Increase in root branching enhanced ferric-chelate reductase activity under iron stress in potato (Solanum tuberosum)

CLARISSA CHALLAM 1,2 , SOM DUTT 1 , DURAIALAGARAJA SUDHAKAR 2 , MUTHURAJAN RAVEENDRAN 2 , TANUJA BUCKSETH 1 and RAJESH KUMAR SINGH 1*

Regional Station, ICAR-Central Potato Research Institute, Shillong, Meghalaya, India

Received: 17 February 2021; Accepted: 12 April 2021

ABSTRACT

In response to Fe-deficiency, various dicots increase their root branching to improve ferric-chelate reductase activity. It still remains unclear, whether the response caused by Fe-deficiency ultimately improves the plant's ability to withstand Fe-deficiency. In this experiment conducted at ICAR-Central Potato Research Institute, Regional Station, Shillong during 2020, we demonstrated a substantial increase in the growth of the lateral root of potato genotype (CP 3443), when grown in the iron-stress, in relation to control plants, and the total lateral root number is well linked to ferric-chelate reductase (FCR) activity. These findings showed that FCR is involved in root Fe uptake in potato (*Solanum tuberosum* L.) and they suggest a role in Fe distribution throughout the plant. In view of these findings, the Fe-deficiency induced increases in the lateral roots suggested that these play a significant role in Fe-deficiency tolerance in potato, which can serve as useful trait for the identification of chlorosis tolerance and/or nutrient-deficiency stress.

Keywords: Fe-deficiency, Ferric-chelate reductase, Lateral root, Potato

Iron (Fe) is a crucial micronutrient for plants as it is a key cofactor for various enzymatic reactions. However, Fe solubility is low in aerobic and neutral pH environments, leading to limited bioavailability and consequent Fe deficiency. Under low Fe conditions, rather than forming ectopic root hairs, plant roots increase their absorptive surface by inducing root-hair branching (Vissenberg *et al.* 2020). Generally, the increased root branching is proposed to facilitate the uptake of nutrients (Boamponsem *et al.* 2017a). The enlarging root surface area of *Arabidopsis* increased the root hair count and volume. The increased root area facilitates iron reduction and transport of iron. Therefore, whether the increases of root branching are also important for tolerating Fe deficiency in plants still remains unknown.

Strategy-I plants include non-graminaceous monocots and dicots exposed to iron-deficient conditions have been shown to first acidify the soil in order to increase its iron soluble content followed by a reduction of Fe³⁺ to the more soluble Fe²⁺ by a ferric chelate reductase (FCR) and

Present address: ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh; ²Centre for Plant Biotechnology and Molecular Biology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu. *Corresponding author e-mail: rjan_1971@yahoo.co.in.

subsequent uptake of Fe²⁺ by a Fe^(II) transporter in plant root cell (Boamponsem et al. 2017a). FCR is proposed to play a vital role in Strategy-I response because the Arabidopsis FRO2 loss-of-function mutant, frd1, developed severe chlorosis when grown on iron-deficient medium. In addition, generally the Fe-deficiency induced FCR activity was confined to the young lateral root apex (Dasgan et al. 2002), subapical root regions or young lateral roots (Boamponsem et al. 2017a). In potato (Solanum tuberosum L.), formation of lateral roots and root hairs was enhanced in Fe-efficient plant lines compared to inefficient and control plants (Boamponsem et al. 2017a) and enhanced ferricreduction capacity was noted in response to a deficit in Fe supply (Boamponsem et al. 2017b). Therefore, the increases in lateral root density are expected to provide more sites for FCR inducing in a Fe-deficient plant, and hence increase the total FCR activity. This is the first study to demonstrate the relationship between Fe-deficiency induced FCR activity and lateral-root density in potato.

MATERIALS AND METHODS

Based on the result of differential iron-deficiency chlorosis (IDC) response of 15 genotypes under aeroponic culture (Challam *et al.* 2021), CP 3443 exhibited tolerance to IDC hence the genotype was considered for the study at ICAR-Central Potato Research Institute, Regional Station, Shillong during 2020. One month old *in-vitro* plantlets were used for the root morphological changes and Fe^(III) chelate reductase (FCR) activity induction during Fe-

deficiency using hydroponic culture. Two different nutrient compositions were followed for FCR activity in potato, viz. Fe-sufficient media (Fe-EDTA 50 μ M/L) and Fe-deficient media (Fe-EDTA 0 μ M/L). The basic nutrient solution with minor modification was followed as described by Buckseth *et al.* (2016). The *p*H (5.7±2) and EC (1.8-2.0) of solutions were monitored daily. All the nutrient solutions were renewed once in two days. FCR activity in freshly weighed (0.5g) root samples was determined following Boamponsem *et al.* (2017b), whereas number of lateral roots, lateral-root density and root biomass was calculated

as described by Jin *et al.* (2008). The data were recorded from 10 plants per conditions.

RESULTS AND DISCUSSION

The roots of dicotyledonous plants cause a series of reactions in response to Fe deficiency, allowing Fe to be absorbed more efficiently by rhizosphere. These adaptive reactions were found to occur on the root surface of potato and include an increased FCR activity, acidification of the rhizosphere to increase Fe mobility and root morphology changes. These responses became apparent 10 days after

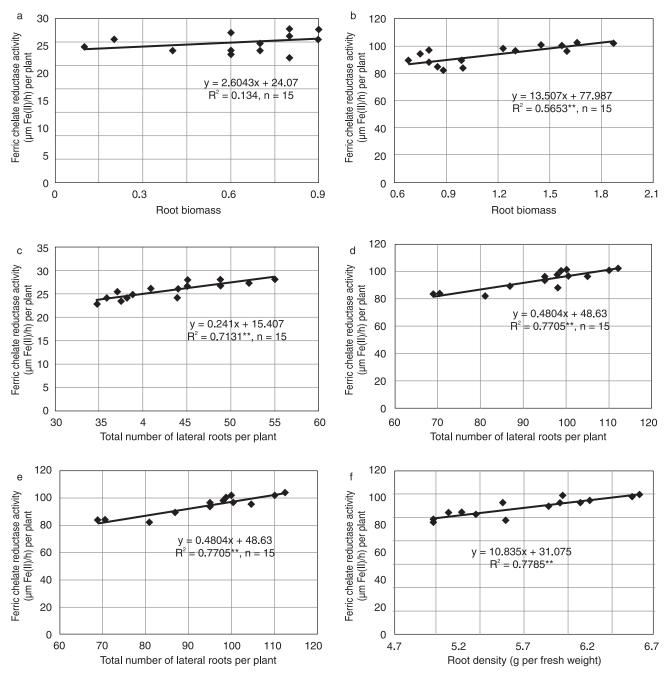


Fig 1 The relationship between ferric-chelate reductase (FCR) activity and root biomass or lateral-root development. (a & b) The relationship between FCR activity and root biomass at 10 and 20 days; (c & d) The relationship between FCR activity and lateral roots number at 10 and 20 days; (e & f) The relationship between FCR activity and lateral roots density of root at 10 and 20 days.

the onset of Fe-deficient conditions. On the 10th day following treatment with Fe-deficit, the total number of lateral roots in Fe-deficient plants increased by about 38 % and the lateral-root density, expressed as the lateral root number per g of fresh weight, increased by approximately 50%. On the 20th day, the growth in lateral roots was even greater with a total increase of 46% and an increase in density of 66%. In determining Fe-acquisition efficient for potato seedlings, Boamponsem et al. (2017a) showed that lateral rooting is critically important. Larger root system gives the soil nutrients an improved adsorption surface which is especially significant in terms of soil Fe as a less mobile ion. This morphological change could increase root reduction in Fe-limited conditions. Studies using different genotypes of beans and wheat show, for example, that P-efficient genotypes have a vigorous, highly branched root system with a larger number of apices (Shen et al. 2018). In addition, the development of root hair was increased under Fe-deficiency medium which are densely covered, while in control conditions (Fe-sufficient) there was little root hair. In low iron conditions the root is shorter, more lateral roots are formed, and root hairs grow much longer and denser, facilitating increased nutrient uptake. Consequently, dynamic root hair morphogenesis is a key trait for improving the acquisition of essential nutrients in heterogeneous soils. Therefore, a better understanding of the root hair developmental pathway is crucial. Various studies, mostly based on the model organism Arabidopsis, have led to a better understanding of the genetic and molecular cascade that lies at the base of root-hair development.

Another major response of the Strategy-I plants to Fe deficiency is the induction of FCR activity for the reduction and uptake of Fe (Legay et al. 2012). FCR activity was evaluated under Fe deficiency conditions to determine whether FCR was induced by Fe deficiency as suggested by other scientists (Dasgan et al. 2002, Boamponsem et al. 2017b), also whether increased root branching enhanced FCR activity in potato. In the study, a concomitant increase in root FCR activity was observed similar to values typically found in roots of Fe-deficient tomato plants (Dasgan et al. 2002). On the 10th day of Fe-deficiency treatment, the root FCR activity was poorly associated with root biomass (r =0.134) (Fig 1a) in each plant. However, the total lateral root number $(r = 0.713^{**})$ (Fig 1c) correlated well. In addition, it had a much better comparison to lateral-root density (r =0.917**, P< 0.05) (Fig 1e). Almost the entire analysed root area shows high FCR activity on the 20th day of Fe-deficient treatment. The radical FCR behavior of individual plants therefore was very much correlated with the root biomass (r = 0.565^{**} , P< 0.05) (Fig 1b), with total lateral root number or lateral-root density (Fig 1d,f). The increase in lateral roots therefore tends to lead to the change in Fe-induced activity of FCR. Nonetheless, because FCR is caused only by Fe deficiency, the function of increasing root branching is not determinative. The role of FCR activity in a Fe-deficient plant should be supported by the increased sites for FCR activity of the entire root system. All plants, except grasses,

use a reduction strategy to facilitate Fe uptake, and the FCR has proven to be the rate-limiting step for Fe uptake in Felimiting conditions. A number of ferric reductase oxidase (FROs) genes were detected, identified and reported on iron uptake and homeostasis for a variety of plant species such as Arabidopsis (Mai et al. 2016); potato (Legay et al. 2012 and Boamponsem et al. 2017b). Tiwari et al. (2020) also reported the up-regulation of FRO under nitrogen stress, indicating the diverse roles for FROs in both iron and nitrogen metabolism Therefore, enhancing FCR activities through increasing lateral-root development is expected to improve the ability to resist Fe-deficiency induced chlorosis.

Many of the morphological changes in Fe deficient plants observed in this work can be associated with a change in the balance of phytohormones. Phytohormones such as auxin, cytokinin, ethylene, and gibberellins are the major regulatory agencies for the specification, proliferation and expansion in the roots and extensive crosstalks between them can ensure quick response to external and internal cues. The signal pathways that lead to the enhanced development of the lateral root by Fe deficiency still remain obscure. Auxin, ethylene, and nitric oxide have been implicated as positive regulators of the FIT, FRO2, and IRT1 genes in an Fe-deficient environment to promote Fe acquisition (García et al. 2021). FIT and FRO2 expression was found to be enhanced in an auxin over-producing mutant, yucca, compared to that wild type (Chen et al. 2010). Auxin plays a role in both physiological and root morphological responses to Fe deficiency (Chen et al. 2010, García et al. 2021). Auxin may therefore be the right chemical signal leading to the Fe-deficiency induced increases of the lateral root. This hypothesis will be investigated in our future research as to whether auxin might be involved in the shoot to root signaling network regulating Fe-deficiency root responses in potato.

REFERENCES

Boamponsem G A, Leung D W M and Lister C. 2017a. Insights into resistance to Fe deficiency stress from a comparative study of in vitro-selected novel Fe-efficient and Fe-inefficient potato plants. *Frontiers in Plant Science* 8: 1581.

Boamponsem G A, Leung D W M and Lister C. 2017b. Relationships among iron deficit-induced potato callus growth inhibition, Fe distribution, chlorosis, and oxidative stress amplified by reduced antioxidative enzyme activities. *Plant Cell Tissue Organ Culture* **132**: 393–412.

Buckseth T, Sharma A K, Pandey KK, Singh B P and Muthuraj R. 2016. Methods of pre-basic seed potato production with special reference to aeroponics-A review. *Scientia Horticulturae* **204:** 79–87.

Challam C, Dutt S, Sharma J, Bag TK, Raveendran M and Sudhakar D. 2021. Screening for Iron deficient chlorosis (IDC) tolerant genotypes in potato (*Solanum tuberosum* L.) under aeroponic system. *Asian Journal of Microbiology, Biotechnology and Environmental Science* 23(1): 92–99.

Chen W W, Yang J L, Qin C, Jin C W, Mo J H, Ye T and Zheng S J. 2010. Nitric oxide acts downstream of auxin to trigger root ferric-chelate reductase activity in response to iron deficiency in *Arabidopsis*. *Plant Physiology* **154(2)**: 810–9.

- Dasgan H Y, Römheld V, Cakmak I and Abak K. 2002. Physiological root responses of iron deficiency susceptible and tolerant tomato genotypes and their reciprocal F1 hybrids. *Plant and Soil* **241**(1): 97–104.
- García M J, Lucena C and Romera F J. 2021. Ethylene and nitric oxide involvement in the regulation of Fe and P deficiency responses in dicotyledonous plants. *International Journal of Molecular Sciences* 22(9): 4904.
- Jin C W, Chen W W, Meng Z B and Zheng S H. 2008. Iron deficiency-induced increase of root branching contributes to the enhanced root ferric chelate reductase activity. *Journal of Integrative Plant Biology* **50**(12): 1557–62.
- Legay S, Guignard C, Ziebel J and Evers D. 2012. Iron uptake and homeostasis related genes in potato cultivated *in vitro* under iron deficiency and overload. *Plant Physiology and Biochemistry* **60**: 180–89.

- Mai H J, Pateyron S and Bauer P. 2016. Iron homeostasis in *Arabidopsis thaliana*: transcriptomic analyses reveal novel FIT-regulated genes, iron deficiency marker genes and functional gene networks. *BMC Plant Biology* 16: 211.
- Shen Qi, Zhihui W, Dong Y, Haigang L, Yuxin M and Jianbo S. 2018. The responses of root morphology and phosphorus-mobilizing exudations in wheat to increasing shoot phosphorus concentration. *AoB Plants* 10(5): 113–20.
- Tiwari J K, Buckseth T, Zinta R, Saraswati A, Singh R K, Rawat S, Dua V K and Chakrabarti S K. 2020. Transcriptome analysis of potato shoots, roots and stolons under nitrogen stress. *Scientific Report* 10: 1152.
- Vissenberg K, Claeijs N, Balcerowicz D and Schoenaers S. 2020. Hormonal regulation of root hair growth and responses to the environment in *Arabidopsis*. *Journal of Experimental Botany* 71(8): 2412–27.