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Characterization of poly-f-hydroxybutyrate producing halophilic bacteria
and nutrient optimization for its maximum production
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ABSTRACT

An experiment was conducted at the Indian Agricultural Research Institute, New Delhi (2017-18) to report the
identification of halophilic poly-8-hydroxybutyrate (PHB) producing bacteria and optimization of process parameters
for maximum PHB recovery. The phylogenetic analysis classified the isolates into bacterial phylum a, y-Proteobacteria,
and Firmicutes. Halomonas sp. KB7 and Stenotrophomonas maltophila B11 produced maximum PHB in mineral salt
media having optimized C and N concentration with 10% NaCl. Optimizing media increased PHB production from
23.80-73.7% w/w for Halomonas sp and 29.5-78.3 % w/w for S. maltophila.
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The recalcitrant nature of plastics has created long-term
problems of plastic accumulation in nature and research on
finding biodegradable plastic sources is required (Moharir
et al. 2019). A polyester, poly-p-hydroxybutyrate (PHB),
which is synthesized by bacteria under low nitrogen and
excess carbon in growth medium resembles petroleum-
derived plastics but completely degrades into CO, and water
(Li et al. 2016). Besides, it has applications in medicine,
veterinary, and agriculture due to its biocompatibility (Li et
al. 2016). To produce PHB economically and competitively,
a wide range of carbon sources, novel bacterial strains,
fermentation conditions, and recovery methods have been
proposed (Zulfigar et al. 2018). Recent studies attempt
to solve the costliest factors by investigating the use of
cheaper carbon sources and different fermentation strategies
by using novel microorganisms (Chee ef al. 2010). PHB
production could become cheaper if there is a way to
make bacteria produce larger amounts of polymer within
shorter periods, without involving much fermentation
cost. Halophilic bacteria are of much interest because at a
high salt concentration of >8%, the non-halophilic growth
is prevented, hence allowing the fermentation process
without strict sterile conditions and thereby reducing
the inherent costs for sterilizing the culture media and
equipment (Quillaguaman et al. 2010). Cell walls can also
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easily lyse in the absence of salt, especially in distilled
water thus, enabling the recovery of PHB from extreme
halophiles much easier in an economically viable manner
(Quillaguaman et al. 2010). The current study was carried
out to report the identification of PHB producing halophilic
bacteria and the optimization of their growth media for
maximum PHB recovery.

MATERIALS AND METHODS

Sixty bacterial cultures previously isolated from
hypersaline soils of Rann of Kutch, Gujarat, India (Yadav
et al. 2019) were screened for their ability to grow at 10%
NaCl in mineral salt (MS-NaCL) medium (Schlegel et al.
1970) at 30°C by estimating total protein after 72 h of
incubation by Bradford’s method. Halophilic isolates were
screened qualitatively for PHB production in the MS-NaCl
medium at 30 °C by Sudan Black staining (Schlegel e? al.
1970). The yield of PHB in positively stained isolates was
quantified at 48, 72, 96, and 120 h of incubation in MS-
NaCl broth. PHB was extracted from the cells (Hahn et al.
1994) and quantified by HPLC (Karr et al. 1983). Samples
(10ul) were eluted with SmM H,SO, at a flow rate of 0.6
ml/min from an Aminex HPX-87H column (300 mm x 7.8
mm) using HPLC (Waters India limited model 515) and the
absorbance was measured at 210 nm. The amount of PHB
was calculated based on chromatograms of standard PHB
and expressed as (%) gm PHB/g Cell Dry Weight (CDW).

For identification of selected PHB producing isolates,
the 16S rRNA gene sequences were amplified by PCR
from their genomic DNA using universal primers pA and
pH (Edwards et al. 1989) and outsourced to Agrigenome
Private Limited, Kochi, India for Sanger sequencing. A
similarity search of all the sequences was done using the
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nBLAST at the NCBI GenBank database and assigned
accession numbers were assigned (KJ874354 to KJ874382).
Nitrogen source and its concentration were optimized for
maximum PHB production. Seven N sources, viz. KNO,,
KNO,, (NH,),HPO,, (NH,) H,PO,, (NH,),SO,, NH,ClI,
and L-glutamate, were tested by replacing regular N source
in MS-NaCl media with 4 different concentrations (0.1%,
0.25%, 0.50%, and 0.75%). The 1% inoculum (108 cells/
ml) of two best PHB producing was inoculated in modified
MS-NaCl broth and shake incubated for 72 h at 30°C. For
C source optimization, 7 compounds, viz. fructose, lactose,
mannitol, sodium acetate, xylose, starch, and glucose were
used to modify MS-NaCl media having optimized N in 4
concentrations (1.0, 1.5, 2.0, 2.5%). The PHB production
was estimated by HPLC.

The optimized MS-NaCl media was made by replacing
1% glucose and 0.1% NH,Cl in the MS-NaCl medium with
the optimized concentration of N and C source. Growth
kinetics of both the selected isolates using optimized MS-
NaCl media was studied by plotting the bacterial growth
curve up to 96 h of incubation at 30°C using Microbial
Growth Kinetic Analyser (BIOSCREEN C System, OY
Growth Curves Ab Ltd, Finland). From the growth curve
the doubling time (t) of isolates between two-time interval,
tl,and ty, was calculated and used to calculate the specific
growth rate (p1) using the following equation:

2.303
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population at time t. The generation time (g) of the isolates
was calculated by the following formula:

0.693
§=——

U

The PHB from both the cultures grown on optimized
MS-NaCl media quantified by HPLC initially at the interval
of 5 h till 20 h and then at the interval of 10 h till 96 h of
incubation in triplicate. The % PHB was plotted on a time
scale along with the growth curve.

Statistical analyses of the data were performed using
STATISTICA 10. Unless indicated otherwise, differences
were considered only when significant at P=0.05.

RESULTS AND DISCUSSION

Characterization of bacteria for salinity tolerance and
PHB production: Forty-one isolates showed significant
growth in MS-NaCl media and their total protein ranged
from 14.60— 307.84 pg/mL (S Table 1). Subsequently, only
29 isolates showed PHB accumulation as indicated by dark
pigmentation after Sudan Black staining (S Fig 1). The PHB
in these isolates ranged from 0.20-29.50% of CDW (Table
1). After 48 h, 12 isolates produced PHB ranging from 0.20—
16.40% of CDW and maximum production was observed by
B11 (16.40%) followed by B13 (15.70%) and KB7 (11.58%).
After 72 h, (only 9 isolates accumulated PHB) B11 (29.5%)
and KB7 (23.80%) produced significantly higher PHB. Singh
and Parmar (2011) reported an increase in PHB yield in a
time-dependent manner and the highest yield, 5.31 g/L,
was obtained after 72 h of growth in Bacillus sp. With the
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Fig 1 Growth curve and PHB accumulation (% CDW) of Halomonas sp.KB7 and S. maltophila B11 in 95 h of incubation
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Table 1 PHB production by selected bacterial isolates at a

different time interval

Isolate PHB (% of CDW)
No. 48 h 72 h 96 h 120 h
181 0.00 19.70 0.00 0.00
(£2.33)
1S4 0.00 15.30 0.00 0.00
(£1.69)
283 4.00 (£0.51) 1570 9.20 (0.21) 1.80 (£0.03)
(+2.18)
454 8.00 (£1.20)  12.90 15.00  1.40 (£0.01)
(£2.19) (+1.36)
KBI1 5.00 (£0.98) 1937  8.00 (+1.59) 8.10 (x1.36)
(£3.38)
KB3 2.00 15.30 11.00  3.10 (+0.07)
(#0.0.35)  (+1.38) (+1.32)
KB7 11.58 23.80 17.60 14.90
(#03.67)  (#3.67) (+2.39) (#2.31)
Bl 0.00 0.00  2.20 (£0.36) 3.70 (+0.05)
B2 0.00 0.00  1.50 (+0.08)  0.00
B3 4.00 (£0.38)  18.60 10.60  6.90 (£0.91)
(*2.35) (+1.06)
B4 0.00  3.60 (£0.39)  13.80 0.00
(£1.09)
B5 0.00  5.10 (£0.69) 4.80 (0.06)  0.00
B6 11.00 17.60 10.60  3.40 (+0.29)
(£2.69) (*1.27) (+1.51)
B7 6.80 (£1.68)  0.00 0.00 0.00
B9 3.00 (£0.34)  0.00 0.00 0.00
B10 4.80 (£0.89)  11.30 0.00 0.00
(£2.68)
Bl1 16.40 29.50 18.90 13.43
(+2.69) (+3.51) (+2.36) (+1.61)
B13 15.70 1270 5.40 (x0.53)  0.00
(+1.97) (+1.03)
Bl4 0.20 (£0.06) 2.90 (+0.05) 3.79 (+0.16) 0.50 (£0.07)
B15 10.30 11.40 0.00 0.00
(+2.19) (+0.67)
B16 0.00  3.40 (£0.21) 0.90 (0.06)  0.00

B17 9.80 (+2.36) 8.40 (+0.83) 1.10 (£0.08) 0.30 (+0.09)

B18 0.00 6.10 (+0.69) 1.90 (+0.03) 0.00
B22 0.00 2.90 (+0.06) 16.40  3.30 (+0.94)
(*1.06)
B24 0.00 11.60  6.90 (+0.36) 0.00
(#1.16)
B27 0.00 0.00 19.50 12.89
(#£2.59) (#£3.64)
B28 0.00 11.30  4.80 (+0.45) 0.40 (+0.03)
(#0.62)
B29 0.20 (+£0.06) 2.60 (+0.09) 3.26 (+0.07) 0.00
B30 9.20 (£3.98) 10.10 0.00 0.00
(£1.11)

LSD (P=0.05)° Between isolates: 4.86 and Between Time: 4.32
(*Figures in parenthesis are standard deviation)
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increase in time, from 72 to 96 h, a significant reduction
in PHB was observed, however, isolates B11 (18.90%) and
KB7 (17.60%) still produced significantly higher PHB.
A further significant decline in PHB accumulation was
observed at 120 h of incubation. The decrease in PHB
accumulation with time varies between bacteria and depends
upon the growth rate of an isolate, lack of micronutrients,
viscosity of the medium, and inhibitory effect of secondary
metabolites produced during the stationary phase (Flora et
al. 2010, Belal 2013).

Phylogenetic characterization of PHB producing
isolates: Upon identification, the 29 isolates were grouped
into 3 phyla, viz. a-Proteobacteria, y-Proteobacteria, and
Firmicutes. Alpha-proteobacteria was represented only by
Paracoccus sp, which has also been previously reported by
Kalaiyezhini and Ramachandran (2014). Among Firmicutes,
6 species of 16 Bacillus isolates, i.e. B. megaterium, B.
aryabhattai, B. cereus, B. subtilis, Bacillus sp. and B. pumilus
were identified. PHB producing halophilic Bacillus was also
reported earlier from the marine ecosystem (Singh ef al.
2009; Thuoc et al. 2012, Antony et al. 2012). The rest of
the 12 isolates of the genera Enterobacter, Halomonas, and
Stenotrophomonas belonged to y-Proteobacteria. Ceyhan and
Ozdemir (2011) reported PHB production by Enterobacter
aerogenes by using domestic wastewater. Maximum PHB
producing isolate KB7 and B11 were identified as Halomonas
sp. and Stenotrophomonas maltophila, respectively. PHB
production by the species of halophilic bacterium Halomonas
was first reported by Quillaguaman et al. (2007). Kawata
et al. (2012) reported PHB production by Halomonas sp.
KM1 by using 10% glycerol and sodium nitrate (2.0 g/L).
PHB production by Stenotrophomonas maltophilia was
earlier reported by Singh and Parmar (2011).

Optimization of N and C source: Both the isolates,
Halomonas sp. KB 7 and S. maltophila B11, accumulated
PHB on all the N sources except for the NO,-N (Table 2).
PHB production by KB7 (57.3% of CDW) and B11 (65.5%
of CDW) was significantly higher in MS-NaCl media having
0.25% L-Glutamate over other N sources, whereas, growth
was significantly higher on NH,Cl. Li et al (2013) reported
glutamate as a preferred N source for PHB production,
whereas, maximum reports indicated the preference for
NH,-N (Sangkharak and Parsertsan 2008, Belal 2013). S.
maltophila B11 accumulated PHB (48.7% CDW) by using
0.25% (NH,),S0O,, however, it was significantly lower than
that produced by using 0.25% L- glutamate. With increasing
nitrogen concentration, from 0.1-0.75%, CDW increased
significantly but %PHB accumulation decreased. The N
concentrations of 0.75% did not support PHB accumulation
except for the L-Glutamate. It was reported that the presence
of higher N concentration has an inhibitory effect on PHB
accumulation (Belal 2013). It was concluded that both the
isolates produced maximum PHB using 0.25% L-Glutamate
as the N source.

Halomonas sp. KB7 showed significantly higher cell
growth (9.0+0.28 g/L) and PHB production (69.4% of
CDW) in the MS-NaCl medium having 2% glucose in 72
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Table 2  Effect of different nitrogen and carbon and their concentration on growth and PHB accumulation by Halomonas sp. KB7 and

S. maltophila B11

HALOPHILIC POLY-B-HYDROXYBUTYRATE PRODUCING BACTERIA

N and C Sources Concentration' Halomonas sp. KB7 Stenotrophomonas maltophila B11
CDW PHB CDW PHB
(g/L) (% CDW) (g/L) (% CDW)
KNO, 0.25% 438 12.30 4.76 37.90
NH,H,PO, 0.1% 4.80 36.80 2.94 34.30
NH,CI 0.1% 3.26 28.90 4.30 42.10
N-Source
(NH,),HPO, 0.1% 4.30 23.70 4.66 12.40
L-Glutamate 0.25% 4.36 57.30 4.12 65.50
(NH,),S0, 0.25% 4.22 39.90 4.86 48.70
LSD(p:o.os) for N Source 0.49 5.71 0.43 6.98
Glucose 2.0% 9.00 69.40 7.80 36.90
Fructose 1.5% 4.70 53.00 5.60 19.00
Lactose 1.0% 4.10 35.70 4.60 37.70
C-Source  Mannitol 1.5% 3.50 38.60 8.20 61.70
Na-Acetate 1.5% 5.00 47.20 4.70 55.20
Xylose 1.5% 4.40 16.70 5.20 14.80
Starch 2.0% 4.30 27.10 5.30 12.00
LSDp_g.05 for C Source 0.68 0.32 0.57 0.31

IConcentration of N and C source at which significantly higher %PHB production was observed

h (Table 2). Besides glucose, fructose (53% of CDW) and
sodium acetate (47.2% of CDW) at 1.5% also produced
significantly higher PHB than lactose, mannitol, xylose, and
starch. Xylose was found to be the least preferred carbon
source and it could be because pentose catabolism affects
the growth kinetics of various Gram-negative bacteria. .
maltophila B11 produced significantly higher PHB (61.7%
of CDW) in MS-NaCl media having 1.5% mannitol as
compared to all other carbon sources. Belal (2013) also
reported 1-2% of mannitol as the best C source for PHB
production.

Based on the optimization studies, for Halomonas sp
KB7 the MS-NaCl media was modified by replacing 1%
glucose and 0.5% (NH,),SO, with 2% glucose and 0.25%
L-glutamate. Similarly for S. maltophila B11, 1% glucose
and 0.5% (NH,),SO, was replaced with 1.5% mannitol
and 0.25% L-glutamate. L-Glutamate is 10% cheaper than
(NH,),SO,, hence it will help in reducing the cost. The
concentration of carbon and nitrogen in both the medium
was 38:1 and 28:1, respectively. The increase in carbon
from 1-2.5% at a fixed N (0.25%) showed a corresponding
increase in PHB in isolates (Table 2). Pieja et al. (2011) too
observed a linear correlation (R? = 0.96) between %PHB
in cells versus C:N.

Growth kinetics and PHB production: The final quantity
of PHB yield depends on the growth kinetics of the bacteria
(Divyashree ef al. 2009). The growth curve (Fig 1) of both
the isolates revealed that the S. maltophila reached stationary
phase at 24 h with a specific growth rate (1) of 0.196/h and
generation time (GT) of 3.52 h, whereas, Halomonas sp.
reached stationary phase at 36 h with p of 0.187/h and GT

of 3.7 h. Similar growth kinetics were demonstrated for S.
maltophila ATCC 51331, reaching the stationary phase by
24 h (Anderson et al. 2006). Burch et al (2013) reported
doubling time of Halomonas sp. about 1.5 h in media
containing 3% NacCl at 30-41°C. Although, both KB7 and
B11, reached the stationary phase at different time interval
but started accumulating PHB at 30 h of incubation and
increased significantly up to 70 h.

PHB accumulation in isolate Halomonas sp. and
Stenotrophomonas maltophila increased from 2.59—78.30%
of CDW from 30-80 h of incubation, wherecas, PHB
accumulation by the isolate Halomonas sp increased
from 0.4-73.7% of CDW from 30 to 80 h of incubation.
Similar results for PHB accumulation were obtained by
Bacillus subtilis in the stationary phase at 72 h (5.191 g/L)
using the sugar industry wastewater (Singh et al. 2013).
The study provided useful data about the diversity of
PHB producing halophilic bacteria and optimizes growth
conditions for maximum PHB production. Optimization of
concentration and source of C and N in MS-NaCl media
significantly increased PHB accumulation by Halomonas
sp KB7 and Stenotrophomonas maltophila B11. These
bacteria can be utilized for upscaling PHB production
industrially, as a fast-emerging alternative to the non-
biodegradable plastics.
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