Molecular characterization of necromenic nematode *Pristionchus pacificus* and associated bacteria: A new record

ASHISH KUMAR SINGH 1* , AMIT U PASCHAPUR 1 , TILAK MONDAL 1 , MANOJ PARIHAR 1 , K K MISHRA 1 and LAKSHMI KANT 1

ICAR-Vivekanada Parvatiya Krishi Anusandhan Sansthan, Almora, Uttarakhand 263 601, India

Received: 31 January 2022; Accepted: 6 September 2022

ABSTRACT

The vast diversity of nematodes has adapted to endure in different trophic groups as free living and parasites of plants and animals. In search of potential entomopathogenic nematodes (EPNs), soil samples were collected from, the rhizosphere of Apple orchard in Darima, Nainital, Uttarakhand, India north-western Himalaya in August 2019. The whole experimental activity carried out at ICAR-Vivekanada Parvatiya Krishi Anusandhan Sansthan, Almora during 2019–2021. In present study, *Pristionchus pacificus* was isolated using *Corcyra* bait trap, identified based on morphological and molecular approaches, studied its host range, evaluated the phylogenetic tree of *P. pacificus* and isolated and characterized the nematode associated bacteria. The reproduction potential and frequency of emergence of *P. pacificus* differs significantly among the tested hosts on *Corcyra*, *Spodoptera* and *Holotrichia* larvae. The molecular diagnostics of associated bacteria based on 16S gene displayed the highest homology with *Myroides marinus* strain. The discovery of *P. pacificus VLPP01* represents the first record from India and Himalayan region.

Keywords: *Myroides marinus*, Necromenic nematode, North-western Himalaya, Phylogenetic analysis, *Pristionchus pacificus*

The nematodes are highly diverse organisms (Jones et al. 2013). The role differs from ecological indicators, model organisms, biological control of insect pests and biotic stress in various crops (Singh et al. 2021). The value of entomopathogenic nematodes as an eco-friendly option to combat insect pests has inspired us to conduct a survey to isolate native EPNs of North western Himalayan region. During the search for potential EPNs, soil samples were collected from different hilly regions. Pristionchus pacificus was recovered from the rhizospheric soil sample of an Apple orchard from the locality of Darima, Nainital district, Uttarakhand, India. P. pacificus is reported as a model nematode for developmental biology and evolutionary studies (Hong and Sommer 2006). The available biotechnological advances have utilized P. pacificus in numerous ways from decoding genome to investigating functional genomics using CRISPR technology. P. pacificus is found globally and more than 150 isolates have been reported from soil and scaraebid beetles (Kanzaki et al. 2011). The genus Pristionchus belongs to the family of Neodiplogasteridae shows necromancy with beetles of the Scarabaeidae family. The larvae resume normal life by feeding on microbiome

¹ICAR-Vivekanada Parvatiya Krishi Anusandhan Sansthan, Almora, Uttarakhand. *Corresponding author email: sashish0825@ gmail.com

that grows on carcass of host insect. The newly emerged juveniles search for a new host and enters the larval body through the natural openings. The invaded IJs do not kill the host but patiently wait for the host to die and then they feed on the microbes grown on dead carcass (Rae et al. 2008). The genus Pristionchus contains many species including *P. pacificus* which reflects the behaviour of specific necromancy with scaraebid beetles. The identification of P. pacificus is difficult due to its morphological similarity with other species of Pristionchus genera (Herrmann et al. 2006). Therefore, ITS DNA sequence-based identification and phylogenetic analysis is more, accurate and robust way to identify Pristionchus at the species level (De Ley et al. 2005). In this study, we have (1) isolated and identified P. pacificus using molecular approach; (2) studied the host range of *P. pacificus*; (3) evaluated the phylogenetic tree of P. pacificus and (4) isolated and characterized the associated bacteria.

MATERIALS AND METHODS

Rearing insect host: The study was carried out at ICAR-Vivekanada Parvatiya Krishi Anusandhan Sansthan, Almora during 2019–2021. The larvae of *Corcyra cephalonica* reared broken corn seeds. The larvae of *Holotrichia* spp. collected from the infested soybean fields from Experimental Farm, ICAR-Vivekanada Parvatiya Krishi Anusandhan Sansthan,

Hawalbagh, Almora (29.63° N and 79.63° E, 1250 amsl). The grubs were surface sterilized twice with 70% ethyl alcohol, autoclaved double distilled water, reared on potato slices at temperature of 25±2°C, RH 65±5% for 48 h in a large sterile cylindrical plastic container containing autoclaved FYM and sandy loam soil in the ratio 1:1. The larvae of *Spodoptera litura* were collected from field and reared on tomato plants. The insect *S. litura* were identified based on morphological traits following PM, E. (2015) standards.

Soil sample collection and baiting: A total of 40 soil samples (each 200 g) were collected from different locations around Almora and Nainital districts of Uttarakhand located in North-western Himalaya, in August 2019. Soil samples placed in labelled plastic bags and carried to laboratory. The GPS coordinates of samples were recorded with GPS data exa mobile application 2.2.05.249. The average monthly rainfall was 351.07 mm (August month), mean maximum temperature 29.71°C and mean minimum temperature 22.39°C. The soil was baited for entomopathogenic nematode using C. cephalonica larvae with 30 g of soil in plastic container. Four larvae of C. cephalonica were placed in soil and container was inverted and placed at room temperature under dark conditions. The mortality of dead larvae was observed 12 days post-baiting and dead were individually rinsed with water and 70% ethanol to remove surface contamination and transferred to white trap (White 1927) for nematode extraction.

Morphological and molecular characterization: The harvested nematode samples were collected, concentrated and processed for nematode fixation following methodology of Seinhorst I and II (Seinhorst J W 1959). For molecular characterization, the genomic DNA were extracted using lysis buffer from nematodes in eppendorf tube. The isolated lysates were stored at -20°C. The extracted DNA were amplified using universal r-DNA ITS and LSU primer set (ITS 5'-TTGATTACGTCCCTGCCCTTT-3' 5'-TTTCACTCGCCGTTACTAAGG-3') (LSU 5'-ACAAGTACCGTGAGGGAAAGTTG-3' 5'-TCGGAAGGAACCAGCTACTA-3') using PCR. The amplified products were separated and visualized using 5 µl of PCR products under 1.5% agarose gel electrophoresis in TAE buffer stained with EtBr. The obtained result compared with gene ruler marker of (100 bp). The Positive amplicons were purified by using FavorPrep™ GEL/PCR Purification Kit. The Purified Product was sequenced with Sanger's method of DNA sequencing for both directions. The input FASTA sequence of as query (length 874) were entered to NCBI nucleotide blast web server for standard database search set, to find highly similar sequences following megablast.

For Phylogenetic analysis, sequences showing highest similarity were selected and retrieved to FASTA file for phylogenetic analysis. *Koerneria lucani* (AB597244.1) were chosen as outgroup accession. The evolutionary history was inferred by using the maximum likelihood method, neighbour joining and maximum parsimony statistical method following Tamura-Nei model. Evolutionary analyses

were conducted in MEGA X.

Test of reproduction potential of Pristionchus pacificus on different insect host: The isolated nematodes were reinoculated on Corcyra, Spodoptera and Holotrichia larvae for multiplication and purification of isolated nematodes. Insect larvae were placed in 9 cm petri dish lined with double layered moist filter paper containing 0, 10, 50, 100, 500 and 1000, 2500, 5000, 10000 nematodes/ml suspension in three replications. The Petri dishes were placed in a plastic tray and incubated at 25±1°C in dark. The dead larvae were placed on white trap at room temperature for 10 days and the nematodes emerging from cadaver were collected and washed with double distilled water. The data on emergence period from different insect host post mortality (days) and frequency of P. pacificus emerged from different insect hosts were recorded.

Isolation, identification and phylogenetic analysis of associated bacteria: Fifty surface sterilized nematodes were collected and crushed with micropestle and streaked on NBTA medium. Single colony were picked and incubated in LB media for 3 days at 27°C with 250 RPM. Bacterial DNA was extracted following modified CTAB method and PCR amplified with 16S universal primer (F 5'-GAGTTTGATYHTGGCTCAG-3' R 5"-GAGTTTGATYHTGGCTCAG-3"). DNA sequencing was performed on Sanger platform. The obtained reads were imported to NCBI BLASTn algorithm for homology search. Multiple sequence alignment (using Muscle) and phylogeny reconstructed using MEGA X with maximum likelihood statistical method at 2000 bootstrap replication following Tamura-Nei model. Sphingobacterium spiritivorum GenBank: AJ459411.1 were chosen as an outgroup.

Statistical analysis: The recorded data were analysed using one-way analysis of variance (ANOVA) following the standard procedure (Gomez and Gomez 1984). The post hoc test of means compared using Duncan's multiple range test (DMRT) at 5% level of significance (P< 0.05) using the statistical tool SPSS for windows version 16.

RESULTS AND DISCUSSION

Pristionchus specimen was located in a 20-year Apple orchard at Darima, Uttarakhand province of north-western Himalayan region (Table 1). The soil was characterized to have sandy loam texture, with 0.105 dS/m EC, 6.59 pH and organic matter content 10.6 g/kg. The grub of Holotrichia spp. was found frequently in the soil of sample collection sites. The nematode was found in in one out of 40 baiting samples. The nematode harvested post baiting on white trap used for species confirmation. Morphological characterization of isolated nematode showed the typical features of Diplogastridae family and conspecific to Pristionchus pacificus. The body pasture remained straight post fixation, cylindrical oesophagus, long and wide stoma, presence of dorsal tooth, tail elongated conical. Measurements of nematodes could not be conducted due to lack of expertise in drawing and measurement. To ensure the morphological identification of P. pacificus, the

Parameter Unit Control Method Reference 6.59 Jackson (1967) pH1:2 soil-water suspension method EC (1:2 soil-water suspension) dS/m 0.105 1:2 soil-water suspension method Bower and Wilcox (1965) Organic carbon Modified Walkley and Black method g/kg 10.6 Jackson (1967) Mineralizable-N Subbiah and Asija method Subbiah and Asija (1956) kg/ha 467.6 49.32 kg/ha Available P Olsen method Olsen et al. (1954) Available K kg/ha 128.2 Ammonium Acetate method Schollenberger and Simon (1945) Available Zn mg/kg 2.77 DTPA-CaCl2 -TEA extraction Lindsay and Norvell (1978) method Available Mn 5.4 mg/kg Available Cu 1.78 mg/kg Available Fe mg/kg 24.7

Sandy loam Jar test method

Table 1 Physico-chemical properties of collected soil sample

molecular characterization was conducted. The genomic DNA of nematode were successfully extracted using lysis buffer and purity of DNA spectral quality assessed at 260/280 ratio through Thermo Scientific NanoDrop 2000 Spectrophotometer was found to be 1.7 with concentration of 875 ng/µl. The r-DNA cistron 18S SSU and 28S LSU (D2/D3) gene were successfully amplified for the nematode DNA. BLAST search of DNA sequence displayed significant similarity of 99.32% identity with *P. pacificus* (KY914570.1) with 100% query cover and 0.0 E-value. The Blast of D2-D3 sequence displayed 92.79% identity with 98% query cover and 0.0 E-value to P pacificus (KY914570.1) (Hassani-Kakhki et al. 2013). The identified isolate was designated as P. pacificus VLPP01 (Vivekanada Lab Pristionchus pacificus 01). The phylogenetic tree based on maximum likelihood of 40 aligned sequences of 18S SSU reflected 5 different clades, in which newly isolated P. pacificus are grouped under clade 1 with other isolates of P. pacificus (Fig 1). Maximum likelihood analysis placed the isolate of P. pacificus independently with single branch at the bottom of clade 1. 28 LSU sequence search in BLASTn showed highest similarity to organism P. pacificus (KY914570.1) with 96.86% (Hassani-Kakhki et al. 2013). The 28 LSU gene-based phylogeny supports the identity and indicates that the isolated nematode belongs to Pristionchus and has independent origin but shares comman ancestor with other known isolates under study. Evolutionary descent of different Pristionchus spp. indicated that the isolated nematode is related to other isolates of P. pacificus. The sequences of forward and reverse of rDNA cistrons were deposited at NCBI GenBank database under accession codes MZ506757 (874 bp), MZ506758 (874 bp), MZ853186 (667 bp) and MZ853185 (667 bp). P. pacificus were inoculated on Corcyra, Holotrichia and Spodoptera which demonstrated the reproduction potential on these three hosts. The reproduction potential and frequency of emergence of P. pacificus differed among the tested hosts. The emergence of juveniles was observed post inoculation of nematode concentration of 50, 100, 500, 1000, 2500, 5000 and 10000 nematodes/ml suspensions. However, no multiplication

Soil texture

and emergence of nematode was observed at inoculation dosage of 0, 10, 50 nematodes per ml. The data analysis on emergence period of nematodes from insect body indicates significant difference between the tested insect hosts. P. pacificus took shortest duration in completion of life cycle and emergence on Corcyra larvae and longest duration from mortality to emergence of nematodes in Holotrichia (Fig 2). The emergence of nematodes from larval body of Corcyra, Spodoptera and Holotrichia started from 6^{th, 7th and 9th days and continued to 15th, 16th, 29th day,} respectively. The frequency of P. pacificus emerged from different insect hosts were found significantly higher for Holotrichia followed by Spodoptera and Corcyra larvae (Fig 2). Our study also suggests that with an increase in concentration of nematodes/ml inoculated on the insect host, the time period taken in emergence reduced and the frequency of emergence of P. pacificus increased on different insect hosts. The molecular diagnostics of associated bacteria based on 16S gene displayed the highest homology with Myroides marinus strain GN-5 MN220571.1 (98.28%) belonging to family Flavobacteriaceae. Forward and reverse sequences M. marinus strain VLBM01 submitted to GenBank with accession ID OK402026 and OK405021.

P. pacificus have been established as a satellite system to investigate evolutionary developmental biology (Hong and Sommer 2006, Sommer and McGaughran 2013). *Pristionchus* spp. is known to be associated with beetles and frequently have been isolated from different scarab beetle host (Herrmann et al. 2010). Its isolation from rhizospheric soil and baiting through Corcyra indicates their possibility of occurrence freely in soil, infection and reproduction. Its preference to Corcyra host is the first description for P. pacificus. Similar observation of association with lepidopteran host Galleria melonella has been reported previously (Li et al. 2015). PCR based molecular diagnostics of nematode has been a commonplace due to simple handling, reliability and rapid species identification (Powers 2004). Tracing the phylogenetic relation using rDNA cistron of 18S and 28S has exhibited interesting results in unravelling nematode evolution (Holterman et al. 2006,

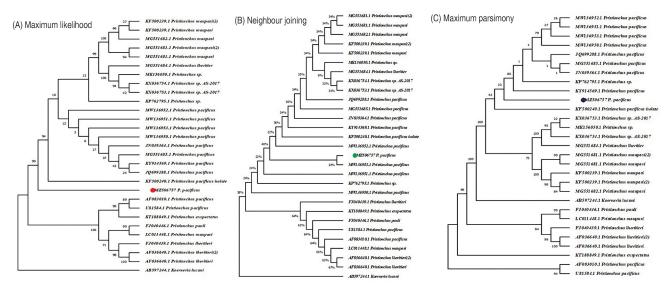


Fig 1 Phylogenetic tree based on 18S SSU gene sequence indicating the position of *P. pacificus* isolates in comparison to similar isolates based phylogenetic relationship. AB597244.1 (*Koerneria lucani*) were chosen as outgroup and bootstrap value 2000 (A) Maximum likelihood; (B) Neighbour joining; (C) Maximum parsimony.

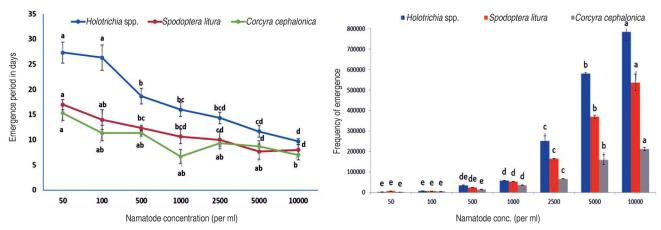


Fig 2 Emergence period from different insect hosts post mortality (days) and frequency of *P. pacificus* emerged from different insect hosts

Pereira and Baldwin 2016). We identified and report for the first-time presence of P. pacificus isolate from India using 18S and 28S rDNA based diagnostic markers and the collection site have been marked to recover nematode for future use. The reconstructed phylogenetic tree reveals and confirms the identity and relativeness as the sister of another P. pacificus. This is the first time we evaluated and describe the comparative effect on larval host preferential by *P. pacificus*. Similarly, the shortest time duration required by P. pacificus for completion of life cycle and emergence from Corcyra followed by Spodoptera and Holotrichia. The obtained result has significance in choosing suitable host for cultivation of *P. pacificus* for research purpose. The isolated nematode was observed to be associated with bacterial strain of Myroides marinus. The NCBI BLASTn algorithm search displayed greatest similarity to M. marinus strain GN-5 MN220571.1 (98.28%) belonging to family Flavobacteriaceae. This is the first report of association of M. marinus bacteria to a nematode P. pacificus despite

its frequent occurrence in aquatic, terrestrial habitats and clinical specimens (Cho et al. 2011). Up to our knowledge and literature search, the discovery of P. pacificus VLPP01 is the first report from India and Himalayan region. Given the fact, the current sampling was limited to the two districts of NWH region and the real distribution and diversity of Pristionchus spp. might be greater and depends upon the research need based sampling and efforts in other part of the country. Nevertheless, the morphological and molecular based diagnostics conducted in this study infers following conclusions: first, the discovery of P. pacificus VLPP01 is first evidence from India which expands our knowledge about the biogeography of *P. pacificus* globally. Our efforts on morphology and molecular taxonomy indicates the use of integrative approach to confirm the species despite the cosmopolitan distribution and reports from many countries (Herrmann et al. 2006, Kanzaki et al. 2012,) P. pacificus has not been reported earlier from India. Further sampling in other part of country may change our perspective on

availability and biogeography and diversity of P. pacificus in India. Second, P. pacificus can be cultivated successfully on three larval insect hosts, viz. Corcyra, Spodoptera and Holotrichia. Earlier P. pacificus was known to multiply on scarab beetle host. Hence it expands our understanding on its insect hosts for multiplication (Herrmann et al. 2010, Kanzaki et al. 2012, Li P et al. 2015). Here, we suggest that P. pacificus can be cultivated on three insect hosts other than NGM media (Pires-daSilva 2013). Test of reproduction potential of P. pacificus on different larval insect host expands our understanding about culture maintenance and mass multiplication of *P. pacificus*. Third, the isolation of bacterial strain M. marinus from P. pacificus is the first report of association of *M. marinus* from nematode body. The relationship between P. pacificus and bacterial strain Myroides marinus needs further investigation.

REFERENCES

- Bower C A and Wilcox L V. 1965. Soluble salts. *Methods of Soil Analysis*, pp 433–45. Black CA (Eds). ASA, Inc Madison, Wisconsin, USA.
- Cho S H, Chae S H, Im W T and Kim S B. 2011. *Myroides marinus* sp. nov., a member of the family Flavobacteriaceae, isolated from seawater. *International Journal of Systematic and Evolutionary Microbiology* **61**(4): 938–41.
- De Ley P, De Ley I T, Morris K, Abebe E, Mundo-Ocampo M, Yoder M, Heras J, Waumann D, Rocha-Olivares A, Jay Burr A H and Baldwin J G. 2005. An integrated approach to fast and informative morphological vouchering of nematodes for applications in molecular barcoding. *Philosophical Transactions of the Royal Society B: Biological Sciences* **360**(1462): 1945–58.
- Gomez K A and Gomez A A. 1984. Statistical Procedures for Agricultural Research, 2nd edn, pp 680. John Wiley and Sons, New York.
- Hassani-Kakhki M, Karimi J and Shokoohi E. 2013. Molecular and morphological characterization of *Pristionchus pacificus* (Nematoda: Rhabditida: Neodiplogastridae), a new record of an entomophilic nematode from Iran. *Biologia* 68: 910–17.
- Herrmann M, Kienle S, Rochat J, Mayer W E and Sommer R J. 2010. Haplotype diversity of the nematode *Pristionchus pacificus* on reunion in the Indian Ocean suggests multiple in-dependent invasions. *Biological Journal of the Linnean Society* **100**: 170–79
- Herrmann M, Mayer W E and Sommer R J. 2006. Sex, bugs and Haldane's rule: The nematode genus *Pristionchus* in the United States. *Frontiers in Zoology* **3**: 14
- Holmes B, Snell J J S and Lapage S P. 1977. Revised description from clinical isolates of *Flavobacterium odoratum* Stutzer and Kwaschnina 1929, and designation of the neotype strain. *International Journal of Systematic and Evolutionary Microbiology* 27: 330–36.
- Holterman M, Van der Wurff A, Van den Elsen S, Van Megen H, Bongers T, Holovachov O, Bakker J and Helder J. 2006. Phylum-wide analysis of SSU rDNA reveals deep phylogenetic relationships among nematodes and accelerated evolution toward crown Clades. *Molecular Biology and Evolution* 23(9): 1792–800.
- Hong R L and Sommer R J. 2006. *Pristionchus pacificus*: a wellrounded nematode. *Bioessays* 28: 651–59.

- Jackson M L. 1967. Soil Chemical Analysis. Prentice Hall of India Private Ltd, New Delhi, pp. 263–93
- Johnson T E and Lithgow G J. 1992. The search for the genetic basis of aging: the identification of gerontogenes in the nematode *Caenorhabditis elegans*. *Journal of the American Geriatrics Society* **40**(9): 936–45.
- Jones J T. 2013. Top 10 plant-parasitic nematodes in molecular plant pathology. *Molecular Plant Pathology* **14**: 946–61.
- Kanzaki N, Taki H, Masuya H, Okabe K, Tanaka R and Abe F. 2011. Diversity of stag beetle-associated nematodes in Japan. *Environmental Entomology* **40**(2) 281–88.
- Kanzaki N, Ragsdale E J, Herrmann M, Mayer W E and Sommer R J. 2012. Description of three *Pristionchus* species (Nematoda: Diplogastridae) from Japan that form a cryptic species complex with the model organism *P. pacificus. Zoological Science* **29**: 403–17
- Li P, Dai C, Bao H, Chen L, Gao D, Wang G, Wang J, Wang H, Yedid G and Zhang K. 2015. A new species of *Pristionchus* (Rhabditida: Diplogastridae) and its bacterial symbiont from Yixing, China. *Journal of Nematology* **47**(3): 190–97.
- Lindsay W L and Norvell W A. 1978. Development of soil test for zinc, iron, manganese and copper. Soil Science Society of America Journal 42: 421–28
- Muhling M, Woolven-Allen J, Murrell J C and Joint I. 2008. Improved group-specific PCR primers for denaturing gradient gel electrophoresis analysis of the genetic diversity of complex microbial communities. *ISME*: 379–92.
- Olsen S R, Cole C V, Watanabe F S and Dean L A. 1954. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. Circular No. 939. USDA, Washington, DC, USA.
- Pereira T J and Baldwin J G. 2016. Contrasting evolutionary patterns of 28S and ITS rRNA genes reveal high intragenomic variation in Cephalenchus (Nematoda): implications for species delimitation. *Molecular Phylogenetics and Evolution* 98: 244–42
- Pires-daSilva A. 2013. *Pristionchus pacificus* protocols. The *C. elegans* Research Community, *WormBook*.
- Powers T. 2004. Nematode molecular diagnostics: from bands to barcodes. *Annual Review of Phytopathology* **42**: 367–83.
- Rae R, Riebesell M, Dinkelacker I, Wang Q, Herrmann M, Weller A M, Dieterich C and Sommer R J. 2008. Isolation of naturally associated bacteria of necromenic *Pristionchus* nematodes and fitness consequences. *Journal of Experimental Biology* 211(12): 1927–36.
- Schollenberger C J and Simon R H. 1945. Determination of exchange capacity and exchangeable bases in soil ammonium acetate method. *Soil science* **59**: 13–24
- Seinhorst J W. 1959. A rapid method for the transfer of nematodes from fixative to anhydrous glycerin. *Nematologica* **4**: 67–69.
- Singh A K. 2021. Entomopathogenic nematodes: a sustainable option for insect pest management. *Biopesticides: Advances in Bio-inoculant Science*, pp. 73–92. Rakshit A, Meena V S, Abhilash P C, Sarma B K, Singh H B, Leonardo Fraceto, Parihar M, Singh A K (Eds). Woodhead Publishing,
- Sommer R J and McGaughran A. 2013. The nematode *Pristionchus pacificus* as a model system for integrative studies in evolutionary biology. *Molecular Ecology* **22**: 2380–93.
- Subbiah B V and Asija G L. 1956. A rapid test procedure for assessment of available nitrogen in soils. *Current Science* **25**: 259–60
- White G F. 1927. A method for obtaining infective nematode larvae from cultures. *Science* **66**: 302–03.