# Residual effect of rock-phosphate and PSB on rice yield and soil properties

SIDDHARTHA SANKAR BISWAS<sup>1</sup>, DIPAK RANJAN BISWAS<sup>2</sup>\*, TAPAN JYOTI PURAKAYASTHA<sup>2</sup>, ABHIJIT SARKAR<sup>2</sup>, RAJESH KUMAR<sup>3</sup>, TAPAS KUMAR DAS<sup>3</sup>, MANDIRA BARMAN<sup>3</sup>, SUNIL PABBI<sup>3</sup>, AVIJIT GHOSH<sup>4</sup> and RAM PAL<sup>1</sup>

ICAR-Indian Agricultural Research Institute, New Delhi 110 012, India

Received: 25 September 2020; Accepted: 10 November 2020

#### ABSTRACT

Use efficiency of direct application of phosphorus (P) hardly exceeds 15-20% because of fixation to soils. The fixed-P could be utilized subsequently if it is brought to plant usable form. An experiment was conducted at Division of Soil Science and Agricultural Chemistry, ICAR-Indian Agricultural Research Institute, New Delhi during 2017–18 to investigate the residual effects of different P sources like di-ammonium phosphate (DAP), rock phosphate (RP), RP+phosphorus solubilizing bacteria (PSB) and DAP+RP+PSB on rice yield, P uptake, P dynamics and enzyme activities in an Inceptisol. Results indicated that application of DAP<sub>30</sub>+RP<sub>60</sub>+PSB had 20.7, 24.3,19.6, 21.0, 28.1, 33, 15.2, 14.4 and 29.4% higher rice grain and straw yields, grain and straw P uptakes, available and saloid P, dehydrogenase, acid phosphatase and alkaline phosphatase activities respectively, as compared to DAP treatment. Thus, it can be inferred that application of DAP+RP+PSB can reduce fertilizer P consumption by 50%, and support the residual (second) crop better than conventional P-fertilizers, and improve soil available and saloid P status as well as enzymatic activities.

**Keywords:** Phosphorus, Phosphate solubilizing bacteria, Residual effect, Rice, Rock phosphate.

Low phosphorus (P) use efficiency (PUE) of conventional fertilizers has become a challenge in the era of intensive agriculture. Inadequate reserve of high-grade rock phosphate (HGRP, >30% P<sub>2</sub>O<sub>5</sub>) is forcing India to utilize low-grade rock phosphate (LGRP, <20% P<sub>2</sub>O<sub>5</sub>) as P source to crops. Earlier researches showed that LGRP could be utilized by partial acidulation (Biswas and Narayanasamy1995); organic acid loaded RP formulations (Roy et al. 2018) and developing polymer coated P-fertilizers (Sarkar et al. 2015, 2018, 2020). But, high cost in synthesis of new RPformulations made us to think in a different way. Zhou et al. (1992) reported that only 0.1% of total P in soil is present in bioavailable form during residual fertility assessment. Thus, there is an opportunity to utilize the fixed-P by subsequent crops after converting them into plant usable forms. Here, application of phosphate solubilizing bacteria (PSB) can play a vital role as they may continue to solubilize P for the subsequent crops after the main crop. Use of PSB like Pseudomonas spp., Bacillus spp., etc. has the potentiality to solubilize fixed-P in soil and significantly increase available

<sup>1</sup>ICAR-National Research Centre for Orchids, Pakyong, India; <sup>2</sup>ICAR-Indian Institute of Soil Science, Bhopal, India; <sup>3</sup>ICAR-Indian Agricultural Research Agricultural Research Institute, New Delhi; <sup>4</sup>ICAR-Indian Grassland and Fodder Research Institute, Jhansi. \*Corresponding author e-mail: drb\_ssac@yahoo.com

P in soil by producing organic acids (Roy et al. 2019, Sarkar et al. 2021). However, very scarce information is available on the residual effects of PSB and RP application on soil total P, inorganic P (IP), organic P (OP), microbial biomass P (MBP), and different fractions of inorganic P like saloid P (Sal-P), aluminium P (Al-P), iron P (Fe-P), calcium P (Ca-P) and reductant soluble P (Res-P). For this, we aimed to study the residual effect of LGRP and PSB on rice yield and P uptake; and to assess their influence on P dynamics among different soil P fractions and enzyme activities. We hypothesized that PSB will continue to solubilize P from RP and provide better residual effect as P source as compared to conventional fertilizer P.

#### MATERIAL AND METHODS

Bulk soil sample (0–15 cm) was collected from the experimental farm, ICAR-IARI, New Delhi (2017–18). Part of soil sample was processed and analyzed for physicochemical parameters. The other portion of soil was passed through 5-mm sieve and used for pot-culture experiment. Mechanical analysis was done following the procedure of Bouyoucos (1962). Soil pH and electrical conductivity was determined using soil: water ratio of 1:2.5 (Jackson 1973). Oxidizable organic C was determined by rapid titration method (Walkley and Black 1934). Available P was extracted with 0.5 M NaHCO<sub>3</sub> (pH 8.5) and determined spectrophotometrically using ascorbic acid blue colour method (Watanabe and Olsen 1965). Total P, IP and OP were estimated following the method outlined

by Page *et al.* (1982). In sequence, further fractionation of IP namely, Sal-P, Al-P, Fe-P, Ca-P and Res-P was done following the modified P fractionation scheme of Kuo (1996). Phosphatase enzyme activity (PA), viz. acid PA and alkaline PA were determined by *p*-nitrophenol method (Tabatabai and Bremner 1969). Dehydrogenase activity (DHA) was determined following the protocol of Klein *et al.* (1971). Microbial biomass phosphorus (MBP) was determined using the procedure of Brookes *et al.* (1982).

The experimental soil was non-saline (EC 0.18 dS/m), alkaline (pH 8.4); and sandy-loam in texture (59.8% sand, 24.9% silt and 15.3% clay). Soil had organic C 4.1 g/ kg; available P, total P, IP, OP, Sal-P, Al-P, Fe-P, Ca-P and Res-P were 9.5, 501,397,104, 9.12, 15.5, 16.8, 249.8 and 85.5 mg/kg, respectively; DHA 9.1 µg TPF/g soil/ h, acid PA 67.2 µg PNP/g soil/h; and alkaline PA 134 µg PNP/g soil/h. Udaipur RP (100-mesh size), an indigenous LGRP, was used in this experiment. It contained 7.95% total P; 0.004% water-soluble P; 1.58% citrate-soluble P and 6.38% citrate insoluble P. Wheat was grown as main crop with five treatments namely,  $T_1 = \text{Control}$ ;  $T_2 = 60$ mg  $P_2O_5$  /kg soil from DAP (DAP<sub>60</sub>);  $T_3$ = 120 mg  $P_2O_5$ / kg soil from RP (RP<sub>120</sub>);  $T_4$ = 120 mg  $P_2O_5$ /kg soil from RP+ PSB (RP<sub>120</sub>+PSB) and  $T_5$ = 30 mg  $P_2O_5$  from DAP+ 60 mg P<sub>2</sub>O<sub>5</sub>/kg soil from RP+ PSB (DAP<sub>30</sub>+RP<sub>60</sub>+PSB) using completely randomized design.

Approximately 5 mL liquid PSB culture (*Pseudomonas striata*,  $\sim 10^8$  cfu/mL) was used per pot (5 kg soil). Uniform doses of nitrogen (100 mg N) and potassium (60 mg K<sub>2</sub>O) through urea and KCl were applied to each pot. After wheat, rice (*var* PB 1401) was grown on the same pots to assess the residual fertility. Continuous submergence was maintained during rice. Before rice, T<sub>1</sub>, T<sub>2</sub>, T<sub>3</sub>, T<sub>4</sub> and T<sub>5</sub> correspondingly had 492, 525, 610, 603, 554 mg/kg total P; 399, 431,518, 521, 474 mg/kg IP; 92.8, 93.6, 91.9, 82.3, 79.7 mg/kg OP and 8.92, 13.5, 9.3, 11, 14.6 mg/kg available-P. From each treatment, soil was sampled at 40 days after transplanting (DAT), 70 DAT and maturity stage and analyzed for available-P. Soil samples collected after rice maturity was also analyzed for different soil P fractions and enzyme activities. After rice harvesting,

grain and straw yields were recorded. Samples (grain and straw) were oven dried (60±5°C for 48 h), digested with di-acid (HNO<sub>3</sub>:HClO<sub>4</sub> in 9:4) and analyzed P content in the acid extract spectrophotometrically using vanadomolybdo-phosphate yellow colour method (Jackson 1973).

Data generated from pot experiments were assessed through Analysis of Variance (ANOVA) for completely randomized design using SAS program. The least significance difference between the treatment means was calculated at P≤0.05 (Gomez and Gomez 1984).

#### RESULTS AND DISCUSSION

Application of RP (T<sub>2</sub>) had non-significant impact on rice grain and straw yields as compared to unfertilized control (T<sub>1</sub>) (Table 1). This is obvious because of low solubility of RP particularly in neutral to alkaline soil as source of P (Russell 1973). It was observed that rice grain and straw yields with RP+PSB treatment ( $T_{\Delta}$ ) were ~23.8 and 33.3% higher over those received from RP treatment (T3). Application of DAP+RP+PSB (T<sub>5</sub>) recorded ~20.7 and 24.3% higher grain and straw yields, respectively over DAP treatment. The P uptakes from T<sub>5</sub> treatment by rice grain and straw was correspondingly ~19.6 and 21% higher over those obtained from T2. Because applied P from fertilizer gets fixed to plant unavailable forms (Roy et al. 2018). On the other hand, inoculation of PSB resulted in continuous solubilization of P from RP and soil-fixed-P, simultaneously PSB also inhibited P-fixation. Thus, P availability increased to the crops compared to DAP. Ghosal et al. (2013) also reported that residual effect of Morocco RP was better over DAP to increase rice yield and P uptake.

At maturity stage (MAS), application of DAP<sub>30</sub>+RP<sub>60</sub>+PSB resulted ~28.1% higher soil available-P as compared to DAP<sub>60</sub> treatment (Table 1). Heterotopic PSB produced organic acids like citric acid, oxalic acid etc. (Sarkar *et al.* 2021). These organic acids solubilized P from RP and soil by chelation, complexation of cations (Al<sup>3+</sup>, Fe<sup>3+</sup> and Ca<sup>2+</sup>), ligand exchange of phosphate ions by organic anions (Khan *et al.* 2009) and increased soil available P. At 40 DAT, available P was moderate, but it was minimum at 70 DAT, which may be due to maximum crop

Table 1 Residual effect of different forms of applied P and phosphate solubilizing bacteria on yield, P uptake by rice and available P in soil

| Treatment | Yield (g/pot)       |                   | P uptake            | (mg/pot)          | Available P in soil (mg/kg soil) |                   |                     |  |
|-----------|---------------------|-------------------|---------------------|-------------------|----------------------------------|-------------------|---------------------|--|
|           | Grain               | Straw             | Grain               | Straw             | 40 DAT                           | 70 DAT            | Maturity stage      |  |
| $T_1$     | 5.39 <sup>D</sup>   | 7.17 <sup>D</sup> | 11.2 <sup>D</sup>   | 4.76 <sup>D</sup> | 6.60 <sup>C</sup>                | 5.44 <sup>A</sup> | 7.01 <sup>C</sup>   |  |
| $T_2$     | $8.70^{\mathrm{B}}$ | 11.1 <sup>B</sup> | $22.4^{\mathrm{B}}$ | $10.0^{\rm B}$    | $7.98^{A}$                       | 5.98 <sup>A</sup> | $8.51^{\mathrm{B}}$ |  |
| $T_3$     | 5.75 <sup>D</sup>   | $7.23^{\rm D}$    | $10.7^{\rm D}$      | 4.74 <sup>D</sup> | 7.13 <sup>BC</sup>               | 6.01 <sup>A</sup> | 7.12 <sup>C</sup>   |  |
| $T_4$     | 7.12 <sup>C</sup>   | 9.64 <sup>C</sup> | 16.1 <sup>C</sup>   | 7.96 <sup>C</sup> | 7.58 <sup>AB</sup>               | 5.68 <sup>A</sup> | $8.65^{\mathrm{B}}$ |  |
| $T_5$     | 10.5 <sup>A</sup>   | 13.8 <sup>A</sup> | $26.8^{A}$          | 12.1 <sup>A</sup> | 7.54 <sup>AB</sup>               | 5.66 <sup>A</sup> | 10.9 <sup>A</sup>   |  |

 $T_1$  = Control;  $T_2$  = DAP @ 60 mg  $P_2O_5$ /kg soil (DAP<sub>60</sub>);  $T_3$ = RP @ 120 mg  $P_2O_5$ /kg soil (RP<sub>120</sub>);  $T_4$  = RP @ 120 mg  $P_2O_5$ /kg soil + PSB (RP<sub>120</sub>+PSB); and  $T_5$  = DAP @ 30 mg  $P_2O_5$  + RP @ 60 mg  $P_2O_5$ /kg soil + PSB (DAP<sub>30</sub>+RP<sub>60</sub>+PSB, DAT= Days after transplanting. Means having no common letter within each column are significantly different as per DMRT at P<0.05.

Table 2 Residual effect of different forms of applied P and phosphate solubilizing bacteria on different soil P fractions after rice

| Treatment | Differ               | Different forms of soil P (mg/kg soil) |                   |                      |                    | Fractionations of inorganic P (mg/kg soil) |                      |                       |                      |  |
|-----------|----------------------|----------------------------------------|-------------------|----------------------|--------------------|--------------------------------------------|----------------------|-----------------------|----------------------|--|
|           | TP                   | IP                                     | OP                | MBP                  | Sal-P              | Al-P                                       | Fe-P                 | Ca-P                  | Res-P                |  |
| $T_1$     | 461.6 <sup>B</sup>   | 370.6 <sup>C</sup>                     | 91.1 <sup>A</sup> | 2.50 <sup>C</sup>    | 6.38 <sup>D</sup>  | 11.0 <sup>B</sup>                          | 15.6 <sup>D</sup>    | 225.6 <sup>D</sup>    | 63.5 <sup>B</sup>    |  |
| $T_2$     | $470.1^{\mathrm{B}}$ | 380.2 <sup>C</sup>                     | 89.9 <sup>A</sup> | $2.81^{\mathrm{B}}$  | 8.74 <sup>C</sup>  | 13.8 <sup>A</sup>                          | $22.0^{\mathrm{BC}}$ | 238.4 <sup>CD</sup>   | $68.0^{\mathrm{AB}}$ |  |
| $T_3$     | 576.7 <sup>A</sup>   | 488.5 <sup>A</sup>                     | 88.2 <sup>A</sup> | $2.77^{\mathrm{BC}}$ | $6.75^{D}$         | $11.3^{B}$                                 | $20.7^{\rm C}$       | $275.6^{\mathrm{AB}}$ | 71.4 <sup>A</sup>    |  |
| $T_4$     | 561.8 <sup>A</sup>   | 482.8 <sup>A</sup>                     | $79.0^{\rm B}$    | $3.16^{A}$           | $9.96^{B}$         | 13.0 <sup>A</sup>                          | $23.5^{AB}$          | $278.8^{A}$           | $70.0^{A}$           |  |
| $T_5$     | $499.4^{\mathrm{B}}$ | $422.9^{B}$                            | $76.5^{B}$        | 3.14 <sup>A</sup>    | 11.62 <sup>A</sup> | 13.5 <sup>A</sup>                          | 24.7 <sup>A</sup>    | 252.2 <sup>BC</sup>   | $71.0^{A}$           |  |

<sup>\*</sup>Treatment details are given in the foot note of Table 1. Means having no common letter within each column are significantly different as per DMRT at P<0.05. TP=Total P, IP=Inorganic P, OP=Organic P, MBP=Microbial biomass P, Sal-P=Saloid P, Al-P=Aluminium P, Fe-P=Iron P, Ca-P=Calcium P, Res-P=Reductant soluble P.

P uptake at this stage and at maturity stage, it attained the maximum value, because different forms of soil P maintain a complex and dynamic equilibrium (Roy *et al.* 2018). In post-harvest soils, P removal by the crop stopped and the P in soil system approaches to the equilibrium again, this phenomena may transform P from other forms to available P. Left-over roots also contributes available P because after maturity phloem transport moves back some of the plant nutrients from shoot to root, and to some extent to the soil (Mengel and Kirkby 1987), this might be another reason for increased available P in post-harvest rice soils.

There was non-significant impact of  $DAP_{60}$  as compared to control in terms of total P (Table 2). However, application

\*Treatment details are given in the foot note of Table 1.

of RP in  $T_3$  and  $T_4$  significantly increased soil total P, IP, Ca-P and Res-P over soil treated with DAP<sub>60</sub>. Roy *et al.* (2018) reported that P in RP is mostly Ca-bound P, therefore, RP application had significantly increased soil total P, IP and Ca-P over DAP<sub>60</sub> application and unfertilized control. The PSB resulted in higher quantity of MBP. In contrary, PSB application decreased soil organic P as compared to DAP<sub>60</sub>. The treatments RP<sub>120</sub>+PSB and DAP<sub>30</sub>+RP<sub>60</sub>+PSB treatments correspondingly had ~13.8 and 17.5% lower organic P, and 12.5 and 11.7% higher MBP as compared to DAP<sub>60</sub> treatment. The PSB inoculation increased soil microbial population, which may immobilize soil P in their body and increase MBP. Overall, PSB inoculation increased

## Soil acid, alkaline phosphatase and dehydrogenase activity

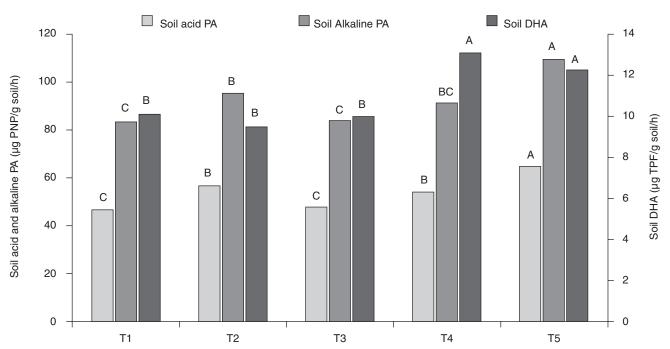



Fig 1 Residual effect of different forms of applied P and phosphate solubilizing bacteria on soil acid, alkaline phosphatase and dehydrogenase activity. (PA= Phosphatase activity, DHA= Dehydrogenase activity). Means having no common letter within each column are significantly different as per DMRT at P<0.05.

the inorganic P fractions (Table 2). Production of organic acids from PSB applied treatments may help in protonation and subsequently help to solubilize different inorganic but fixed P-fractions. The PSB produces phosphatase enzymes, which mineralizes organic P and converts it to plant usable mineral P (Roy *et al.* 2019, Sarkar *et al.* 2020), thus OP in PSB inoculated soils got reduced.

Solubilization of RP-P and mineralization of organic P by PSB in T<sub>4</sub> and T<sub>5</sub> treatments might have caused significant increase of Sal-P. Application of PSB significantly increased acid and alkaline PA (Fig 1). It was also found that RP<sub>120</sub>+PSB and DAP<sub>30</sub>+RP<sub>60</sub>+PSB treatments, respectively had ~37.8 and 29.4% higher alkaline PA as compared to DAP<sub>60</sub> treatment. This result aligned with the findings of Tarafdar and Jungk (1987), who had reported that PSB produce phosphatase enzymes effectively. This may be the reason behind increased acid and alkaline phosphatase activity under T<sub>4</sub> and T<sub>5</sub> treatments. Soil DHA also increased due to PSB application along with RP and DAP (Figure 1). DHA reflects the oxidative activity of all the soil micro-flora. The  $RP_{120}$ +PSB treated soil  $(T_4)$  had  $\sim$ 8.8% higher dehydrogenase activity as compared RP $_{120}$ treated soil (T<sub>3</sub>). Application of DAP<sub>30</sub>+RP<sub>60</sub>+PSB (T<sub>5</sub>) had ~15.2% higher DHA as compared to DAP<sub>60</sub> ( $T_2$ ). Application of PSB in  $T_4$  and  $T_5$  treatments may have increased microbial population, which may increase DHA (Biswas et al. 2019).

From the above results and discussion, it is demonstrated that application of DAP<sub>30</sub>+RP<sub>60</sub>+PSB resulted in better residual effect to rice; hence, increased the rice yield and P uptake. Application of DAP<sub>30</sub>+RP<sub>60</sub>+PSB also increased soil available-P, saloid-P, microbial biomass P, soil dehydrogenase activity, and acid and alkaline phosphatase activity as compared to treatment receiving DAP alone. Overall, application of DAP<sub>30</sub>+RP<sub>60</sub>+PSB can reduce the rate of phosphatic fertilizers by 50% without hampering yield and nutrient uptake. Thus, it may be concluded that the low-grade rock phosphate along with phosphate solubilizing bacteria (PSB) can substitute chemical P fertilizer (DAP) by 50% for growing rice on residual fertility in Inceptisol.

## ACKNOWLEDGMENTS

The authors like to thank the Director, ICAR- IARI and University Grant Commission for supporting this research program.

### REFERENCES

- Biswas D R and Narayanasamy G. 1995. Characterization of partially acidulated phosphate rocks. *Journal of the Indian Society of Soil Science* **43**(4): 618–23.
- Biswas S S, Ghosh A, Singhal S K, Biswas D R, Roy T, Sarkar A and Das D. 2019. Phosphorus enriched organic amendments can increase nitrogen use efficiency in wheat. *Communications in Soil Science and Plant Analysis* **50**: 1178–91.
- Bouyoucos G J. 1962. Hydrometer method improved for making particle size analysis of soils. *Agronomy Journal* **54**: 464–65. Brookes P C, Powlson D S and Jenkinson D S. 1982. Measurement

- of microbial biomass phosphorus in soil. *Soil Biology and Biochemistry* **14**: 319–29.
- Ghosal P K, Bhattacharya B, Bagchi D K and Chakraborty T. 2013.
  Direct and residual effect of rock phosphates on rice (*Oryza sativa* L.) productivity and soil phosphorus status in Alfisols of Eastern Plateau of India. *African Journal of Agricultural Research* 8: 4748–54.
- Gomez K A and Gomez A A. 1984. *Statistical Procedures for Agricultural Research*. John Wiley and Sons.
- Jackson M L. 1973. Soil Chemical Analysis. Prentice Hall of India Private Limited, New Delhi.
- Khan AA, Jilani G, Akhtar MS, Naqvi SMS and Rasheed M. 2009. Phosphorus solubilizing bacteria: Occurrence, mechanisms and their role in crop production. *Journal of Agricultural and Biological Science* 1: 48–58.
- Klein D A, Loh T C and Goulding R L. 1971. A rapid procedure to evaluate the dehydrogenase activity of soils low in organic matter. *Soil Biology and Biochemistry* 3: 385–87.
- Kuo S. 1996. Phosphorus. Methods of Soil Analysis. Chemical Methods Part III, pp 869–920. Sparks D L et al. (Eds.). Soil Science Society of America and American Society of Agronomy Madison, WI,
- Mengel K and Kirkby E A. 1987. *Principles of Plant Nutrition*, 4<sup>th</sup> edn. International Potash Institute, IPI, Bern, Switzerland, 685p.
- Page A L, Miller R H and Keeney D R. 1982. Methods of Soil Analysis, Part 2. Chemical and Microbiological Properties, 2nd edn. Agronomy, 9 ASA, SSSA, Madison, WI, 1159 p.
- Roy T, Biswas D R, Datta S C, Sarkar A and Biswas S S. 2018. Citric acid loaded nano clay polymer composite for solubilization of Indian rock phosphates: A step towards sustainable and phosphorus secure future. Archives of Agronomy and Soil Science 64: 1564–81.
- Roy T, Biswas D R, Ghosh A, Patra A K, Singh R D, Sarkar A and Biswas S S. 2019. Dynamics of culturable microbial fraction in an Inceptisol under short-term amendment with municipal sludge from different sources. *Applied Soil Ecology* 136: 116–21.
- Russell E W. 1973. *Soil Conditions and Plant Growth*, 10<sup>th</sup> edn. Longman Group, Ltd., London, pp 587–88.
- Sarkar A, Biswas D R, Datta S C, Roy T, Biswas S S, Ghosh A, Saha M, Moharana P C and Bhattacharyya R. 2020. Synthesis of poly (vinyl alcohol) and liquid paraffin-based controlled release nitrogen-phosphorus formulations for improving phosphorus use efficiency in wheat. *Journal of Soil Science and Plant Nutrition* https://doi.org/10.1007/s42729-020-00249-3.
- Sarkar A, Biswas D R, Datta S C, Roy T, Moharana P C, Biswas S S and Ghosh A. 2018. Polymer coated novel controlled release rock phosphate formulations for improving phosphorus use efficiency by wheat in an Inceptisol. *Soil and Tillage Research* **180**: 48–62.
- Sarkar A, Saha M, Biswas S S and Roy T. 2021. Preface of phytobiome in nutrient recycling, biogeochemistry, and spatial dynamics. In Solanki MK, Kashyap PL, Ansari R A and Kumari B (Eds.): Microbiomes and Plant Health: Panoply and their applications. Academic Press, pp 243–66.
- Sarkar S, Datta, S C, Biswas D R. 2015. Effect of fertilizer loaded nanoclay/superabsorbent polymer composites on nitrogen and phosphorus release in soil. *Proceedings of National Academy* of Sciences, India Section B: Biological Science 85: 415–21.
- Tabatabai M A and Bremner J M. 1969. Use of *p*-nitrophenyl phosphate for assay of soil phosphatase activity. *Soil Biology and Biochemistry* 1: 301–07.

- Tarafdar J C and Jungk A. 1987. Phosphatase activity in the rhizosphere and its relation to the depletion of soil organic phosphorus. *Biology and Fertility of Soils* 3: 199–204.
- Walkley A and Black I A. 1934. An examination of the Degtjariff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. *Soil Science* 37: 29–38.
- Watanabe F S and Olsen S R. 1965. Test of ascorbic acid method for determining phosphorus in water and sodium bicarbonate extracts of soil. *Soil Science Society of America Proceedings* **29**: 677–78.
- Zhou K, Binkley D and Doxtader K G. 1992. A new method for estimating gross phosphorus mineralization and immobilization rates in soils. *Plant and Soil* **147**: 243–50.