Characterization of native *Bacillus thuringiensis* strains against *Spodoptera litura* and *Spodoptera exigua*

SOURAV SARKAR1 and VINAY K KALIA1*

ICAR-Indian Agricultural Research Institute, New Delhi 110 012, India

Received: 19 June 2020; Accepted: 02 August 2021

ABSTRACT

In the present study 12 native Bt strains isolated from insect cadavers were screened for their bioefficacy against neonates of economically important polyphagous pests $Spodoptera\ litura$ and $Spodoptera\ exigua$ by feeding assays at single concentrations of 10 µg/g of diet. Toxicity of Bt strains against neonates of S. litura and S. exigua varies from 39.04% (VKK-EV and VKK-PX2) to 70.97% (VKK-AC1) and 20.0% (VKK-AC1 and VKK-MPS) to 88.00% (VKK-AC2) on T^{th} day after treatment respectively. The LC_{50} values for potential Bt strains against S. litura varied from 0.87 µg/gm (VKK-AC1) to 9.36 µg/gm (VKK-AG2) while, against S. exigua ranged from 1.00 µg/g (VKK-AC2) to 13.95 µg/g (VKK-SO) of diet. Gene profiling of potential Bt strains revealed the presence of cry1A, cry1D, cry1I, and cry2 gene. Further studies on characterization of these novel cry genes from potential native Bt strains will be valuable for management of Spodoptera spp.

Keywords: Bacillus thuringiensis, Beet armyworm, Cry gene, Insecticidal activity, Tobacco caterpillar

The tobacco caterpillar Spodoptera litura Fabricius is a polyphagous pest known to cause economic damage to more than 150 species of agricultural crops distributed in 44 families worldwide (Kranthi et al. 2002). The beet armyworm, Spodoptera exigua (Hubner) which was earlier known to infest cotton, jute, tobacco, tomato, cabbage, chilli and alfalfa in India, now became a serious pest of chickpea during the seedling stage (Shanker et al. 2014). Till date, control measures for management of this pest mainly focused on spray of insecticides. However, the development of resistance to most insecticides and associated environmental concerns has shifted the focus towards alternative methods of controls which have no negative environmental impacts. Among the various approaches, the major viable alternative is Bacillus thuringiensis (Bt) which has been successfully used as a bio-insecticide.

Bt is a gram positive, spore-forming, facultative, bacterial pathogen that produces parasporal crystals containing one or more insecticidal crystal (Cry) proteins. Cry proteins are selectively toxic to insects with a great potential to control a number of pests belonging to Lepidoptera, Diptera and Coleoptera and are safe to the environment (Zhong et al. 2000). Although Bt Cry toxins are effective insecticidal proteins, still a significant number of

Present address: ¹ICAR-Indian Agricultural Research Institute, New Delhi. *Corresponding author e-mail: vkalia_1998@ yahoo.com.

insects like *Spodoptera* spp are found to be resistant to the commercially available *Bt* toxins (Alotaibi 2013). Globally screening for novel *Bt* strains isolated from various habitats has led to the discovery of strains with toxic activity against a broad range of insect orders (Gao *et al.* 2008, Gorashi *et al.* 2014, Daravath *et al.* 2015, Tripathi *et al.* 2016). Therefore, characterization of native *Bt* strains with novel toxins is of significance for exploring alternatives to the problem of resistance development. The present study was carried out to explore the insecticidal activity of native *Bt* strains isolated from insect cadavers against *S. litura* and *S. exigua* followed by molecular characterization to predict the gene of significance.

MATERIALS AND METHODS

Revival of Bacillus thuringienesis strains and sporecrystal complex preparation: Twelve Bt strains isolated from insect cadaver and three reference strains, viz. Bt subsp. kurstaki strains HD1, HD73 and Bt subsp. thuringiensis HD2 (Btt) were retrieved from bacterial stock of Insect Physiology and Molecular Biology Laboratory, Division of Entomology, IARI, New Delhi in 2016. Spore-crystal complex of all the Bt strains were prepared as described by Dulmage et al. (1970) and was stored in airtight sterile glass vials at 10°C for further use.

Insect rearing and bioassays

Collection and maintenance of test insects: Larvae of S. litura and S. exigua were collected from cole crop and chickpea field respectively and were reared on chickpea

based semi-synthetic diet at $27\pm1^{\circ}C$ and 60-70% RH. Sexwise pupae were separated and placed in plastic container bottom lined with blotting paper. The adults that emerged were transferred to mating jars (20 cm height \times 15 cm diameter) and offered 10% honey solution throughout their egg-laying period. Paper strips folded in fan like manner were kept inside the mating jar for egg laying. The strips having egg masses were removed every day and kept in separate container. The neonates less than 1 day old were used for bioassays.

Screening bioassays: Twelve Bt strains along with three reference Bt subsp. kurstaki HD-1, HD-73 and Btt were evaluated against neonates of both S. litura and S. exigua for its insecticidal activity. The screening assays were carried out by diet incorporation method at single concentrations of 10 µg/gm of diet on the basis of total protein concentration.10 µl of stock suspension of spore crystal complex (10000 µg/ml) was mixed with 100 µl of double distilled water (DDW) and incorporated in 10 g diet to get a concentration of 10 μg/g. The diet was equally divided and placed in plastic container (2 cm × 5 cm). Each container served as one replicate, with three replications per treatment. Ten neonates were released on the treated diet per replication. Diet in the control was mixed with the same volume of sterilized distilled water. All the assays were conducted under controlled conditions of $27 \pm 2^{\circ}C$ and 60-70% relative humidity (RH). Mortality data was recorded at an interval of 24 h till 7 days. Per cent mortality was calculated on 4th and 7th day of bioassay.

Virulence bioassays: Bt strains which showed >50% mortality in screening assays were used for virulence

bioassays. Six concentrations, viz. 0.01, 0.1, 1.0, 5.0, 10 and 25 μ g/g were used for virulence bioassay. A minimum of 210 neonates were used for each bioassay and all bioassays were conducted as mentioned above. Mortality data was recorded till 7th day. Mortality data on 7th day was analysed to calculate median lethal concentrations (LC₅₀).

Statistical analysis: The data of mortality on the 4th and 7th day of treatment were corrected with control mortality using Abbott's formula. The mortality data observed on 4th and 7th day of treatment were subjected to analysis of variance (ANOVA) at 5% level of significance using Statistical Analysis System (SAS) version 4.2 (SAS Institute Inc. Cary, USA), to compare the insecticidal activities among different isolates. The significantly different means (<0.05) were separated using tukey's studentized range (HSD) test. The LC₅₀ values for virulence bioassays were calculated using maximum likelihood programme (MLP) 3.01 (Ross 2000). The significance of difference between two LC₅₀ was determined on the basis of overlap of 95% fiducial limits.

Amplification and characterization of cry genes: Sample of Bt strains for PCR was prepared as described by Bravo et al. (1998) with few modifications. Bt strains were grown for 12 h on Luria agar plates. A loop of cells was transferred to 100 μ l of sterile distilled water, and the mixture was frozen for 20 min at -80°C and then transferred to boiling water for 10 min to lyse the cells. The resulting cell lysate was centrifuged (30 s at 10000 rpm) and 10 μ l of supernatant was used as a DNA template in the PCR. PCR characterization was performed to identify the toxin-encoding genes using oligonucleotide pairs specific for genes (Table 1) as per Daravath et al. (2021)

Table 1 Characteristics of the primer sets used to identify cry genes in potential Bacillus thuringiensis strains by PCR

cry gene	Primer sequence	AT*	Expected product size (bp)	References
cry1A #	F: 5'-CCGGTGCTGGATTTGTGTTA-3' R: 5'-AATCCCGTATTGTACCAGCG-3'	52	490	Carozzi et al. (1991)
cry 1D	F: 5'-TGTAGAAGAGGAAGTCTATCCA-3' R: 5'-TATCGGTTTCTGGGAAGTA-3'	49.4	284	Ceron et al. (1995)
cry1I	F: 5'-GCTGTCTACCATGATTCGCTTG -3' R: 5'-CAGTGCAGTAACCTTCTCTTGC-3'	52	1584	Song et al. (2003)
cry 2	F: 5'- GTTATTCTTAATGCAGATGAATGGG-3' R: 5'- CGGATAAAATAATCTGGGAAATAGT-3'	47	689-701	Ben-Dov et al. (1997)
cry 9	F: 5'- CGGTGTTACTATTAGCGAGGGCGG-3' R: 5'- GTTTGAGCCGCTTCACAGCAATCC-3'	55.5	351- 354	
cry 8	F: 5'- ATGAGTCCAAATAATCTAAATG-3' R: 5'- TTTGATTAATGAGTTCTTCCACTCG-3'	48.5	373- 376	Bravo et al. (1998)
cry 11	F: 5'- TTAGAAGATACGCCAGATCAAGC-3' R: 5'- CATTTGTACTTGAAGTTGTAATCCC-3'	50	305	
cry 20	F: 5'- CAATCCCTGGCTTCACTCGT-3' R: 5'- CCGCGGGCATTAGGATT-3'	49	490	Ejiofar and Johnson (2002)
cry 28	F: 5'- GTATTGGACCGAGGAGATGAAAGT-3' R: 5'- GTACGGCAAAGCGACAGAACA-3'	50	466	

^{*} Annealing temperature; # Presence of cry1A in the text means presence of cry1Aa, cry1Ab and cry1Ac.

RESULTS AND DISCUSSION

Perusal of the mortality data (Fig 1) showed that there was significant variation in the insecticidal activity among the native Bt strains. Mortality of S. litura neonates varied from 17.24% (VKK-EV) to 44.82 % (VKK-SL1) on 4th day of treatment and 39.04% (VKK-EV and VKK-PX2) to 70.97% (VKK-AC1) on 7th day of treatment. In case of S. exigua mortality varied from 13.8% (VKK-AC1) to 65.52% (VKK-AC2) on the 4th day of treatment and 20.0% (VKK-AC1 and VKK-MPS) to 88.00% (VKK-AC2) on 7th day after treatment (Fig 1). All the reference Bt strains were found to be less effective against S. litura on 4th day as compared to S. exigua. However, on 7th day mortality of S. litura ranged from 23.33-46.66%, whereas in S. exigua it varied from 36.66-43.33% (Fig 1). Bt subsp. kurstaki strain HD-73 was found to be more effective against S. litura and HD-1 against S. exigua. However, Bt subsp. thuringiensis was found to be at par against both insects. Earlier, narrow range of pathogenicity of Bt products against species of Spodoptera, viz. S. litura, S. frugiperda and S. littoralis was reported (Whitlock et al. 1991, Federici 1999). Later on, Prabagaran et al. (2002) reported that five Bt strains out of 18 had the ability to kill at least 50% second-instar larvae of S. litura. Similarly, Manimegalai et al. (2005) also reported that Bt isolate obtained from cadavers of a silkworm, Bombyx mori caused 71.3% mortality of S. litura. Hire et al. (2009) reported an indigenous Bt strain HD-550 toxic to S. litura. However, variability in form of toxins, source of the toxins, and insect stage as well as population, make the results difficult to compare among laboratories. Most of the native strains tested in this study were found to be better than reference Bt strains, viz. Btk HD1 which

is the most widely used strain in commercial formulations to control lepidopteran pests (Fig 1).

The LC_{50} values for potential Bt strains against S. litura varied from 0.87 µg/gm (VKK-AC1) to 9.36 µg/ gm (VKK-AG2) while those against S. exigua from 1.00 μg/gm (VKK-AC2) to 13.95 μg/gm (VKK-SO) of diet (Table 2). Out of six common strains (VKK-HA1, VKK-LO, VKK-SO, VKK-AC2, VKK-BB1 and VKK-AG2) two strains VKK-AC2 and VKK-AG2 were found to be more effective against neonates of S. exigua than S. litura as LC50 of VKK-AC2 and VKK-AG2 was found to be 5 and 4.5 fold higher against the neonates of S. litura (Table 2 and Fig 2). The variability in susceptibility of these two species of same genus might be due to the variability in gut physiology such as pH, midgut proteases and toxin receptors (de Maggad et al. 2003). Molecular characterization based on PCR was performed to identify the toxin-encoding genes using nine oligonucleotide pairs (Table 1). The PCR has been widely used to characterize the Bt strains based on cry genes (Bravo et al. 1998). Out of 10 Bt strains, cry1A gene was amplified in seven strains i.e. VKK-HA1, VKK-BB1, VKK-AC1, VKK-AC2, VKK-LE1, VKK-SO and VKK-EV. In two Bt strain (VKK-HA1, VKK-BB1) cry1D is present along with cry1A and alone in VKK-AG2. Only VKK-SO amplified cryl1 along with cry1A. Similarly, cry2 gene was also identified in VKK-AC1 along with cry1A and cry1D. However, no targeted cry gene was detected in VKK-SL1 and VKK-LO. In the present study seven strains (70%) showed the presence of cry1A type gene (490 bp) followed by cry1D type genes (284 bp) in 30% strains. Similarly, many previous studies also reported that cry1 type genes were most abundant in

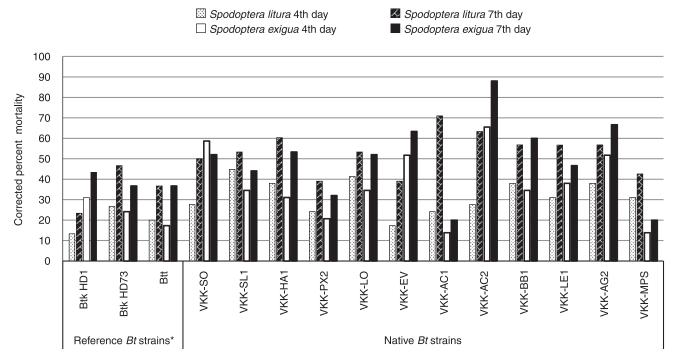


Fig 1 Efficacy of native *Bt* strains along with three reference strains against neonates of *Spodoptera litura* and *Spodoptera exigua* on 4th and 7th day after treatment in terms of percent mortality.

Table 2 Comparative toxicity of potential native *Bacillus thuringiensis* strains against neonates of *Spodoptera litura* and *Spodoptera exigua*

Bacterial strain ID	LC ₅₀ (μg/g of diet on	95 % Fid	% Fiducial limit	Slope ± Standard error	Chi square	Degrees of freedom
	7 th day)	Lower	Upper			
Spodoptera litura						
VKK-HA1	4.27	1.23	26.85	0.40 ± 0.11	1.81	4
VKK-LO	8.54	3.84	28.22	0.69 ± 0.18	2.45	4
VKK-SO	6.99	2.81	26.87	0.59 ± 0.15	9.15	4
VKK-AC2	5.66	2.64	13.94	0.73 ± 0.16	3.90	4
VKK-BB1	4.11	1.75	10.59	0.66 ± 0.15	8.11	4
VKK-AG2	9.36	2.64	13.94	0.39 ± 0.16	3.90	4
VKK-SL1	5.44	2.08	20.42	0.53 ± 0.12	5.03	4
VKK-LE1	5.18	2.19	11.32	0.84 ± 0.24	10.68	4
VKK-AC1	0.87	0.27	2.39	0.45 ± 0.10	4.57	4
Spodoptera exigua						
VKK-HA1	9.48	3.24	65.35	0.48 ± 0.12	3.07	4
VKK -LO	13.68	5.93	80.92	0.67 ± 0.20	4.60	4
VKK -SO	13.95	4.37	118.09	0.41 ± 0.09	2.36	4
VKK-AC2	1.00	0.37	2.32	0.60 ± 0.12	11.76	4
VKK-BB1	3.16	1.16	10.23	0.71 ± 0.11	3.47	4
VKK-AG2	2.06	0.45	12.65	0.34 ± 0.09	3.01	4
VKK-EV	2.06	0.84	4.68	0.66 ± 0.13	8.84	4

native Bt strains isolated from different habitats (Salama et~al.~2015, Jain et~al.~2017). cry1I and cry2 genes were present in only one strain each and that too in combination with cry1A (VKK-SO) and cry1A+cry1D (VKK-AC1) respectively. VKK-AC2 having cry1A alone found to be most effective S.~exigua with lowest LC₅₀ (1.00 µg/g of diet) followed by VKK-AG2 (LC₅₀= 2.06 µg/g of diet)

having cry1D alone. Moreover, VKK-AC1 contained three genes, i.e. cry1A, cry1D and cry2 and found to be most effective against neonates of S. litura with lowest LC_{50} (0.87 μ g/g of diet) but not against S. exigua. Similarly, Prabagaran et al. (2002) reported the presence of cry1 genes in different indigenous Bt strains potentially active against S. litura. Reddy et al. (2013) have reported a novel

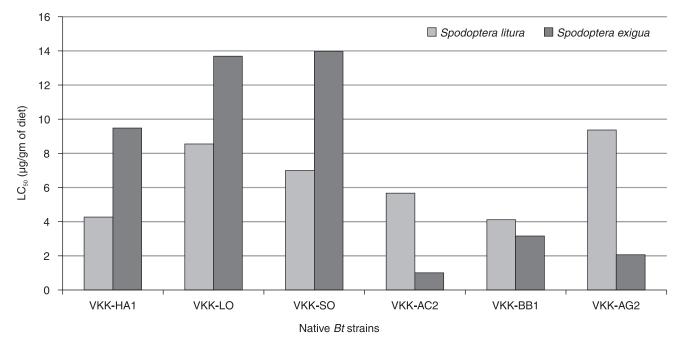


Fig 2 Comparative toxicity (LC₅₀) of six common potential native *Bacillus thuringiensis* strains against neonates of *Spodoptera litura* and *Spodoptera exigua*.

cry1 gene from *Bt*-1 DOR isolate effective against *S. litura* and other lepidopteran pests.

Overall activity spectrum of Bt strain is a function of additive and/or synergistic interactions of individual Cry proteins present in their proportional amounts. Most of Bt strains have the same basic toxin structure, but differ in insect host range, perhaps because of different degree of binding affinity to the toxin receptors in the insect gut. Ever since the cloning of first cry gene (cry1Aa) from Btk HD-1, these insecticidal crystal protein genes are the major source for the development of insect-resistant transgenic plants (Romeis et al. 2006). In 2018, global area of biotech crops was 191.7 million ha of which 23.7 mh produce insecticidal proteins of Bt for the control of pests (ISAAA 2018). But still in spite of the variability of Cry proteins and the range of susceptible organisms, a significant number of insects like Spodoptera spp that cause great losses on crop production are not susceptible to the commercially available Bt toxins.

Thus, in the present study, we characterize potential native Bt strains isolated from insect cadavers in order to find novel strains toxic against S. litura and S. exigua, which are known to be tolerant to most of the known Cry toxins. Further studies on characterization of these novel cry genes from potential native Bt strains will be valuable for management of Spodoptera spp. Recently, Huang et al. (2020) used CRISPR-mediated knockouts to evaluate the role of five genes encoding candidate Bt toxin receptors against three Bt cry toxins (Cry1Ac, Cry1Fa, and Cry1Ca) in S. exigua. Present study found that six native Bt strains found to be effective against neonates of both S. litura as well as S. exigua. Thus, reveals the usefulness of screening studies of novel Bt strains. These strains can be further utilized for studying insecticidal activity against other important insect pests as well as for advance gene profiling for developing insect resistant plants or developing formulation by optimizing the production conditions and applied for the management of these pests.

ACKNOWLEDGMENTS

First author is grateful to Indian Agricultural Research Institute for the award of Junior Research Fellowship.

REFERENCES

- Alotaibi S A. 2013. Mortality responses of *Spodoptera litura* following feeding on BT-sprayed plants. *Journal of Basic and Applied Sciences* 1: 9–195.
- Ben-Dov E, Zaritsky A, Dahan E, Barak Z and Sinai R. 1997. Extended screening by PCR for seven cry-group genes from field collected strains of *Bacillus thuringiensis*. *Applied Environmental Microbiology* **63**: 4883–90.
- Bravo A, Sarabia S, Lopez L, Ontiveros H and Abarca C. 1998. Characterization of cry genes in a Mexican Bacillus thuringiensis strain Collection. Applied and Environmental Microbiology 64: 4965–72.
- Carozzi N B, Kramer V C, Warren G W, Evola S and Koziel M G. 1991. Prediction of insecticidal activity of *Bacillus thuringiensis* strains by polymerase chain reaction product proøles. *Applied*

- and Environmental Microbiology 57: 3057-61.
- Ceron J, Ortiz A, Quintero R and Bravo A. 1995. Specific primers directed to identify *cry1* and *cry3* genes in a *Bacillus thuringiensis* strain collection. *Applied and Environmental Microbiology*, **61**: 3826–31.
- Daravath V, Mittal A, Mandla R and Kalia V. 2015. Distribution and insecticidal activity of *Bacillus thuringiensis* strains isolated from warehouses in India. *Biopesticide International* 11(2): 96–107.
- Daravath V, Mittal A, Mandla R and Kalia V. 2021. Characterization of native *Bacillus thuringiensis* strains against storage pest *Tribolium castaneum* (Coleoptera: Tenebrionidae). *Indian Journal of Agricultural Sciences* **91**(8): 1230–35.
- de Maagd R A, Bravo A and Crickmore N. 2001. How *Bacillus thuringiensis* has evolved specific toxins to colonize the insect world. *Trends in Genetics* **17**(4): 193–99.
- Dulmage H T, Correa J A and Martinex A J. 1970. Co-precipitation with lactose as a means of recovering the spore-crystal complex of *Bacillus thuringiensis*. *Journal of Invertebrate Pathology* **15**: 15–20.
- Federici B A. 1999. *Bacillus thuringiensis* in biological control. Bellows T S, Gordh G, Fisher T W (Eds). *Handbook of Biological Control*. Academic Press, Inc., San Diego, pp 575–93
- Gorashi N E, Tripathi M, Kalia V and Gujar G T. 2014. Identification and characterization of the Sudanese *Bacillus thuringiensis* and related bacterial strains for their efficacy against *Helicoverpa armigera* and *Tribolium castaneum*. *Indian Journal of Experimental Biology* **52**: 637–49.
- Hire R S, Makde R D, Dongre T K and D'souza S F. 2009. Expression, purification and characterization of the Cry2Aa14 toxin from *Bacillus thuringiensis* subsp. *kenyae*. *Toxicon* 54: 519–24.
- Huang J, Xu Y, Zuo Y, Yang Y, Tabashnik B E and Wu Y. 2020. Evaluation of five candidate receptors for three *Bt* toxins in the beet armyworm using CRISPR-mediated gene knockouts. *Insect Biochemistry and Molecular Biology* **121**: 103361.
- ISAAA. 2018. Global Status of Commercialized Biotech/GM Crops: 2018. ISAAA Brief No. 54. ISAAA: Ithaca, NY.
- Jain D, Sunda S D, Sandhya S, Nath D J and Khandelwal S K. 2017. Molecular characterization and PCR-based screening of cry genes from *Bacillus thuringiensis*. 3 Biotech 7(1): 4.
- Kranthi K R, Jadhav D R, Kranthi S, Wanjari R R and Ali S S. 2002. Insecticide resistance in five major insect pests of cotton in India. *Crop Protection* 21(6): 449–60.
- Mandla R, Mittal A, Veeranna D and Kalia V. 2017. Characterization of potential native *Bacillus thuringensis* strains isolated from insect cadavers against cotton aphid *Aphis gossypii* Glover (Hemiptera: Aphididae). *Indian Journal of Entomology* **80**(2): 177–84.
- Manimegalai S, Chandramohan N and Jayarani S. 2005. Bioefficiency of new isolates of *Bacillus thuringiensis* Berliner against lepidopteran pests of economic importance. *Indian Journal of Plant Protection* 33: 48–50.
- Prabagaran S R, Nirmal S J and Jayachandran S. 2002. Phenotypic and genetic diversity of *B. thuringiensis* strains isolated in India active against *Spodoptera litura*. *Applied Biochemistry and Biotechnology* **102–103**: 213–26.
- Reddy V P, Rao N N, Devi P S, Sivaramakrishnan S and Narasu M L. 2013. Cloning, characterization, and expression of a new cry1Ab gene from DOR Bt-1, an indigenous isolate of *Bacillus thuringiensis*. *Molecular Biotechnology* 54: 795–802

- Romeis J, Meissle M and Bigler F. 2006. Transgenic crops expressing *Bacillus thuringiensis* toxins and biological control. *Nature Biotechnology* **24**: 63–71
- Ross G J S. 2000. MLP: Maximum Likelihood Program, User Manual (Oxford, Numerical Algorithms Group).
- Salama H S, El-Ghany N M and Saker M M. 2015. Diversity of *Bacillus thuringiensis* isolates from Egyptian soils as shown by molecular characterization. *Journal of Genetic Engineering and Biotechnology* **13**: 101–09.
- Shankar M, Babu T R, Sridevi D and Sharma H C. 2014. Incidence and biology of beet armyworm, *Spodoptera exigua* in chickpea in Andhra Pradesh. *Indian Journal of Plant Protection* **42**(4): 324–32.
- Song F, Zhang J, Gu A, Wu Y and Han L. 2003. Identification

- of cry1I-type genes from *Bacillus thuringiensis* strains and characterization of a novel cry1I-type gene. *Applied and Environmental Microbiology* **69**(9): 5207–11.
- Tripathi M, Kumar A, Kalia V, Saxena A K and Gujar G T. 2016. Isolation and characterization of lepidopteran specific Bacillus thuringiensis predominantly from North-Eastern region of India. Indian Journal of Experimental Biology 54(7): 431–52.
- Whitlock V H, Lo M C, Kuo M H and Soong T S. 1991. Two new isolates of *Bacillus thuringiensis* pathogenic to *Spodoptera litura*. *Journal of Invertebrate Pathology* **58**: 33–39.
- Zhong C, Ellar D J, Bishop A, Johnson C, Lin S and Hart E R. 2000. Characterization of *B. thuringiensis* d-endotoxin which is toxic to insects in three orders. *Journal of Invertebrate Pathology* **76**: 131–39.