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ABSTRACT

The present study was carried out at ICAR-National Bureau of Plant Genetic Resources, New Delhi during 2020–21 
to evaluate the differential reaction of 69 germplasm accessions representing black gram [Vigna mungo (L.) Hepper] 
landraces and its crop wild relatives for resistance against Callosobruchus maculatus (Fab.) under artificial infestation 
set-up using ‘No-choice test’ method and analyze their genetic diversity using SSR markers. After emergence of adult 
beetles, the accessions were studied for the growth parameters like total oviposition, exit holes, adult emergence (AE), 
per cent seed weight loss (PSWL) and growth index (GI), which varied significantly. Based on the key traits, viz. AE 
and PSWL, the accessions were categorized into six groups, viz. immune (I), resistant (R), moderately resistant (MR), 
moderately susceptible (MS), susceptible (S) and highly susceptible (HS). Accessions IC259504 (Vigna vexillata) 
and IC424616 (Vigna mungo) were immune and resistant to bruchid infestation respectively. Moreover, the genetic 
diversity parameters such as allele number, PIC values and observed heterozygosity indicated considerable diversity 
among the accessions. The reported immune and resistant accessions could be used as donor parents in the Vigna 
breeding programme for transferring bruchid resistance factor(s) to agronomically superior cultivars. 
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Black gram [Vigna mungo (L.) Hepper], a promising 
pulse crop, forms a major part of the vegetarian Indian diet 
(Indhu et al. 2018). However, the production and storage 
are significantly hampered by substantial on-field and post-
harvest damage from bruchids, especially Callosobruchus 
maculatus (Fab.), a field-to-store pest which inflicts 
maximum qualitative and quantitative damage to black 
gram seeds during storage (Panigrahi et al. 2021). More 
than 50% loss in seed weight and protein content has been 
reported in black gram due to bruchid infestation during 
storage thus rendering the infested grains unsuitable for 
human consumption (Gujar and Yadav 1978). 

The availability of natural sources of immunity or 
resistance to C. maculatus infestation is scarce in cultivated 
black gram (Duraimurugan et al. 2014, Tripathy 2016), 
which necessitates screening of large and diverse set of 
germplasm. However, there have been limited efforts to 
screen black gram germplasm against bruchids resulting 
in few breeding programmes for introgression of bruchid 

resistance genes. A possible reason for this may be the 
narrow genetic base among local cultivars (Pyngrope et 
al. 2015, Suvan et al. 2020). Thus widening the available 
genetic base holds the key to increasing seed yield in black 
gram which will facilitate the incorporation of bruchid 
resistance genes for which assessment of genetic diversity 
forms a vital constituent (Zhang et al. 2017, Pratap et al. 
2021). SSR is a robust tool for molecular characterisation in 
crops due to its co-dominance and multi-allelic nature. SSRs 
are reliable because they are locus-specific, PCR-based and 
easy to score marker systems (Kaewwongwal et al. 2015). 

Hence, the present experiment was taken up to evaluate 
the differential response of black gram and its crop wild 
relatives (CWR) germplasm against pulse beetle (C. 
maculatus) and to understand the genetic diversity of the 
screened accessions employing microsatellite markers.

MATERIALS AND METHODS
Plant material: Present study was carried out at 

ICAR-National Bureau of Plant Genetic Resources, New 
Delhi acquiring 55 black gram landraces from the National 
Genebank, ICAR-NBPGR, New Delhi during 2020–21. 
Additionally, 10 wild Vigna accessions representing the 
CWRs, viz. V. radiata var sublobata, V. trilobata, V. vexillata 
and four checks, viz. KU-6, Mash-114, PU-11-14 and 
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Biosciences USA) was used to determine the size of the 
amplicons. 

A total of 43 microsatellite markers were retrieved from 
Bangar et al. (2018) and selected for studying the genetic 
diversity among the studied accessions (Supplementary 
Table 1). The selected primers were screened initially for 
amplification, out of which 30 displayed polymorphism. 
The amplified PCR products were scored using PyElph 
1.4 (Pavel and Vasile 2012). The parameters of genetic 
diversity, viz. allele number (An), frequency of major 
allele (Maf), polymorphic information content (PIC), 
gene diversity (GD), and observed heterozygosity (Ho), 
for each g-SSR were calculated followed by construction 
of Phylogenetic neighbour-joining (NJ) tree using Nei’s 
genetic distance method (Nei et al. 1983, Liu and Muse 
2005). The genetically diverse populations were rebuilt from 
version 2.3.4 of STRUCTURE (Pritchard et al. 2000). The 
software was run by adjusting the value of K from 2 to 10. 
An online tool Structure Harvest was used to identify the 
most probable populations.

RESULTS AND DISCUSSION
Variability in insect growth parameters: Evaluating 

diverse germplasm accessions, especially landraces and 
CWRs is essential for ascertaining trait-specific germplasm. 
Data from screening under an artificial infestation setup 
revealed significant differences among the accessions against 
their response to C. maculatus in terms of total oviposition, 
AE, number of exit holes, PSWL and GI (Table 1). The 
highest variability was observed for GI (62.09%) followed 
by AE (35.36%). Oviposition depends on host availability 
and is influenced by various antixenotic traits, including 
chemical constituents present on the seed coat (Petzold-
Maxwell 2011, Tripathi et al. 2015, Tripathi et al. 2017). 

IPU-2-43 were also included in the experimental material. 
Collection sites of the studied accessions has been shown 
in (Supplementary Fig 1).

Insect bioassay: Insect culture of C. maculatus was 
reared on seeds of black gram variety in a Biological 
Oxygen Demand (BOD) incubator at Entomology Lab, 
Division of Plant Quarantine, ICAR-NBPGR, New Delhi, 
for 4–5 generations before starting the experiment (Relative 
Humidity: 65±5% and temperature: 28±1°C). The black 
gram and its CWR accessions were screened during 
2020–21 for their reaction to C. maculatus using the ‘No-
choice test method’ under artificial seed infestation (Giga 
1995). The experimental design followed was a Completely 
Randomised Design with 5 replications, comprising 20 
healthy and well-dried seeds from each accession that were 
weighed and placed in glass bottles with perforated lids to 
allow proper air circulation. The adults (male and female) 
were released into each perforated bottle @two pairs per 
replication. Insects were removed after 72 h of oviposition. 
Observations on various growth parameters were noted, 
which included total oviposition, adult emergence (AE) Per 
cent, number of exit holes, per cent seed weight loss (PSWL), 
mean development period (MDP) and growth index (GI). 
The number of eggs laid on seeds determined the extent 
of oviposition on each accession. As soon as adults started 
emerging, observations were recorded after every 24 h and 
continued till no emergence. Adult emergence and MDP 
were calculated using formula described by Howe (1971). 
Similarly, GI and PSWL were determined using formulae 
given by Jackai and Singh (1988) and Eker et al. (2018) 
respectively. 

Statistical Analysis: The growth parameters of bruchid 
were subjected to statistical variance analysis using the 
CropStat 7.2 program (IRRI 2007) to determine significant 
differences among the studied accessions. 

DNA isolation: Freshly germinated leaves of 
germplasm accessions were used for DNA extraction 
as described by Doyle (1990). The quality of DNA was 
checked on 0.8% agarose gel followed by the determination 
of DNA concentration using NanoDrop (Thermo Fisher 
Scientific, USA). As per NanoDrop reading, a working 
dilution of 20 ng/μL was prepared for PCR amplification 
of SSR markers.

SSR loci analysis: PCR was done in a 15 µL volume 
consisting of 2.0 µL genomic DNA (40 ng), 7.5 µL 
OnePCR™ Master-mix (GeneDireX, Taiwan), 0.5 µL of 
each primer (10 nmol) and 4.5 µL MilliQ water. PCR 
amplification was performed in a thermal cycler (G-Storm 
UK), maintaining the following PCR program: initial DNA 
denaturation at 94°C for 5 min, subsequent 34 cycles of 
denaturation at 94°C for 1 min, standardized annealing 
temperature for 1 min and extension at 72°C for 1 min 
followed by a final extension at 72°C for minimum 7 min. 
The annealing temperature was standardized by varying the 
temperature. The amplicon of each SSR loci was separated 
out on 4% metaphor agarose (Lonza USA) gel for 4 h at 
a supply of 100 V, and DNAmarkTM 100 bp Ladder (G 

Table 1	Analysis of variance (ANOVA) for growth parameters of 
C. maculatus

Trait Range Mean ± 
SE

CD (0.05) CV

OP 9.67-56.0
(IC331454-IC436519)

29.05 ± 
0.94

9.44 26.72

AE (%) 5.77-89.44
(IC424616-IC553517)

51.34 ± 
2.20

15.58 35.39

Exit 
holes 
(No.)

1.67-19.33
(IC424616-IC371765, 
IC394479)

13.88 ± 
0.49

4.39 29.43

PSWL 
(%)

11.29-63.48
(IC424616-IC541046)

42.00 ± 
1.28

10.30 25.24

GI 0.49-22.46
(IC424616-IC524639)

7.72 ± 
0.58

4.09 62.09

MDP 
(days)

3.28-13.0
(IC553517-IC140825)

7.92 ± 
0.27

2.12 27.87

OP, oviposition (per 20 seeds); AE, adult emergence; PSWL, 
% seed weight loss; GI, growth index; MDP, mean development 
period.
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The range for the number of eggs laid was 9.67–56.00. The 
number of exit holes from insect emergence, which was 
observed to be a better criterion for assessing resistance 
than oviposition varied from 1.67–19.33. Adult emergence 
per cent, PSWL and GI are the most reliable yardstick to 
determine resistance/susceptibility of accession to bruchid 
infestation (Jackai and Asante 2003). Adult emergence 
appears to depend on larval survivability and its ability 
to counteract chemical deterrents present inside the seed 
(Amusa et al. 2018), extending the developmental period. In 
our study, AE per cent which varied from 5.77– 89.44, was 
absent in the immune accession (IC259504) and significantly 
less in the resistant accession (IC424616). The extent of 
damage inflicted due to larval feeding inside the cotyledon 
is manifested as PSWL whose range was 11.29–63.48. 
Similarly, observation for GI was in the range 0.49–22.46. 

Categorisation of accessions for their response to C. 
maculatus: The accessions were screened for their reaction 
to C. maculatus infestation based on growth parameters 
of bruchid. A scatter plot among three key traits, viz. AE  
per cent, PSWL and GI showed a linear trend (Supplementary 
Fig 2). The accessions were classified into six groups, viz. 
immune (I), resistant (R), moderately resistant (MR), 
moderately susceptible (MS), susceptible (S) and highly 
susceptible (HS) based on AE and PSWL (Supplementary 
Table 2). Immune and resistant group was represented by 
one accession each (IC259504 and IC424616 respectively) 
which were validated in subsequent 
screening.

SSR polymorphism:  Thirty, 
out of 43 selected microsatellite 
markers displayed polymorphism and 
substantial genetic variability among 
the studied accessions (Table 2). A total 
of 105 alleles were observed which 
varied from 2 to 10 alleles per marker. 
The mean number of alleles per locus 
detected (3.37) was near the findings 
of Gupta and Gopalakrishna (2009) 
and Pyngrope et al. (2015) but much 
lower than reported by Kaewwongwal 
et al. (2015) and Suvan et al. (2020). 
It may be due to a small number of 
black gram accessions involved in the 
study, especially wild germplasm. The 
major allele frequency ranged from 
0.28 (mgssr172) to 0.97 (VR256), 
with a mean value of 0.68 per locus. 
The observed genetic diversity value 
among the selected microsatellite 
markers varied from 0.06 (VR256) 
to 0.79 (mgssr172) with a mean 
of 0.41 per locus. The observed 
heterozygosity varied from 0 to 0.95 
with a low mean heterozygosity (0.23) 
which could be ascertained primarily 
due to autogamous nature of black 

gram responsible for high homozygosity (Gediya et al. 
2019). The PIC value varied from 0.06 (VR256) to 0.76 
(mgssr172). However, the mean PIC value representing the 
discriminatory power of a molecular marker (0.35) was in 
close agreement with Sangiri et al. (2007) using SSR marker. 
Higher the PIC value more diverse the germplasm hinting 
its suitability for utilization in breeding programmes. In our 
study, the primer mgssr172 showed the highest PIC value 
(0.76) and the maximum number of alleles (10), indicating 
it most preferable among the selected SSR markers for 
characterising black gram and related Vigna species. 

Phylogenetic study and population structure analysis: 
The scored SSR marker data was used to construct the 
phylogenetic tree, which grouped the studied accessions 
into 3 major clusters (Fig 1). Cluster 1, the major one, 
consisted of 65 accessions, including the wild accessions 
(represented as red dots) and 4 checks (represented as 
blue dots) where 7 wild accessions (IC331457, IC524639, 
IC553505, IC553510, IC553516, IC553517 and IC553520) 
were found to be tightly grouped. Additionally, Cluster 
II and III were observed to consist of 2 accessions each 
(IC436952, IC436702; IC436644, IC436518 respectively). 
Tondonba et al. (2018) and Suvan et al. (2020) also 
documented three genetic groups revealed by diversity 
analysis using SSR markers in black gram. Similarly, the 
population structure distributed the studied accessions into 
three genetic populations recording the most predictable 

Fig 1	 N-J tree of studied accessions using scored data of 30 g-SSRs. 

EVALUATION OF BLACK GRAM GERMPLASM FOR PULSE BEETLE



918 [Indian Journal of Agricultural Sciences 92 (7)

118

number of subpopulations (K) (Supplementary Fig 3). 
Bar-plot diagram was used to illustrate the grouping of the 
genetically pure accessions (Fig 2). 

The presented findings reiterate the significance of 
large-scale characterisation and evaluation of germplasm 
conserved in the genebanks for the identification of trait-
specific genotypes. Besides significant variation in their 
response to C. maculatus, the studied accessions revealed 
considerable diversity at the molecular level. Further, there 
is a need to decipher the morphological and biochemical 
mechanism governing resistance to C. maculatus in the 
identified immune (IC259504) and resistant (IC424616) 
accessions. Additionally, known bruchid-resistance markers 
could be employed in unravelling the locus controlling the 
same in the above accessions.
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