isoforms; how the different isoforms coordinate their functions altogether and how does RubisCo affect photosynthetic rate, biomass allocation and vegetative growth of plants, although much research has been conducted in the recent past to answer these questions. In this review, different physiological, biochemical, and molecular studies aimed to reduce RubisCo in plants will be discussed to answer above mentioned questions and to better understand it's functioning.

Key words: Photosynthesis, Plant growth, RubisCo

With a rising population of the world and rough addition of 83 million people every year (Desa 2019) it is estimated to be around 9.8 billion by 2050. To feed such a whopping population, there is an urgent need to improve crop yield to meet projected demand for agriculture produce, which is expected to double by 2050 (Alexandratos and Bruinsma 2012). According to an estimate we need to double the food production, and to meet this demand cereal production must rise from 2.1 million tonnes to 3 million tonnes (Alexandratos and Bruinsma 2012). Achieving such a production increase, under a changing climate with limited land and water resources is a great challenge for agricultural scientists and food security. Photosynthesis by the autotrophic organisms is the main source of biomass production. The performance of photosynthesis is an outcome of multiple enzymatic steps (Tyagi and Chandra 2006, Simkin et al. 2019). Understanding the performance of enzymes involved in photosynthesis is much-needed research to increase plant productivity and photosynthetic performance (Parry et al. 2013). Out of many key steps, assimilation reaction is controlled by Rubisco protein which is a much-talked enzyme of the photosynthetic system (Farquhar and von Caemmerer 1982, Sage 1990).

Ribulose-1,5-bisphosphate (Rubp) carboxylase/oxygenase (RubisCo, EC 4.1.1.39) catalyzes the photosynthetic assimilation of CO_2 into organic compounds.

Although RubisCo is the most abundant protein in the biosphere making up 50% of the total soluble protein found in plant leaf tissues and only enzyme capable of total net assimilation of carbon has many limitations (Andrews and Lorimer 1987). RubisCo rate limitation in Calvin-Benson-Bassham (CBB) reductive pentose phosphate pathway is characterized by its lower catalytic rate (kcat) of ~5/sec, poor affinity towards CO₂ and a competing substrate reaction with O_2 . These limiting factors for RubisCo are partially compensated by plants either by keeping an extra-large pool of RubisCO (15-35%) in C₃ plants (Evans 1989, Maheshwari 2020) or by an evolutionary mechanism such as utilization of Kranz anatomy (CO₂-concentrating mechanisms) in C₄ plants. A better understanding of RubisCo is very much necessary for better productivity and efficient resource utilization by plants (Parry et al. 2007).

Many studies were conducted in the past to understand the function, limitation, evolution, and structure of RubisCo at various levels (Pearce and Andrews 2003, Tabita *et al.* 2007, Andersson *et al.* 2008, Whitney *et al.* 2011, Stec B 2012, Gruber and Feiz 2018) and effect of RubisCo on photosynthesis, plant growth, nitrogen utilization (Stilt M *et al.* 1991, Lauerer 1993, Makino *et al.* 2000) etc. To understand the RubisCo impact and control on photosynthesis, plant growth, nitrogen utilization, studies were conducted by applying reduction approach (Maheshwari *et al.* 2020). The reduction approach provides an experimental strategy to understand the control flux through the pathway. Some of the studies were also conducted to understand the various isoforms of RubisCo and their differential expression to better understand the coordination among different isoforms

^{*}Corresponding author e-mail: at bio@iari.res.in

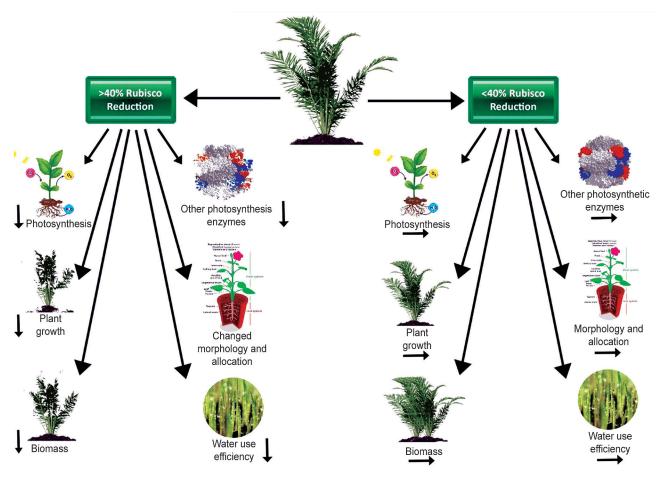


Fig 1 Depiction of overall impact of RubisCo on photosynthesis, plant growth and other growth parameters. Arrow showing the trend (Upward-Increase; Downward- Decrease and Horizontal-No change).

(Ren *et al.* 1991, Morse *et al.* 1995, Hansen *et al.* 1999, Tabita *et al.* 2007). In this review, we examined how reduction/suppression of RubisCo affects the plant at the physiological and biochemical levels (Fig 1).

Impact of reduced RubisCo on photosynthesis

Rubisco accounts for up to half of the leaf nitrogen (). In the past research focused on various plant species with reduced RubisCo to understand its effect on photosynthesis. Strategies that were followed to reduce the RubisCo aimed at targeting the small subunits of *RubisCo* (rbcs) (Rodermel et al. 1988, Quick et al. 1991, Makino et al. 2000). Small subunits of RubisCo, which were encoded by a multigene family in the nucleus consist of 2–22 members, depending on the species (Spreitzer 2003). Although RbcS genes share a high similarity, differential expression was observed at the leaf and tissue level (Spreitzer 2003, Dean et al. 1989). Owing to a huge similarity, it has been assumed that RbcS genes do not have any functional difference (Morita et al. 2014). Many studies which were conducted on tobacco plants with reduced RubisCo to a tune of 20-60% relative to wild type reported a reduction in photosynthesis rate (Quick et al. 1991, Hudson et al. 1992, Andrews et al. 1995, Rodermel et al. 1988, Maheshwari et al. 2020). To understand the flux through a pathway of a particular protein, the best way is to bring the small change in the protein amount in question (say 20%) and if the flux also reduced by the same 20% then the enzyme alone is controlling the pathway. On the otherside, if the flux is reduced by say 10% then control of the pathway is shared by other enzymes (Kacser and Burns 1973). Flux-control coefficient (C_R) depends on short term conditions. Flux-control coefficient (C_R) of 0.1 with 50% RubisCo had marginal effects on photosynthesis under moderate light condition while in high light condition C_R value was 0.7 (Stitt et al. 1991). It has been also observed that with the increase of irradiance in transgenic tobacco plants with reduced RubisCo C_R increased slightly (Lauerer et al. 1993). In summary, C_R increased with increasing irradiance and humidity and decreasing external CO₂ (Stitt et al. 1991). Varying nitrogen supply too had an impact on C_R as plants grown in low nitrogen had an appreciably higher C_R compared to plants grown in high nitrogen supply (Quick et al. 1992, Fichtner 1993). A number of studies reported that impact of suppression of RubisCo on photosynthesis is compensated by various mechanisms such as an increase in RubisCo activity increased thylakoid energization, pH-dependent energy dissipation etc. (Stitt et al. 1991). Rice plants with a 10-25% decrease in RubisCo reported an improvement in photosynthesis at elevated CO₂ which justifies the extra amount of RubisCo (Kanno et al. 2017). Another experiment with a 35% reduction in RubisCo reported a 20% reduction in photosynthesis at lower CO₂ (36 Pa) and 5-15% increase in photosynthesis rate at elevated CO₂ (100Pa) (Makino et al. 2000). Studies on rice plants confirmed that at elevated CO₂ plants with 35% reduced RubisCo had high nitrogen use efficiency for photosynthesis (Makino et al. 2000). These studies confirmed the active role of RubisCo in controlling photosynthesis if RubisCo reduced beyond a certain level under unfavorable growth conditions such as low nitrogen supply, low irradiance and low CO2. However, at elevated level of CO2 an increase was reported in rice while no increase was observed in tobacco plants (Quick et al. 1991, von Caemmerer et al. 1994, Makino et al. 2000).

Impact of reduced RubisCo on metabolome

Metabolome refers to a complete set of metabolites present in a particular situation and time that provides a direct functional readout of cellular activity and physiological status (Khan et al. 2020). The metabolomics also helps to identify the function of the genes: how a particular gene affects the metabolic pathway and discovers different layers of regulation and interception between connected pathways (Sti). Photosynthesis which is an essential part of plant survival and only source of carbohydrate generation is also playing a major role in metabolites production in downside reactions (Sharkey 1989). RubisCo which is an essential enzyme involved in photosynthesis and also being present in an extra amount to compensate its limitations has been studied by various groups of scientists to understand how does RubisCo reduction affects the metabolome of plants. Antisense RubisCo plants were developed by group of scientists to understand the consequences of a lesion in photosynthetic carbon metabolism for nitrogen metabolism and secondary metabolism (Rodermel et al. 1988, Quick et al. 1991, Makino et al. 2000). A study on tobacco plants with reduced RubisCo (40%) had reported a decrease in starch, sucrose, glucose, and fructose content under low nitrogen supply while with high nitrogen these changes were not reported (Fichtner et al. 1993). A study on tobacco plants with reduced RubisCo reported a decrease in triosephosphate, glucose-6-phosphate, fructose-6-phosphate, ADP and an increase in nitrate (Quick et al. 1991, Masle et al. 1993, Stitt and Schulze 1994). Quick et al. (1991) reported a decrease in nitrate accumulation in leaves of tobacco plants with reduced RubisCo along with an increase of ribulose 1,5-phosphate and decline in 3-phosphoglycerate. Metabolome analysis of rice plants with reduced RubisCo reported a decrease in organic acids, carbohydrate, ketones, aldehydes and a significant increase in amino acids. Although an increase in amino acids was reported the same was not reported in urea cycle related compounds such as putrescine, spermidine, and spermine. A decrease in RubisCo level in plants was accompanied by a decline in secondary metabolites such as nicotine, chlorogenic acid, and rutin

(Matt et al. 2002). These studies had concluded that changes in RubisCo will affect the wide range of metabolites which are directly linked to photosynthesis, photorespiration and amino acid metabolism due to key importance of RubisCo in carbon-nitrogen economy balance in plants. Also, an inhibition of photosynthesis and decrease in sugar levels leads to a general inhibition of nitrogen metabolism and dramatic changes in the levels of secondary metabolites (Matt et al. 2002).

Impact of reduced RubisCo on plant growth

Plant growth is a direct indicator of active photosynthesis and metabolism of plants. While many factors affect the plant's growth externally, internal factors (photosynthesis) do play a key role in the overall growth of plants. Photosynthesis gets affected by external (sunlight, water, nutrition, etc.) and internal (enzyme efficiency, substrate utilization, availability of substrate, etc.) factors. Internally photosynthesis rate is largely controlled by RubisCo which is a key regulator of the photosynthesis cycle. Earlier plants with reduced RubisCo and photosynthesis provided a study model to understand plant growth (Stitt and Schulze 1994). Many researchers have tried to answer the question, how RubisCo suppression by genetic manipulation affects plant growth in different species and cultivar? A study on tobacco plants with more than 50% reduced RubisCo brought many changes in plant growth such as a decrease in plant weight, root weight, and changes in leaf geometry (Quick et al. 1991). Relative growth rate which is estimated by dry weight increment per dry weight per day decreased in tobacco plants and showed a near-linear relationship with photosynthesis (Fichtner et al. 1993). Similar results, i.e. reduction in shoot and root mass were observed in rice plants with reduced RubisCo when grown at low CO₂ (Makino et al. 2000). Rice plants with reduced RubisCo, when grown at higher CO₂ reported higher biomass and relative growth rate (Kanno et al. 2017). Overall, these studies concluded that reduction in RubisCo affects plant growth only when reduction goes beyond 50%, which justifies the extra investment of plant nitrogen on RubisCo. Some of these studies also justify that at high CO₂ level plants with reduced RubisCo perform better than the wild type due to effective resources utilization, which is justified by an increase in net assimilation rate (NAR) and nitrogen use efficiency (NUE) (Makino et al. 2000, Kanno et al. 2017).

Effect of RubisCo suppression on gene regulation

In higher plants, RubisCo holoenzyme is a hexadecamer, composed of eight large (55-kD) subunits, coded by a single gene in chloroplast genome and eight small (15-KD) subunits coded by a multigene family in the nuclear genome (Dean *et al.* 1989). Few studies were conducted on how the suppression of RubisCo at the transcript level affects the expression of related genes. Suppression of *RBCS* in higher plants such as tobacco (Rodermel *et al.* 1988, Hudson *et al.* 1992), *Flaveris bidentis* (Furbank *et al.* 1996), rice (Makino *et al.* 1997) and Arabidopsis (Izumi *et al.* 2012) led to a

coordinated reduction of RBCL and RBCS at the protein level. On the other side overexpression of *RBCS* in rice lead to an increase in *RBCL* (Suzuki *et al.* 2009). M. Ishizuka *et al.* (2004), reported a decrease in the activity or amount of Cp-FBPase, NADP-G3PDH, Ru5P kinase, and SPS in rice plants with 65% and 40% reduced RubisCo. In 2002, Mat *et al.* reported that decrease of Rubisco activity led to an inhibition of nitrate reductase activity in tobacco plants.

Conclusion

With these studies on board, it is concluded that RubisCo does have its functional limitations which gets compensated by its large pool in C₃ and C₄ plants. At the same time plants with reduced Rubisco by genetic manipulation and or through genetic or environmental factors provides an experimental system to evaluate the role of RubisCo in regulation of photosynthesis and plant growth. These studies confirm that at higher CO₂, nitrogen availability and irradiance plants with reduced RubisCo have in significant impact on plant growth due to efficient utilization of resources and their assimilation. Rubisco does have control over plant growth under limiting resources which justifies that plant growth and photosynthesis is controlled by many other external and internal factors besides RubisCo. Although much of the research work which is listed in the review conducted in near past, still there is a large scope of revisit this RubisCo science to understand it better in more refined way with new techniques on board.

REFERENCES

- Alexandratos N and Bruinsma J. 2012. World agriculture towards 2030/2050: the 2012 revision.
- Andersson I and Backlund A. 2008. Structure and function of Rubisco. *Plant Physiology and Biochemistry* **46**(3): 275–91.
- Andrews T J and Lorimer G H. 1987. Rubisco: structure, mechanisms, and prospects for improvement. *Photosynthesis*, pp 131–218. Academic Press.
- Andrews T J, Hudson G S, Mate C J, von Caemmerer S, Evans J R and Arvidsson Y B. 1995. Rubisco: the consequences of altering its expression and activation in transgenic plants. *Journal of Experimental Botany* 1293–1300.
- Chirag Maheshwari. 2020. 'Impact of Ribulose-1,5-bisphosphate carboxylase/oxygenase (RUBISCO) knockdown on photosynthesis and growth characteristics of rice plants'. Ph D thesis, ICAR-Indian Agricultural Research Institute, New Delhi.
- Dean C, Pichersky E and Dunsmuir P. 1989. Structure, evolution, and regulation of RbcS genes in higher plants. *Annual Review of Plant Biology* **40**(1): 415–39.
- Desa U. 2019. World Population Prospects 2019: Highlights. New York (US): United Nations Department for Economic and Social Affairs.
- Evans J R. 1989. Photosynthesis and nitrogen relationships in leaves of C₃ plants. *Oecologia* **78**(1): 9–19.
- Farquhar G D and Von Caemmerer S. 1982. Modelling of photosynthetic response to environmental conditions. *Physiological Plant Ecology II*, pp 549–87. Springer, Berlin, Heidelberg.
- Fichtner K, Quick W P, Schulze E D, Mooney H A, Rodermel S R, Bogorad L and Stitt M. 1993. Decreased ribulose-1, 5-bisphosphate carboxylase-oxygenase in transgenic tobacco

- transformed with "antisense" rbcS. Planta 190(1): 1-9.
- Furbank R T, Chitty J A, von Caemmerer S and Jenkins C L. 1996. Antisense RNA inhibition of RbcS gene expression reduces Rubisco level and photosynthesis in the C4 plant *Flaveria bidentis*. *Plant Physiology* 111(3): 725–34.
- Hansen S, Hough E and Andersen K. 1999. Purification, crystallization and preliminary X-ray studies of two isoforms of Rubisco from Alcaligenes eutrophus. *Acta Crystallographica Section D: Biological Crystallography* **55**(1): 310–13.
- Hudson G S, Evans J R, von Caemmerer S, Arvidsson Y B and Andrews T J. 1992. Reduction of ribulose-1, 5-bisphosphate carboxylase/oxygenase content by antisense RNA reduces photosynthesis in transgenic tobacco plants. *Plant Physiology* **98**(1): 294–302.
- Ishizuka M, Makino A, Suzuki Y and Mae T. 2004. Amount of Ribulose-1, 5-bisphosphate carboxylase/oxygenase (Rubisco) Protein and levels of mRNAs of rbc S and rbc L in the leaves at different positions in transgenic rice plants with decreased content of Rubisco. *Soil Science and Plant Nutrition* **50**(2): 233–39
- Izumi M, Tsunoda H, Suzuki Y, Makino A and Ishida H. 2012. RBCS1A and RBCS3B, two major members within the Arabidopsis RBCS multigene family, function to yield sufficient Rubisco content for leaf photosynthetic capacity. *Journal of Experimental Botany* **63**(5): 2159–70.
- Khan M I R, Palakolanu S R, Chopra P, Rajurkar A B, Gupta R, Iqbal N and Maheshwari C. (2020). Improving drought tolerance in rice: Ensuring food security through multi dimensional approaches. *Physiologia Plantarum*.
- Kacser H and Burns J A. 1973. Rate control of biological processes. In Symp. Society of Experimental. Biology 27: 65–104.
- Kanno K, Suzuki Y and Makino A. 2017. A small decrease in Rubisco content by individual suppression of RBCS genes leads to improvement of photosynthesis and greater biomass production in rice under conditions of elevated CO₂. *Plant and Cell Physiology* **58**(3): 635–42.
- Lauerer M, Saftic D, Quick W P, Labate C, Fichtner K, Schulze E D and Stitt M. 1993. Decreased ribulose-1, 5-bisphosphate carboxylase-oxygenase in transgenic tobacco transformed with "antisense" rbcS. *Planta* **190**(3): 332–45.
- Maheshwari, Chirag, Robert A Coe, Shanta Karki, Sarah Covshoff, Ronald Tapia, Aruna Tyagi, Julian M. Hibberd, Robert T Furbank, W Paul Quick and Hsiang-Chun Lin. 2020. Targeted knockdown of ribulose-1, 5-bisphosphate carboxylase-oxygenase in rice mesophyll cells impact on photosynthesis and growth. bioRxiv.
- Makino A, Nakano H, Mae T, Shimada T and Yamamoto N. 2000. Photosynthesis, plant growth, and N allocation in transgenic rice plants with decreased Rubisco under CO₂ enrichment. *Journal of Experimental Botany* **51**(suppl_1): 383–89.
- Makino A, Shimada T, Takumi S, Kaneko K, Matsuoka M, Shimamoto K and Yamamoto N. 1997. Does decrease in ribulose-1, 5-bisphosphate carboxylase by antisense RbcS lead to a higher N-use efficiency of photosynthesis under conditions of saturating CO₂ and light in rice plants? *Plant Physiology* **114**(2): 483–91.
- Masle J, Hudson G S and Badger M R. 1993. Effects of ambient CO₂ concentration on growth and nitrogen use in tobacco (*Nicotiana tabacum*) plants transformed with an antisense gene to the small subunit of ribulose-1, 5-bisphosphate carboxylase/oxygenase. *Plant Physiology* **103**(4): 1075–88.
- Matt P, Krapp A, Haake V, Mock H P and Stitt M. 2002.

- Decreased Rubisco activity leads to dramatic changes of nitrate metabolism, amino acid metabolism, and the levels of phenylpropanoids and nicotine in tobacco antisense RBCS transformants. *Plant Journal* **30**(6): 663–77.
- Morita K, Hatanaka T, Misoo S and Fukayama H. 2014. Unusual small subunit that is not expressed in photosynthetic cells alters the catalytic properties of Rubisco in rice. *Plant Physiology* **164**(1): 69–79.
- Morse D, Salois P, Markovic P and Hastings J W. 1995. A nuclear-encoded form II RuBisCO in dinoflagellates. *Science* 268(5217): 1622–24.
- Parry M A J, Madgwick P J, Carvalho J F C and Andralojc P J. 2007. Prospects for increasing photosynthesis by overcoming the limitations of Rubisco. *Journal of Agricultural Science* **145**(1): 31.
- Parry M A, Andralojc P J, Scales J C, Salvucci M E, Carmo-Silva A E, Alonso H and Whitney S M. 2013. Rubisco activity and regulation as targets for crop improvement. *Journal of Experimental Botany* 64(3): 717–30.
- Pearce F G and Andrews T J. 2003. The relationship between side reactions and slow inhibition of ribulose-bisphosphate carboxylase revealed by a loop 6 mutant of the tobacco enzyme. *Journal of Biological Chemistry* **278**(35): 32526–36.
- Quick W P, Schurr U, Fichtner K, Schulze E D, Rodermel S R, Bogorad L and Stitt M. 1991. The impact of decreased Rubisco on photosynthesis, growth, allocation, and storage in tobacco plants which have been transformed with antisense rbcS. *Plant Journal* 1(1): 51–58.
- Quick W P, Fichtner K, Wendler R, Schulze E D, Rodermel S R, Bogorad L and Stitt M. 1992. Decreased ribulose-1,5bisphosphate carboxylase-oxygenase in transgenic tobacco transformed with "antisense" rbcS. IV. Impact on photosynthesis in conditions of altered nitrogen supply. *Planta* 188: 522–31.
- Ren L, Salnikow J and Vater J. 1991. Multiple forms of the small subunit of ribulose-1, 5-bisphosphate carboxylase/oxygenase in maize, and spinach. *Plant Science* **74**(1): 1–6.
- Rodermel S R, Abbott M S and Bogorad L. 1988. Nuclearorganelle interactions: nuclear antisense gene inhibits ribulose bisphosphate carboxylase enzyme levels in transformed tobacco plants. *Cell* **55**(4): 673–81.
- Sage R F. 1990. A model describing the regulation of ribulose-1, 5-bisphosphate carboxylase, electron transport, and triose

- phosphate use in response to light intensity and CO₂ in C3 plants. *Plant Physiology* **94**(4): 1728–34.
- Sharkey T D. 1989. Evaluating the role of Rubisco regulation in photosynthesis of C3 plants. *Philosophical Transactions of the Royal Society of London. B, Biological Sciences* **323**(1216): 435–48.
- Simkin A J, López-Calcagno P E and Raines C A. 2019. Feeding the world: improving photosynthetic efficiency for sustainable crop production. *Journal of Experimental Botany* 70(4): 1119–40.
- Spreitzer R J. 2003. Role of the small subunit in ribulose-1, 5-bisphosphate carboxylase/oxygenase. *Archives of Biochemistry and biophysics* **414**(2): 141–49.
- Stec B. 2012. Structural mechanism of RuBisCO activation by carbamylation of the active site lysine. *Proceedings of the National Academy of Sciences* 109(46): 18785-90.
- Stilt M, Quick W P, Schurr U, Schulze E D, Rodermel S R and Bogorad, L. 1991. Decreased ribulose-l, 5-bisphosphate carboxylase-oxygenase in transgenic tobacco transformed with 'antisense' rbcS. II. Flux-control coefficients for photosynthesis in varying light, CO₂ and air humidity. *Planta* **183**: 555–66.
- Stitt M and Schulze D. 1994. Does Rubisco control the rate of photosynthesis and plant growth? An exercise in molecular ecophysiology. *Plant, Cell and Environment* 17(5): 465–87.
- Suzuki Y, Miyamoto T, Yoshizawa R, Mae T and Makino A. 2009. Rubisco content and photosynthesis of leaves at different positions in transgenic rice with an overexpression of RBCS. *Plant, Cell and Environment* **32**(4): 417–27.
- Tyagi A and Chandra A. 2006. Isolation of stress responsive Psb A gene from rice (*Oryza sativa* L.) using differential display.
- Tabita F R, Hanson T E, Li H, Satagopan S, Singh J and Chan S. 2007. Function, structure, and evolution of the RubisCO-like proteins and their RubisCO homologs. *Microbiol. Mol. Biol. Rev* 71(4): 576–99.
- Vitlin Gruber A and Feiz L. 2018. Rubisco assembly in the chloroplast. Frontiers in Molecular Biosciences 5: 24.
- Von Caemmerer S, Evans J R, Hudson G S and Andrews T J. 1994. The kinetics of ribulose-1, 5-bisphosphate carboxylase/oxygenase in vivo inferred from measurements of photosynthesis in leaves of transgenic tobacco. *Planta* **195**(1): 88–97.
- Whitney S M, Houtz R L and Alonso H. 2011. Advancing our understanding and capacity to engineer nature's CO2-sequestering enzyme, Rubisco. *Plant Physiology* **155**(1): 27–35.