Genotypic variability studies and identification of pre-harvest sprouting tolerant wild *Vigna*

AMRIT LAMICHANEY1*, ADITYA PRATAP1, PARDIP KUMAR KATIYAR1 and NARENDRA PRATAP SINGH1

ICAR-Indian Institute of Pulses Research, Kanpur 208 024, India

Received: 1 June 2018; Accepted: 02 November 2020

ABSTRACT

Seed dormancy is the main component of domesticated traits, loss of which results into rapid and uniform germination, synchronous maturity and ease in harvesting. However, breakdown or loss of fresh seed dormancy (FSD) has made seeds vulnerable to pre-harvest sprouting (PHS). Though, seeds of *Vigna* species are protected by pod, these are still susceptible to PHS. Identification of donor(s) having short duration of FSD (30-45 days) has become utmost important to transfer the trait to high yielding varieties. The wild progenitors and wild relatives of the cultivated *Vigna* offer a source of several useful traits; therefore, the experiment was initiated to understand the level of variation in PHS and fresh seed germination (FSG) in wild accessions of *Vigna* species. PHS and FSG among 59 *Vigna* accessions ranged between 0-100%, with a mean of 55.86% and 61.19%, respectively. Five accessions (IC276983, IC349701, Trichy Local 1, LRM/13-33 and LRM/13-26) of *Vigna trilobata* and one accession (IC251440) of *Vigna sublobata* recorded no pod loss due to PHS with 0% FSG (2.5% in *V. sublobata*). Seed size showed a positive association with PHS, where smaller seeds (100-SW <1 g) recorded comparably low PHS (30.82%) than bold seeds (69.06 and 62.94% with 100-SW between 1-2 g and > 2 g, respectively). The accessions identified, especially *V. sublobata* (crossing compatible) could be used as a source of PHS tolerance to transfer dormancy in *Vigna* species, particularly in mungbean and urdbean.

Keywords: Dormancy, Fresh seed germination, Pre-harvest sprouting, Vigna species

Quality seed is a vital input for successful crop establishment and agricultural production. Quality seed comprises genetic and physical purity, viability, germination, vigour, seed health and physical appearance like colour, size, shape and weight (Hampton 2002). Each of these seed quality parameters are influenced by climatic variables prevailing during the crop growth period, particularly during reproductive growth, maturity and during storage (Hampton et al. 2013, Maity et al. 2016, Rashid et al. 2018, Lamichaney et al. 2019). Among these climatic variables, rainfall at the time of crop maturity can result into pre-harvest sprouting (PHS) and could affect the quality and quantum of seed/ grain produced. PHS refers to germination of mature seeds within pods/fruits while still attached to mother plant. In legumes, despite that seeds are placed safely inside pods, PHS occurs frequently, especially in Vigna. Sporadic rain coupled with high RH at the time of crop maturity contributes to PHS, resulting into reduced yield and quality of seed (Kulwal et al. 2012). Durga and Kumar (1997) had reported that PHS can reduce mungbean yield by 60-70%. Therefore, development of cultivars having a short duration of dormancy (30-45 days) has become imperative to prevent

¹Indian Institute of Pulses Research, Kanpur, Uttar Pradesh. *Corresponding author e-mail: amritiarisst@gmail.com

the loss incurred by PHS, for which identification of donors having fresh seed dormancy (FSD) is vital. Earlier, number of mungbean and urdbean germplasm has been screened for PHS tolerance (Anupama et al. 2012, Lamichaney et al. 2018). Selection was made consciously or unconsciously for traits that favoured early germination (lack of dormancy) for ease in cultivation and uniform establishment. As a result, cultivated crops germinate faster than the wild progenitors. Therefore, the wild Vigna may be used for introgression of limited dormancy in cultivated lines with an aim of developing climate resilient cultivars (Pratap et al. 2015). A comprehensive analysis of fresh seed germination, hardseededness, tolerance to PHS and their level of variation in wild *Vigna* species is currently lacking in the literature. Thus, the purpose of this study was to assess variation in fresh seed germination and tolerance to PHS among diverse collections of wild Vigna species.

MATERIALS AND METHODS

Fifty nine accessions of 11 Asiatic *Vigna* species (10 accessions of *V. radiata*: 18 of *V. sublobata*, 5 of *V. mungo*, 15 of *V. trilobata*, 3 of *V. umbellata*, 2 each of *V. dalzelliana* and *V. setulosa*, 1 each of *V. pilosa*, *V. silvestris*, *V. khandalensis* and *V. aconitifolia*) were used in this experiment (Table 1) conducted during 2017-18 at ICAR-Indian Institute of Pulses Research, Kanpur. Phenotyping for PHS and FSG was done

following Lamichaney et al. (2018). For PHS, experiment was conducted in 3 replications each of 5 pods placed in Petri dishes, lined with water-soaked Whatman No. 1 filter paper. After culturing the pods, the Petri-dishes were incubated at 25°C and seed germination in a pod (%) was recorded after 4 days of incubation. Germination of seed inside a pod was used as a measure for PHS tolerance. Number of germinated seeds was recorded in each replication and percentage in a pod was calculated. Higher the PHS value, higher is the susceptibility to PHS. For FSG, three replications each of 50 seeds were placed in Petri dishes lined with water-soaked Whatman No. 1 filter paper in an incubator at 25°C. FSG (%) was recorded after 7 days of incubation as per ISTA (2011). For the calculation of germination index (GI), seeds were examined daily for germination and were considered germinated when seedling reached approximately 2mm length. GI was calculated following the equation given by Basra et al. (2005);

$$GI = \sum_{n=1}^{13} \left(\frac{Ni}{Di} \right)$$

where, Ni represents mean number of seeds germinated on ith day while, Di represents number of days of germination.

PHS and FSG data were arcsin transformed and the single factor ANOVA was done using freely available online software OPSTAT (Sheoran *et al.* 1998). Principal component analysis was conducted using PAST (Paleontological statistics) version 3.02.

RESULTS AND DISCUSSION

The analysis of variance revealed significant differences for pre-harvest sprouting, fresh seed germination, germination index and 100-seed weight among 59 accessions under study

indicating sufficient variability for the traits under study among accessions. Diverse Vigna accessions recorded a wide variability in relation to seed germination in pod (PHS value). PHS and FSG in 59 accessions ranged between 0.00-100%. Among the 59 Asiatic Vigna accessions, five accessions (IC276983, IC349701, Trichy local 1, LRM/13-33 and LRM/13-26) of *V. trilobata* and one (IC251440) of V. sublobata were tolerant to PHS as they recorded no pod loss due to PHS (Table 1). All these accessions also recorded no FSG even after 13 days of incubation, except for V. sublobata (IC251440) which recorded FSG of 2.5%. Proportion of PHS for trilobata and sublobata accessions were 33.33% (5/15 accessions) and 5.55% (1/18 accession), respectively. Maximum pod loss due to PHS was recorded in the accession W21 belonging to the species V. radiata. Likewise, 10 accessions, W95, W53, W59 (V. sublobata), W107 (V. khandalensis), W15 (V. mungo), and W96, W18, W24, W32, W20 (V. radiata) recorded maximum germination (100%). Significant positive correlation was found between PHS value and FSG with a correlation coefficient of 0.869. GI and FSG also recoded very high and positive correlation with a correlation coefficient of 0.832. During domestication, selection was made for traits those were useful to mankind for food, fuel, fibre, fodder, etc., which led to improvement in traits like reduction in toxic compounds, bigger seed size, early and uniform germination, non-shattering habit, synchronous maturity, better nutritive value, etc. However, all these traits were the plant/seed defensive traits, and improvement of these traits for human welfare has somehow made plants/seeds susceptible to other biotic or abiotic stresses. For example, reduction in toxic compounds (tannins, phenols) has made plants/seeds susceptible to diseases and pests. Likewise, complete loss

Table 1 Wild Vigna accessions and their distribution in terms of PHS susceptibility

Number	Species	IC No./Collection No.	FSG (%)	PHS (%)	100-seed weight (g)	GI
W50	Vigna sublobata	248343	72.50	72.17	0.40	8.09
W26	Vigna trilobata	251416	85.00	80.45	0.54	40.00
W107	Vigna khandalensis		100.00	71.67	0.63	22.81
W85	Vigna trilobata	LRM/13-38	20.00	19.69	0.67	4.59
W86	Vigna trilobata	LRM/13-36	25.00	25.68	0.70	2.95
W108	Vigna umbellata		17.50	32.69	0.75	3.07
W43	Vigna trilobata	210580	90.00	90.29	0.75	18.31
W94	Vigna trilobata	NSB 007	45.00	30.77	0.78	20.28
W63	Vigna trilobata	276983	0.00	0.00	0.82	0.00
W65	Vigna trilobata	331454	22.50	11.52	0.84	2.76
W62	Vigna trilobata	349701	0.00	0.00	0.85	0.00
W68	Vigna sublobata	251440	2.50	0.00	0.85	1.25
W100	Vigna trilobata	Trichy Local 1	0.00	0.00	0.88	0.00
W84	Vigna trilobata	LRM/13-37	40.00	13.57	0.88	4.31
W64	Vigna trilobata	331454	17.50	27.54	0.91	1.98
W58	Vigna sublobata	LRM/13-30	40.00	47.89	0.92	9.35
W82	Vigna trilobata	LRM/13-33	0.00	0.00	0.92	0.00

Contd

Table 1 (Concluded)

Number	Species	IC No./Collection No.	FSG (%)	PHS (%)	100-seed weight (g)	GI
W66	Vigna trilobata	331456	47.50	23.14	1.01	8.87
W101	Vigna trilobata	Trichy local 2	25.00	17.44	1.03	4.87
W59	Vigna sublobata	TCR 512	100.00	72.78	1.09	49.38
W30	Vigna setulosa	277039	82.50	80.23	1.14	14.17
W52	Vigna sublobata	251436	85.00	76.67	1.18	21.72
W31	Vigna silvestris	277021	65.00	65.00	1.23	19.05
W80	Vigna aconitifolia	LRM/13-11	75.00	95.00	1.31	37.50
W53	Vigna sublobata	251438	100.00	95.00	1.40	47.81
W22	Vigna sublobata	349699	80.00	89.84	1.41	24.69
W10	Vigna mungo	251397	82.50	91.67	1.43	14.19
W41	Vigna sublobata	210575	97.50	39.22	1.45	30.69
W20	Vigna radiata	251427	100.00	89.45	1.55	50.00
W45	Vigna dalzelliana	203864	67.50	79.96	1.57	21.75
W72	Vigna umbellata	251445	100.00	54.33	1.71	24.17
W1	Vigna radiata	251432	97.50	94.00	1.72	30.42
W83	Vigna trilobata	LRM/13-26	0.00	0.00	1.72	0.00
W51	Vigna sublobata	251435	77.50	87.50	1.74	14.10
W39	Vigna sublobata	210563	67.50	92.48	1.82	4.66
W29	Vigna sublobata	277036	42.50	35.52	1.84	20.18
W44	Vigna dalzelliana	247408	60.00	85.19	1.86	9.66
W32	Vigna radiata	277014	100.00	85.85	1.94	39.17
W18	Vigna radiata	251426A	100.00	77.08	2.02	42.13
W23	Vigna sublobata	256158	30.00	58.44	2.02	5.49
W25	Vigna sublobata	247406	85.00	81.82	2.03	18.11
W42	Vigna pilosa	210576	60.00	68.72	2.03	15.89
W24	Vigna radiata	253924	100.00	81.90	2.05	37.02
W9	Vigna sublobata	251396	52.50	38.33	2.27	5.66
W36	Vigna sublobata	251423	17.50	18.52	2.30	2.58
W38	Vigna sublobata	247407	42.50	40.83	2.35	12.61
W49	Vigna umbellata	248326	40.00	47.54	2.40	3.47
W95	Vigna sublobata	TCR 279	100.00	65.64	2.41	49.38
W67	Vigna sublobata	TCR 513	42.50	56.45	2.42	3.68
W69	Vigna setulosa	251441	72.50	63.37	2.42	16.54
W3	Vigna radiata	251434	20.00	17.08	2.66	7.17
W5	Vigna radiata	57175	97.50	84.29	2.98	48.75
W21	Vigna radiata	251431	85.00	100.00	3.03	28.47
W19	Vigna radiata	251426B	85.00	91.88	3.21	40.00
W15	Vigna mungo	251390	100.00	74.76	3.36	23.47
W12	Vigna mungo	251385	57.50	37.90	3.41	21.23
W92	Vigna mungo	ZAP/10-7	97.50	72.50	3.55	45.63
W14	Vigna mungo	251387	95.00	68.57	3.61	24.55
W96	Vigna radiata	Mung Sel 4-I	100.00	76.11	4.35	25.00
		Mean	61.19	55.86	1.71	18.71
		Range	0.00-100.00	0.00-100.00	0.40-4.35	0.00-50.00
		SE(m)	7.14	8.81	0.05	1.93
		CV	18.62	39.21	3.78	36.42
		CD (0.5%)	20.27	24.56	0.13	5.47

or reduction of FSD has made seed/grain susceptible to weathering damage and PHS. In legumes, hard-seededness is often considered undesirable, as it hampers water uptake resulting into difficulty in milling. Also, persistent hard-seededness may cause non-uniform germination in field affecting crop establishment and yield. Therefore, selection was made against the trait that favours hard-seededness. Hence, the wild types which had not undergone artificial selection have been reported to have a higher level of FSD than the cultivated types (Dorian and Robin 2009). In our previous experiment on PHS in mungbean, we observed that germplasm lines had better PHS tolerance than cultivated varieties (Lamichaney *et al.* 2018).

There was a positive correlation on PHS, FSG and GI value with seed size. The overall mean PHS, FSG and GI values were 55.86%, 61.19% and 18.71, respectively. Smaller seeds with 100-seed weight of <1 g recorded comparably lower PHS (30.82%), FSG (34.11%) and GI (8.23) values as compared to those accessions with larger seeds. Seeds with 100-seed weight between 1-2 g recorded PHS, FSG and GI value of 69.06%, 73.92% and 23.19, while, seeds with 100-seed weight >2 g recorded PHS, FSG and GI value of 62.94%, 70.47% and 22.70, respectively (Fig 1). In general small seeded Vigna accessions had better tolerance to PHS with low FSG and GI as compared to the accessions with large seeds. Williams (1989) reported higher occurrence of hard-seededness in small seeded than the large seeded mungbean and were in concurrence with our findings. Humphry et al. (2005) conducted QTL analysis to decipher the relationship between hard-seededness and seed weight in mungbean. They reported 4 QTLs for hard-seededness and 11 for seed weight while, two of the four QTLs for hard-seededness co-localised with loci conditioning seed weight. Development of medium-large and hard-seeded varieties has now become an important breeding objective of mungbean improvement programme and linkage between these two traits perhaps, explains the reasons for difficulty in maintaining hard-seededness in large seeded varieties. Highly significant positive association was observed between PHS value and FSG, with a pearson correlation coefficient of 0.869 (P< 0.01). Despite high correlation between the seed germination in a pod (PHS) and after removing from the pod (FSG), the germination % was higher after removing the seed from the pod, which could be attributed to mechanical or physical barrier provided by pod restricting the availability of water to the seeds, preventing its imbibition and consequently affecting the germination of seeds. The accessions (W5, W20, W53, W59, W95) having very high GI (Table 1) of more than 48 (48 seeds out of 50 germinated within 24 h) had PHS value ranging from 65–90% indicating the role of pod wall as a physical barrier. Lamichaney et al. (2018) had reported positive association between water holding capacity of pod with PHS in mungbean accessions, which is influenced by the wax content of pod (Vijay and Gupta, 2008) and pod wall thickness (Rao et al. 2007, Ahmad et al. 2014).

It was interesting to note that there was a significant

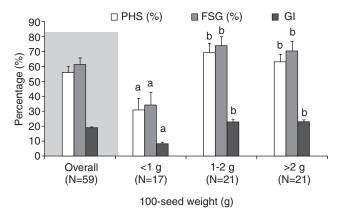


Fig 1 Differences in pre-harvest spouting (PHS), fresh seed germination (FSG) and germination index (GI) based on seed size. Data for FSG and PHS were recorded on 7th and 4th day of incubation respectively, at 25°C. For GI calculation, germination count was made daily up to 13 days. Bar represents standard error (±).

difference in PHS and FSG value due to differences in flowering and maturity time (Table 2). The accessions that flowered early during late July had the least value for PHS (21.34%) and FSG (21.25%) followed by accessions flowering in early August (60.98%, 65.08%) and middle or late August (65.96%, 76.18%). Likewise, accessions maturing during middle of August recorded least PHS and FSG value of 38.58 and 39.50% respectively, followed by accessions maturing during end of August (55.34%, 60.74%), and early to middle September (71.93, 81.17%). It was observed that the early maturing *Vigna* accessions had higher tolerance to PHS with high seed dormancy as depicted by low FSG then late maturing accessions. This may be due to higher selective pressure for PHS resistance as these months receives maximum rainfall.

Development of medium-large seeded varieties (3.5-4.2 g/100 seeds) is an important breeding objective considering its acceptance by the consumers. However, in the present scenario of changing climate with uncertainties in rainfall, especially during crop maturity stages, incorporation of hard-seededness (physical dormancy) has become utmost important. The identified accession, IC 251440 (W68) of *V. sublobata* (considering crossing compatible) may serve as a potential donor for FSD and incorporation of same to

Table 2 Average value of PHS and FSG based on flowering and maturity time

Flowering time	PHS (%)	FSG (%)
Late July (N=10)	21.34 ± 11.03^{a}	21.25 ± 10.22^{a}
Early August (N=30)	60.98 ± 5.11^{b}	65.08 ± 5.51^{b}
Mid to late August (N=19)	$65.96 \pm 5.23^{\text{b}}$	76.18 ± 5.72^{b}
Maturity time		
Mid August (N=15)	38.58 ± 9.77^{a}	39.50 ± 8.95^{a}
Late August (N=27)	55.34 ± 5.47^{ab}	60.74 ± 6.25^b
Early to mid Sept (N=17)	71.93 ± 5.34^{b}	81.17 ± 5.94^{b}

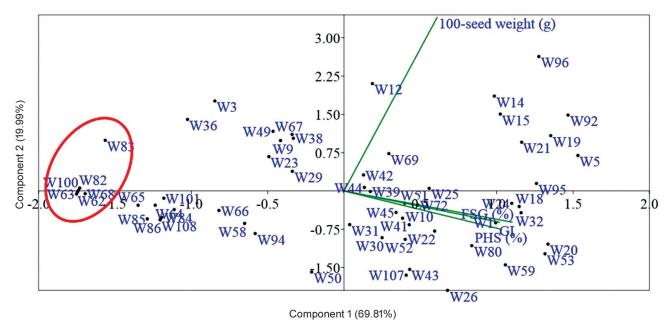


Fig 2 Scatter plot showing the distribution of 59 wild Vigna accessions based on PC1 and PC2 scores.

cultivated varieties of different *Vigna* species will help in reducing the loss incurred due to PHS.

ACKNOWLEDGEMENTS

The authors are grateful to Mr Nand Lal and Mr Anuj Dubey for their technical assistance during experiment.

REFERENCES

Ahmad S, Khulbe R K and Roy D. 2014. Evaluation of mungbean (*Vigna radiata*) germplasm for pre-harvest sprouting tolerance. *Legume Research* **37**: 259–63.

Anupama S, Khulbe R K and Panwar R K. 2012. Evaluation of urdbean (*Vigna mungo*) germplasm for pre-harvest sprouting tolerance. *Journal of Food Legumes* **25**: 183–86.

Basra S, Farooq M, Tabassam R and Ahmad N. 2005. Physiological and biochemical aspects of pre-sowing seed treatments in fine rice (*Oryza sativa* L.). Seed Science and Technology **33**: 623–28.

Dorian Q F and Robin A. 2009. Seed dispersal and crop domestication: shattering, germination and seasonality in evolution under cultivation. *Annual Plant Reviews* **38**: 238–95.

Durga K K and Kumar S S. 1997. Screening for pre-harvest sprouting in pulses. *Legume Research* **20**: 193–97.

Hampton J G. 2002. What is seed quality? *Seed Science and Technology* **30**: 1–10.

Hampton J G, Boelt B, Rolston M P and Chastain T G. 2013. Effects of elevated CO₂ and temperature on seed quality. *Journal of Agricultural Sciences* **151**: 154–62.

Humphry M E, Lambrides C J, Chapman S C, Aitken E A B, Imrie B C and Lawn R J. 2005. Relationships between hard-seededness and seed weight in mungbean (*Vigna radiata*) assessed by QTL analysis. *Plant Breeding* **124**: 292–98.

International Seed Testing Association. 2011. International rules for seed testing. *Seed Science and Technology* **13**: 447.

Kulwal P, Ishikawa G, Benscher D, Feng Z, Yu L X and Jadhav A. 2012. Association mapping for pre-harvest sprouting resistance in white winter wheat. *Theoretical and Applied Genetics* 125: 793–805. Lamichaney A, Katiyar PK, Laxmi V and Pratap A. 2018. Variation in pre-harvest sprouting tolerance and fresh seed germination in mungbean (*Vigna radiata* L.) genotypes. *Plant Genetic Resources - Characterization and Utilization* 16(5): 437–45.

Lamichaney A, Swain D K, Biswal P, Kumar V, Singh N P and Hazra K K. 2019. Elevated atmospheric carbon–dioxide affects seed vigour of rice (*Oryza sativa* L.). *Environmental and Experimental Botany* **157**: 171–76.

Maity A, Vijay D, Mukherjee A and Lamichaney A. 2016. Potential impacts of climate change on quality seed production: a perspective of hill agriculture. *Conservation Agriculture*, pp 459–485. Bisht J K, Meena V S, Mishra P K and Pattanayak A (Eds). Springer, Singapore.

Pratap A, Tomar R, Kumar J, Pandey V R, Mehandi S and Katiyar P K. 2015. High-throughput plant phenotyping platforms. Phenomics in Crop Plants: Trends, Options and Limitations, pp 285–296. Kumar J, Pratap A and Kumar S (Eds). Springer, New Delhi.

Rao K L N, Rao C M and Rao Y K. 2007. Evaluation of greengram germplasm for tolerance to pre-harvest sprouting. *Environmental Protection*, pp 51–54. Kumar A and Nehar S (Eds). Daya Publishing House, Delhi.

Rashid M, Hampton J G, Rolston M P, Khan K M and Saville D J. 2018. Heat stress during seed development affects forage brassica (*Brassica napus* L.) seed quality. *Journal of Agronomy and Crop Science* 204: 147–54.

Sheoran O P, Tonk D S, Kaushik L S, Hasija R C and Pannu R S. 1998. Statistical software package for agricultural research workers. *Advances in Information Theory, Statistics & Computer Applications*, pp 139–43. Hooda D S and Hasija R C (Eds). Department of Mathematics Statistics, CCS HAU, Hisar.

Vijay L and Gupta S. 2008. Pre-harvest sprouting tolerance in mungbean. Pulses News Letter 19, Kanpur, India: Indian Institute of Pulses Research, pp 4–5.

Williams R W. 1989. 'A study of the causes of, and selection for resistance to weather damage in mungbean [Vigna radiata (L.) Wilczek; V. mungo (L.) Hepper]'. Ph D thesis, University of Queensland, Australia.