Evaluation of aonla (*Phyllanthus emblica*) genotypes under semi-arid conditions

NARENDRA SINGH^{1*}, MUKESH KUMAR² and JEET RAM SHARMA²

CCS Haryana Agricultural University, Hisar, Haryana 125 004, India

Received: 29 December 2020; Accepted: 04 August 2021

ABSTRACT

The present study was carried out to evaluate the aonla (*Phyllanthus emblica* L. syn. *Emblica officinalis* Gaertner) genotypes for their growth, yield and fruit quality attributes under the semi-arid condition. The evaluated genotypes had significant variability for the observed parameters. Chakaiya and BSR 1 were found comparatively less vigorous amongst selected genotypes. The number of male flowers, female flowers and total number of flowers, on 10 cm length of indeterminate branch varied from 650.67 to 1488.3, 4.33 to 12.33 and 657.0 to 1499.0, respectively. Sex ratio (male/female) ranged between 96.04 (NA 6) and 262.28 (S 1). Among the genotypes under investigation, NA 20 gave maximum yield, with higher fruit weight (54.96 g) and pulp per cent (93.87). TSS and TSS: acid ratio was observed higher in BSR 1. Total sugars, reducing sugars and non-reducing sugars content was found highest in genotype Krishna. Ascorbic acid and tannin content was recorded highest in Chakaiya and NA 10, respectively.

Keywords: Ascorbic acid, Indian gooseberry, Performance, Physico-chemical

Aonla (Phyllanthus emblica L. syn. Emblica officinalis Gaertner) is one of the most important indigenous fruit crop of the country. The aonla fruit has high nutraceutical and medicinal value, thus recognized as Amrit-Phal. The fruit could be considered as vitamin C tablet (a rich source of vitamin C). It also contains a wide array of phenolics having antioxidant, antimicrobial, anti-inflammatory, antipyretic, adaptogenic, antiulcerogenic, hepatoprotective, antitumor and antidiarrheal properties (Kuttan and Harikumar 2011). Therefore, aonla has been widely used in the Indian system of medicine (Ayurveda). The two important Ayurveda products, viz. Trifla and Chavanprash, are well known for their revitalizing properties. The fruits are processed into various products such as preserves (murabba), candy, dried flecks, etc. These products notably retained the appreciable amount of ascorbic acid. The aonla plant has wider adaptability in diverse agro-climatic and edaphic conditions. The features of the intensive deep rooting system, narrow leaves with sparse foliage density, salt tolerance and fruitlet dormancy of aonla makes it an ideal fruit crop for growing in the fragile ecosystem of the arid and semiarid region. The large diversity of this indigenous crop is present in the country. Since numerous aonla genotypes

Present Address: ¹ICAR-Indian Agricultural Research Institute, New Delhi; ²CCS Haryana Agricultural University, Hisar, Haryana. *Corresponding author e-mail: narendrahorti94@ gmail.com.

have been identified for commercial cultivation, but at the same time, the information about their performance under different agro-climatic conditions is still lacking. Therefore the present investigation was undertaken to evaluate the growth, yield and quality attributes of aonla genotypes under the semi-arid condition.

MATERIALS AND METHODS

The present experiment was conducted at the research orchard of Regional Research Station, Bawal, CCS Haryana Agricultural University during 2017–18. The climate of the experimental site is characterized as hot semi-arid having 450–500 mm mean annual rainfall. In the present investigation, 11 aonla genotypes, viz. CHES 1, BSR 1, Krishna, NA 6, NA 7, NA 10, NA 20, Chakaiya and G 1, along with two seedling selections (S 1 and S 2) were undertaken for the evaluation of their growth, flowering and fruit quality parameters. All the selected genotypes were budded on the seedling rootstocks and planted during July 2006 at a spacing of 6 m × 6 m in square planting system and received uniform cultural practices.

The growth parameters were measured as per norm described by Mahajan *et al.* (2002). Flowering parameters were observed from 10 cm length of tagged indeterminate branche. The fruit physico-chemical attributes were recorded from the mature fruits. Total soluble solids (TSS) were measured using hand refractometer and expressed in °Brix. Titrable acidity (citric acid equivalent %) was determined by titration against 1N NaOH. Ascorbic acid (mg/100 g pulp) and tannins (%) were determined as per the methods outlined

in AOAC (2000). Further, reducing sugars, non-reducing sugars (%) and total sugars (%) were estimated as per the method described by Ranganna (1994). The experiment was conducted in a randomized block design (RBD) with three replications. Statistical analysis for different growth, flowering and fruit physico-chemical parameters were performed using the SAS package (9.3 SAS Institute, Inc., USA) and P-value ≤ 0.05 were considered as significant.

RESULTS AND DISCUSSION

A perusal of observations for the growth parameters among the selected aonla genotypes exhibited substantial variations (Table 1). The tree shape of the studied genotypes has categorized in three groups, viz. spreading (CHES 1, Chakaiya, Krishna, NA 6, NA 7, NA 10 and BSR 1); drooping (NA 20) and upright type (G 1, S 1 and S 2).

Average plant height, stem girth, plant spread (N-S) and plant spread (E-W) among the studied genotypes varied from 4.83 m to 6.62 m; 46.40 cm to 95.33 cm; 4.39 m to 7.47 m and 4.43 to 7.10 m respectively. The genotypes Chakaiya and BSR 1 were found to be comparatively less vigorous amongst selected genotypes. The less vigorous/ dwarf genotypes are considered suitable material for highdensity planting. The fresh weight of ten leaves of aonla genotypes varied from 95.3 mg (BSR 1) to 142.0 mg (Krishna). Similarly, the dry weight was recorded maximum (36.3 mg) in Krishna and minimum (19.7 mg) in BSR 1. The results of the present investigation are in accordance with the previous findings in the arid conditions (Shukla et al. 2010). However, contrastingly, under the humid conditions of Western Ghats, Tripathi et al. (2016) observed lesser vegetative growth in North Indian cultivars (NA 6, NA 10, Krishna and Chakaiya) as compared to BSR 1. These findings suggested that, besides the genetic background of the aonla genotypes, the prevailing agro-climatic conditions are also determining factor for growth characteristics.

The genotypes had significant variations for male, female and total number of flowers, on 10 cm length of

indeterminate branches. Among the genotypes, male flowers varied between 650.7 (Krishna) and 1488.3 (NA 10) (Fig 1a). Chakaiya had the highest female flowers (12.33) which were statistically at par with NA 6 (12.0) while lowest female flowers (4.33) was observed in S 2 which was at par with S 1 (5.0) and BSR 1 (7.0) (Fig 1b). The total number of flowers were ranged from 657.0 (Krishna) to 1499.0 (NA 10) (Fig 1c). These findings are quite similar to those reported by the previous workers (Aulakh et al. 2013). The sex ratio (male/female) is as an important determining factor for aonla productivity as higher the male/female ratio, lower the yield and vice versa. The sex ratio among the aonla genotypes was recorded between 96.0 (NA 6) and 262.3 (S 1 and S 2) (Fig 1d). Previous studies had also reported similar findings (Kotiyal et al. 2015, Bakshi et al. 2015). Several environmental variables like temperature fluctuations and edaphic particularly, the nutritional condition of soil influences the sex ratio in aonla (Bajpai 1968). Despite the higher proportion of female flowers (low male/female sex ratio), low yield potential of cultivars, viz. Chakaiya, Krishna and BSR 1 was noticed in the present study which might be due to poor fruit set and high fruit drop.

The evaluated genotypes exhibited significant variation for the different fruit physical attributes (Table 2). The maximum fruit weight (54.96 g) was found in NA 20 while minimum (5.88 g) in BSR 1. The fruit length (3.30 cm) was measured higher in NA 7 and NA 20 which was statistically at par with Chakaiya (3.28 cm), however the minimum fruit length (1.90 cm) was measured in BSR 1. Similarly, fruit breadth was measured maximum (3.70 cm) in Chakaiya while minimum (2.30 cm) in BSR 1. The fruit weight has also been reported to have higher genetic heritability, thus having greater potential for genetic gain and important criterion for selection of new promising cultivar (Singh *et al.* 2012).

The fruit yield is the most important criteria for selection of a genotype for its commercial exploitation. In the present investigation, the yield of annla genotypes

Table 1 Growth attributes of aonla genotypes under semi-arid conditions

Genotype	Tree shape	Plant height	Stem girth	Plant spread	Plant	LFW	LDW	Length of
		(m)	(cm)	N- S (m)	spread	(mg)	(mg)	determinate
					E-W (m)			branchlets (cm)
CHES 1	Spreading	5.58 ^{ed}	46.40 ^h	4.39 ^d	4.50 ^d	100.3e	24.7 ^{bc}	10.67 ^{cd}
Chakaiya	Spreading	4.83^{f}	$59.73^{\rm f}$	5.82 ^{bc}	5.50 ^{bcd}	100.7 ^e	24.0bc	8.70 ^{ef}
Krishna	Spreading	5.67 ^{cde}	62.87 ^e	6.40^{abc}	6.52 ^{ab}	142.0a	36.3a	7.10^{g}
NA 6	Spreading	6.25 ^{ab}	67.03^{d}	5.80 ^{bc}	5.50 ^{bcd}	122.3 ^{bc}	26.0^{b}	15.70 ^a
NA 7	Spreading	5.47 ^{ed}	54.50^{g}	4.40^{d}	4.43 ^d	106.0 ^{de}	26.0^{b}	15.07 ^a
NA 10	Spreading	5.88 ^{bcd}	$59.20^{\rm f}$	5.47 ^{cd}	5.33 ^{cd}	118.3 ^{cd}	26.3 ^b	11.00°
NA 20	Drooping	6.22 ^{abc}	78.57°	6.00 ^{bc}	5.77 ^{bc}	133.7 ^{ab}	33.3a	13.60 ^b
G 1	Upright	6.62 ^a	95.33a	7.47 ^a	7.10^{a}	103.0e	25.7 ^b	12.53 ^b
BSR 1	Spreading	5.22 ^{ef}	$46.93^{\rm h}$	5.50 ^{cd}	5.22 ^{cd}	95.3e	19.7°	7.57^{fg}
S 1	Upright	6.42 ^{ab}	86.56 ^b	6.91 ^{ab}	6.50 ^{ab}	102.3e	25.3bc	$10.70^{\rm cd}$
S 2	Upright	6.18 ^{abc}	76.15°	6.10 ^{bc}	6.20abc	97.7 ^e	22.7 ^{bc}	9.47 ^{de}

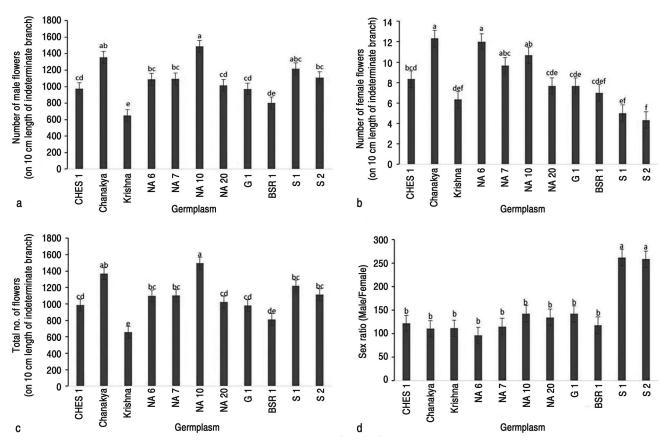


Fig 1 Flowering characteristics of aonla genotypes under semi-arid conditions (a) Number of male flowers (on 10 cm length of indeterminate branch); (b) Number of female flowers (on 10 cm length of indeterminate branch); (c) Total no. of flowers (on 10 cm length of indeterminate branch); (d) Sex ratio (male/ female).

varied from 27.0 to 97.2 kg tree. It was recorded highest (97.2 kg/tree) in NA 20, being at par with NA 6 (90.8 kg/ tree) while lowest (27.0 kg/tree) in BSR 1. These findings are comparable with previous findings (Aulakh et al. 2013, Bakshi et al. 2015). However, BSR 1 has been reported as productive annla genotype under the tropical region of the country (Kumar et al. 2011b). Thus, it seems that semi-arid conditions are a hindrance for fruit growth and yield of BSR 1. The stone weight was observed lowest (0.86 g) in BSR 1 while highest (3.36 g) in NA 20. The aonla genotype, NA 20 had the highest pulp per cent (93.87%) which was at par with Chakaiya (92.37%) and NA 6 (91.80%) whereas, lower pulp per cent was recorded in G 1 (84.63 %), BSR 1 (85.42%), S 1 (85.40%) and CHES 1 (86.45%). The results pertaining to pulp and stone parameters during the present experiment were in consonance with previous studies in aonla (Shukla et al. 2005, Bakshi et al. 2015). Time of fruit maturity was recorded early (i.e. before 15 November) in cultivar Krishna and NA 10; mid (i.e. 15 November to 15th December) in CHES 1, NA 6, NA 7, NA 20, G 1 and S 2, and late (i.e. after 15th December) in S 1, Chakaiya and BSR 1. These results are comparable with previous studies about the maturity period of aonla genotypes under the subtropical conditions (Bakshi et al. 2015, Singh et al. 2015).

The aonla genotypes had significant variations for their fruit quality parameters (Table 2). Total soluble solids (TSS)

value of the studied aonla genotypes varied from 8.4-18.3 °B. It was recorded highest in genotype, BSR 1 while lowest (8.4 °B) in S 1, which was statistically at par with S 2 (8.7 °B). The titrable acidity was recorded lowest (1.87%) in NA 6 and highest (2.67%) in S 2. TSS: acid ratio was observed higher in BSR 1 (7.67), G 1 (7.07) and CHES 1 (7.07), and lowest (3.29) in S 2. The present findings on TSS, acidity TSS: acid ratios are corroborated with those of Pandey et al. (2008). The value of total sugars, reducing sugars and non-reducing sugars among aonla genotypes varied from 3.89–8.51%, 1.75–4.68% and 2.14– 3.89%, respectively (Table 2). The genotype, Krishna contains higher reducing sugars (4.68%), non-reducing sugars (3.89%) and total sugars (8.51%). These results are in similar range with previous findings in aonla (Pandey et al. 2008, Bakshi et al. 2015). The aonla fruits are known for its high ascorbic acid content which plays an important role in antioxidant activities along with different bioactive compounds. The significant differences for ascorbic acid content were estimated among aonla genotypes and it was recorded highest (565.88 mg/100 g pulp) in Chakaiya while lowest (308.74 mg/100 g pulp) in S 1, which was statistically at par with BSR 1 (321.88 mg/100 g pulp) and S 2 (327.51 mg/100 g pulp). The range of ascorbic acid content among the aonla genotypes in the present study is comparable with earlier findings under subtropical conditions (Bakshi et al.

Table 2 Fruit physico-chemical attributes of aonla genotypes under semi-arid conditions

)							
Genotype	Fruit weight (g)	Fruit length (cm)	Fruit breadth (cm)	Yield (kg/tree)	Stone weight (g)	Pulp (%)	Fruit maturity group	TSS (°B)	Acidity (%)	TSS:Acid ratio	Total sugars (%)	Reducing sugars (%)	Non- reducing sugars (%)	Ascorbic acid (mg/100 g pulp)	Tannin (%)
CHES 1	14.768	2.448	3.00 ^d	47.2 ^{de}	2.00°	86.45 ^{cd}	Mid	15.0°	2.13bc	7.07a	4.90 ^f	2.76 ^f	2.14 ^f	442.00°	2.308
Chakaiya	34.80^{b}	3.28^{ab}	3.70^{a}	65.3°	2.65 ^b	92.37 ^{ab}	Late	10.5^{e}	2.33^{ab}	4.52 ^{de}	6.48 ^d	3.89°	2.59 ^d	565.88^{a}	3.30^{b}
Krishna	27.60 ^d	3.18bc	3.50^{b}	70.5°	2.54 ^b	60.80^{b}	Early	10.6°	2.17bc	4.93cd	8.51^{a}	4.68^{a}	3.83^{a}	491.74 ^{bc}	3.10°
NA 6	29.40°	3.10°	3.38bc	90.8^{ab}	2.41 ^b	91.80^{ab}	Mid	11.1e	1.87^{c}	6.01^{b}	6.93°	3.66^{d}	3.27bc	373.49^{f}	2.85 ^d
NA 7	28.20^{cd}	3.30^{a}	3.44bc	87.0 ^b	2.65 ^b	90.61^{b}	Mid	9.0^{f}	2.33^{ab}	3.86ef	7.72 ^b	4.56 ^b	3.16^{bc}	515.20^{b}	$2.15^{\rm h}$
NA 10	21.60°	2.96^{d}	3.30°	88.3 ^b	2.56 ^b	88.13°	Early	14.2°	2.63^{a}	5.40^{bc}	3.89h	$1.75^{\rm h}$	$2.14^{\rm f}$	473.91 ^{cd}	3.60^{a}
NA 20	54.96^{a}	3.30^{a}	3.50 ^b	97.2ª	3.36^{a}	93.87^{a}	Mid	13.0^{d}	2.23 ^b	5.92 ^b	5.69e	$3.32^{\rm e}$	2.37e	451.39 ^{de}	2.70ef
G 1	13.568	2.50^{fg}	$2.90^{\rm ed}$	85.0^{b}	2.08°	84.63 ^d	Mid	17.4 ^b	2.47 ^{ab}	7.07^{a}	4.458	2.318	$2.14^{\rm f}$	425.11 ^e	2.80^{de}
BSR 1	5.88^{h}	$1.90^{\rm h}$	2.30^{g}	27.0^{f}	0.86^{d}	85.42 ^d	Late	18.3^{a}	2.40^{ab}	7.67a	7.94 ^b	4.56 ^b	3.38 ^b	321.888	2.80^{de}
S 1	20.41°	2.76°	2.83e	41.3e	2.43 ^b	88.10°	Late	8.4^{f}	2.37ab	$3.60^{\rm f}$	4.68^{fg}	2.20^{g}	2.48 ^{de}	308.748	3.10°
S 2	17.40^{f}	$2.60^{\rm f}$	$2.57^{\rm f}$	52.8 ^d	2.54 ^b	85.40^{d}	Mid	8.7 ^f	2.67^{a}	3.29 ^f	6.70^{cd}	3.55 ^d	3.16^{bc}	327.518	2.60^{f}

2015, Singh *et al.* 2016). Notably, the ascorbic acid content in aonla genotypes was reported lower in the humid tropical conditions compare to the subtropical conditions which could be due to high soil moisture and atmospheric humidity at the time of fruit maturation that leads to increased enzymatic metabolism (Singh and Dhaliwal 2004). The maximum tannin content (3.60%) was recorded in aonla genotype, NA 10 whereas, it was observed minimum (2.15%) in NA 7. These results were in agreement with those of investigated by Pandey *et al.* (2008). The tannins play important role in retention of ascorbic acid and also possess antioxidant properties (Kuttan and Harikumar 2011).

The present investigation deciphered significant variability among the aonla genotypes for their growth, flowering and fruit-related parameters under the semi-arid conditions of Indian state Haryana. The aonla genotypes NA 20, NA 6 and Chakaiya found comparatively superior to other studied genotypes for yield and fruit biochemical attributes. Thus, these selected genotypes have the potential for commercial cultivation in the semi-arid region of India to achieve the higher yield and high-quality aonla production.

REFERENCES

AOAC. 2000. The Official Methods of Analysis of AOAC International, 17th Edn. AOAC International, Gaithersburg, USA.

Aulakh P S, Kaur A, Singh J and Thakur A. 2013. Performance of aonla (*Emblica officinalis* Gaertn.) cultivars in Punjab. *Journal of research* **50**(3-4): 110–13.

Bajpai P N. 1968. Studies on flowering and fruit development in aonla (*Emblica officinalis* Gaertn). *Horticultural Advance* 7: 38–67.

Bakshi P, Wali V K, Jasrotia A, Sharma A and Iqbal M. 2015. Evaluation of different aonla (*Emblica officinalis*) cultivars under rainfed conditions of lower Shivalik foothills of Himalayas. *Indian Journal of Agricultural Sciences* 85(8): 1012–16.

Kotiyal R, Manju and Thakur N. 2015. Studies on floral biology of aonla (*Emblica Officinalis*) cultivar Chakaiya and NA 7 under valley conditions of Garhwal Himalayas. *International Journal of Plant, Animal and Environmental Sciences* **5**(2): 117–20.

Kumar S, Chithiraichelvan R and Karunakaran G. 2011. Performance of aonla cultivars for yield and physicochemical properties under Coorg conditions. *Indian Journal* of Horticulture 68(2): 268–69.

Kuttan R and Harikumar K B. 2011. *Phyllanthus* species: scientific evaluation and medicinal applications. CRC Press.

Mahajan R K, Gangopadhyay K K, Kumar G, Dobhal V K, Srivastava U, Gupta P N and Pareek S K. 2002. *Minimal descriptors agri-horticultural crops: fruit crops*. National Bureau of Plant Genetic Resources, New Delhi.

Pandey D, Shukla S K and Akhilesh K. 2008. Variability in aonla (*Emblica officinalis* Gaertn.) accessions collected from Panna forests of Madhya Pradesh. *Indian Journal of Agroforestry* **10**(1): 73–77.

Ranganna S. 1994. *Handbook of analysis and quality control for fruit and vegetable products*. Tata McGraw Hill, New Delhi. Shukla A K, Dhandar D G and Shukla A K. 2010. Evaluation of

aonla germplasm for growth, yield and quality attributes in hot

- arid ecosystem. *Indian Journal of Horticulture* **67**(4): 43–46. Shukla A K, Samadia D K, Shukla A K and Dhandar D G. 2005. Genetic resources of aonla (*Emblica officinalis*). *Indian Journal of Plant Genetic Resources* **18**(2): 188–93.
- Singh A and Dhaliwal G S. 2004. Influence of radiation interception and canopy temperature on fruit quality of Sardar guava at different planting distance. *Indian Journal of Horticulture* **61**(2): 118–21.
- Singh A K, Singh P P, Singh S, Bhargava R and Makwana P. 2016. Variability in morphological and physico-chemical traits of aonla (*Emblica officinalis*) genotypes collected from north-eastern region of India. *Indian Journal of Plant Genetic*
- Resources 86(8): 992-97
- Singh A K, Singh S and Makwana P. 2015. Characterization of aonla (*Emblica officinalis*) varieties under zero irrigation semi-arid conditions. *Indian Journal of Agricultural Sciences* **85**(10): 1365–69.
- Singh B, Uniyal A K, Rawat J S M and Rana D K. 2012. Estimation of genetic variability in *Phyllanthus emblica* towards a contribution in sustainable rural development. *Journal of Horticulture and Forestry* 4(5): 92–95.
- Tripathi P C, Karunakaran G and Kumar S. 2016. Performance of aonla cultivars under humid tropical conditions of Western Ghats. *Progressive Horticulture* **48**(1): 28–31.