Effect of priming treatments on germination and seedling growth of artificially aged seed of guava (*Psidium guajava*)

NEHA SHARMA¹, J R SHARMA¹, ARVIND MALIK¹, AMIT SHARMA¹, VIKASH KUMAR^{1*}, RITU YADAV¹ and AJAY KUMAR²

Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana 125 004, India

Received: 02 September 2021; Accepted: 25 November 2021

ABSTRACT

An experiment was conducted to study the effect of priming treatments on artificially aged seed germination and seedling growth of guava (*Psidium guajava* L.) at Department of Seed Science and Technology, CCS Haryana Agriculture University, Hisar during 2019–20. It is comprised 21 treatments in complete randomize design with three replications. There were five priming methods with different treatments under study i.e. tap water, GA₃ (at 500, 700 and 1000 ppm concentration), KNO₃ (at 0.5 and 1% concentration), thiourea (at 0.5 and 1% concentration) and HCl (at 5% and 10% for 2 and 4 min). Duration of tap water, GA₃ KNO₃ and thiourea soaking was kept 24 and 48 hours. The study revealed that priming the artificially aged seeds in KNO₃ greatly increased germination, especially soaking of artificially aged seeds in KNO₃ at 1% for 48 h which shows up to 45.0% germination. Parameter like germination%, mean germination time, seedling length, seedling dry weight and seedling vigour were positively affected by all the priming treatments. Artificially aged seed viability decreased but the standard germination efficiently increased due to priming treatments. KNO₃ at 1% for 48 h improved germination and resulted in maximum dry weight of seedling (206.0 mg), seedling length (4.16 cm) and vigour index I and II (187.0 and 9271.0) in laboratory. Artificially aged seeds without any priming treatments showed poor growth and germination.

Keywords: Artificially ageing, Guava, Germination, Priming, Seed

Guava (Psidium guajava L.) belongs to the family Myrtaceae is one of the most important commercial fruits. It is indigenous to tropical America, but cultivated in all the tropical and subtropical countries of the world. It was introduces by Portuguese in 17th century and cultived since then. It can be grown up to 1500 m. It is commonly known as Apple of tropics and sub-tropics because of having high vitamin A and B and being exceptionally rich in vitamin C (Rai et al. 2010). In India, guava occupies an area of 2.90 lakh hectares with production of 43.59 lakh metric tonnes, respectively (Anonymous 2020). A seed is basically a kernel in which a small embryonic plant is covered by a hard seed coat. It contains some stored food, which promotes the growth of the embryo after receiving the signals under appropriate climatic conditions (Thomas et al. 2006). Seed lot having same variety, kind, germination and chronological age do not store equally under same condition. Such type of variation in storage potential of seed lots due to difference

¹Chaudhary Charan Singh Haryana Agricultural University, Hisar, Harayana; ²ICAR-National Agricultural Higher Education Project, New Delhi. *Corresponding author email: vikaskamboj7005@gmail.com

in their storage history and exposed condition during post maturation period until storage. Deterioration of seed is associated with ageing phenomenon, which is defined as an irreversible degradation in the quality of seed after it has reached specific stage. Seed deterioration start immediately after attaining the physiological maturity on the plant itself. Accelerated ageing is the most important test among all the seed vigor tests to know the longevity of seed. The common effects of seed ageing on the seeds integrity are explained as function of free radical mediated membrane and chromosomal damage (Khan *et al.* 2005) Many seed priming treatments have been used to reduce the damage of aging and invigorate their performance in various crops (Farooq *et al.* 2009).

MATERIALS AND METHODS

The present study was carried out at research form of CCS Haryana Agricultural University; Hisar situated at 215.2 m amsl with coordinates of 29°10′ N latitude and 75°46′ E longitudes during 2019–20. Accelerated ageing seed sample of 200 seeds were placed in a plastic box over a wire mesh tray above 35 ml of water in the bottom. The seeds were spread out on the wire mesh tray in a uniform layer; the box was closed and transferred to an accelerated ageing chamber maintained at 40–45°C and

high relative humidity (90-100%) for 72 h. The plastic box was removed after the mentioned time period and guava seed were cooled and tested for normal germination test. The decline in accelerated ageing is related to initial degree of seed deterioration of seed lots. There were in total 21 treatments consisting of various concentration and time of soaking using five different materials i.e. T₁-Control, T₂- GA_3 @500 ppm for 24 h , T_3 - GA_3 @700 ppm for 24 h, T₄- GA₃ @1000 ppm for 24 h, T₅- GA₃ @500 ppm for 48 h, T₆- GA₃ @700 ppm for 48 h, T₇- GA₃ @1000 ppm for 48 h, T₈- KNO₃ @0.5% for 24 h, T₉- KNO₃ @1.0% for 24 h, T₁₀- KNO₃ @0.5% for 48 h, T₁₁- KNO₃ @1% for 48 h, T_{12} - Thiourea @0.5% for 4 h, T_{13} - Thiourea @1% for 24 h, T₁₄- Thiourea @0.5% for 48 h, T₁₅- Thiourea @1.0% for 48 h, T_{16} - Tap water for 24 h, T_{17} - Tap water for 48 h, T₁₈- HCL @5% for 2 min, T₁₉- HCL @10% for 2 min, T₂₀- HCL @5% for 4 min, T₂₁- HCL @10% for 4 min.

The seed quality parameters:

Seed viability (%): 25 seeds of each treatment replicated thrice were soaked in 50 ml water for 16 h at 25°C to activate dehydrogenase enzymes. After longitudinal sectioning of guava seeds with sharp blade, the seeds were stained in 0.01% tetrazolium solution (2, 3, 5-triphenyl tetrazolium chloride) for 5 h at 38°C, in petri plates. After that, solution was poured off and seeds were washed in tap water and examined under magnifying glass. The completely red stained seeds were considered as normal viable seeds and expressed in percentage.

Standard germination (%): 25 seeds of each treatment in three replicates were placed on the top of paper and kept at 27 ± 1^{0} C with 80–85% relative humidity in seed germinator.

The mean germination time (MGT): It was calculated by taking the germination counts from replicates used for standard germination test. The germination counts were taken every 24 h and MGT was calculated according to the formula proposed by Dezfuli *et al.* (2008).

Seedling length (cm): Seedling length was measured on 10 randomly selected normal seedlings in centimeter. At last, average of 10 seedlings was taken for final calculations.

Dry weight per seedling (mg): The ten seedlings selected for measuring seedling length were further kept in hot air oven for taking dry weight. Seedlings were dried in oven at 55 ± 2 °C temperature for 48 h and the seedling dry weight was recorded in milligram. At last, average weight of 10 seedlings was taken for further calculation.

Seedling vigour (cm): For calculation of seedling vigor, the root and shoot vigor were calculated as the sum of total root length (cm) and shoot length (cm) of all the seedlings of a replicate divided by 10. The seedling vigor was expressed as the sum of mean of the root and shoot vigour (Srinivasan and Saxena 2007).

Vigour index (seedling vigour index I and II): It was calculated with the help of method given by Abdul-Baki and Anderson (1973);

Vigour index-I = Standard germination (%) × Average seedling length (cm),

Vigour index-II = Standard germination (%) × Average seedling dry weight (mg)

The data were analyzed with the help of windows based computer package OPSTAT (Sheoran *et al.* 1998), which calculate the critical difference (CD) between the treatments at 5% level of significance.

RESULTS AND DISCUSSION

Different Priming treatments of artificially aged guava seed significantly affected seed viability (Table 1). The data revealed that the un-primed artificially aged guava seed resulted in significantly higher seed viability (51.1%) over other seed priming treatments except KNO₃ @1.0% solution for 48 h, while the minimum seed viability (16.3%) was observed in seed dipped with GA₃ @500 ppm for 24 h. This might be due to cause losing in membrane integrity of artificially aged seed ultimately resulted into less vigour and viability of seed (Singhal *et al.* 2017). The results are in accordance with the findings of (Windaurer *et al.* 2007)

Table 1 Effect of different priming treatments on seed viability (%), germination (%) and days taken for germination (days) of artificially aged guava seedling L-49 under laboratory condition

Treatment	Seed viability (%)	Germination (%)	2	
T ₁ -Control	51.1	3.2	93.0	
T ₂ - GA ₃ 500 ppm, 24 h	16.3	7.5	88.3	
T ₃ - GA ₃ 700 ppm, 24 h	22.1	11.5	88.5	
T ₄ - GA ₃ 1000 ppm, 24 h	38.1	13.4	86.0	
T ₅ - GA ₃ 500 ppm, 48 h	22.5	14.7	83.2	
T ₆ - GA ₃ 700 ppm, 48 h	37.3	17.4	81.2	
T ₇ - GA ₃ 1000 ppm, 48 h	39.9	22.5	77.8	
T ₈ - KNO ₃ 0.5%, 24 h	38.8	27.7	61.8	
T ₉ - KNO ₃ 1.0%, 24 h	44.6	32.2	55.0	
T ₁₀ - KNO ₃ 0.5%, 48 h	46.1	37.2	54.3	
T ₁₁ - KNO ₃ 1.0%, 48 h	47.2	45.0	48.7	
T ₁₂ - Thiourea 0.5%, 24 h	26.8	24.5	84.0	
T ₁₃ - Thiourea 1.0%, 24 h	29.0	24.9	85.0	
T ₁₄ - Thiourea 0.5% , 48 h	32.4	32.9	64.3	
T ₁₅ - Thiourea 1.0% , 48 h	22.8	22.2	73.0	
T ₁₆ - Tap water, 24 h	35.5	33.3	66.5	
T ₁₇ - Tap water, 48 h	34.3	26.8	74.8	
T ₁₈ - HCL 5%, 2 min	19.2	15.7	81.8	
T ₁₉ - HCL 10%, 2 min	21.1	17.2	76.3	
T ₂₀ - HCL 5%, 4 min	30.5	17.7	73.8	
T ₂₁ - HCL 10%, 4 min	36.2	21.5	68.7	
CD	4.7	3.6	2.8	

that seed storage caused a decrease in the protein content, which may be related to oxidation of the amino acid, due to the increase in the respiratory activity and advance in the deterioration process of the stored seeds. Germination per cent data (Table 1) reveals that the seed priming of artificially aged guava seed dipped with KNO₃ @1% for 48 h had significantly higher germination (45%) as compare to all other seed priming treatments. It is due to effectiveness of KNO₃ which could be attributed to successful removal of several lignified layers in the testa, are packed tightly together and contain water-repelling compounds (Baskin 2003). Priming treatment is responsible for repairing the age related cellular and subcellular damage of low vigour seeds that may accumulated during seed development (Bray 1995). Raj et al. (2013) studied improvement in germination characteristics in artificially aged seeds of okra (Abelmoschus esculentus) by osmo-conditioning. The minimum standard germination percentage of artificially aged seed was observed in control treatment. Among the various reasons, the main are external (irradiation, fungal attack) and internal factors (accumulation of toxic compounds, loss of growth hormones, degradation of genetic material, and proteins or membranes) Priestley (1986). Singh et al. (2014) studies osmo-priming with KNO₃ @1% for 6 h resulted into greater seed germination and seedling length in cowpea. These results are in close conformity with the finding of Shim et al. (2008) who reported that 0.2% or 0.5% solution of KNO₃ for 72 h is a recommended method that can be practically applied for increasing germination of paspalum Tomato seed, primed with KNO3 solution and benefits in removing dormancy and promoting faster germination (Lara 2014).

Data pertaining to days taken to seed germination of artificially aged guava seed (Table 1) reveal that seed priming with KNO₃ @1% solution for 48 h (48.7 days) significantly reduced the germination time as compared to all other seed priming treatments. While the maximum days taken for germination (93 days) was observed in control. It might due to priming of seed promote germination by repair of damage proteins, genetic material (Koehler et al. 1997) and increase in oxidation of nicotinamide adenine dinucleotide phosphate and increase in oxidation of NADPH (Kumar 2019). A perusal of data (Table 2) exhibited that different seed priming treatments significantly affected seedling length over the control. Results showed that the seed priming with KNO₃ @1% solution for 48 h (4.16 cm) resulted into significantly increase the seedling length over other priming treatments excepts it was statistically at par with KNO₃ @0.5% solution for 48 h. However, the minimum germination percentage of artificially aged seed was in control treatment. Many seed priming treatment have been used to decrease the damage of aging and invigorates their performance in many crops (Farooq et al. 1998). The hike in vigor might be due to the direct influence on extensive growth of seedlings probably in increasing mobilization of reserve foods to growing seedlings (lay et al. 2013). Similar trend was followed by Demer and Mavi

Table 2 Effect of different priming treatments on seedling length (cm), dry weight of seedling (mg), seedling vigor index I and II of artificially aged guava seedling L-49 under laboratory condition

laboratory condition							
Treatment	Seedling length	Dry weight of seedling (mg)	Vigor index I	Vigor index II			
T ₁ -Control	0.97	26.3	3.0	84.0			
T ₂ - GA ₃ 500 ppm, 24 h	1.91	37.1	14.2	279			
T ₃ - GA ₃ 700 ppm, 24 h	2.14	42.1	24.5	484			
T ₄ - GA ₃ 1000 ppm, 24 h	1.98	82.0	26.4	1091			
T ₅ - GA ₃ 500 ppm, 48 h	1.50	41.7	22.0	611			
T ₆ - GA ₃ 700 ppm, 48 h	2.14	60.0	37.0	1037			
T ₇ - GA ₃ 1000 ppm, 48	2.90	153.7	65.3	3465			
T ₈ - KNO ₃ 0.5%, 24 h	3.19	131.2	88.4	3631			
T ₉ - KNO ₃ 1.0%, 24 h	3.53	185.6	113.6	5951			
T ₁₀ - KNO ₃ 0.5%, 48 h	3.93	164.1	146.1	6098			
T ₁₁ - KNO ₃ 1.0%, 48 h	4.16	206.0	187.2	9271			
T ₁₂ - Thiourea 0.5%, 24 h	2.02	94.7	49.3	2324			
T ₁₃ - Thiourea 1.0%, 24 h	1.67	108.8	41.0	2705			
T ₁₄ - Thiourea 0.5%, 48 h	2.95	205.0	96.8	6797			
T ₁₅ - Thiourea 1.0%, 48 h	3.42	152.0	76.0	3365			
T ₁₆ - Tap water, 24 h	3.24	102.0	102.8	3397			
T ₁₇ - Tap water, 48 h	3.12	121.9	83.7	3261			
T ₁₈ - HCL 5%, 2 min	1.50	69.9	23.4	1104			
T ₁₉ - HCL 10%, 2 min	2.04	89.9	34.9	1545			
T ₂₀ - HCL 5%, 4 min	2.21	81.9	39.0	1435			
T ₂₁ - HCL 10%, 4 min	1.28	108.8	27.9	2334			
CD	0.34	9.4	13.9	556			

(2004) halo primed watermelon seed treated with KNO₃ 3% for 6 days found that increase in seedling weight and hypocotyl length. Different Priming treatments significantly affected dry weight per seedling (Table 2) under laboratory conditions. Seed priming treatments significantly influenced dry weight of seedling as compared to control treatment. The data reveals that the seed priming of fresh guava seed with KNO₃ @1% concentration for 48 h (206.0 mg) resulted into significantly increase in the dry weight of seedling as compared to all other seed priming treatments except thiourea @0.5% solution for 48 h. Ageing of seed would increase metabolic activity and consequently reduce the reserve substance content and ultimately reduce the dry material weight of the seeds (Bewley and Black 1982). However, minimum dry weight per seedling (41.7 mg) was observed in control treatment. This suggested that under nutrient deficient conditions the leakage of the membrane is more due to which metabolites and biomolecules leached out and the seed quality deteriorates over the storage interval. Abdelgadir et al. (2012) reported that seeds treated with KNO₃ for 24 h produced heavier and longer seedlings which resulted in increased vigour indices of Jatropha curcas seeds. Similar trend was followed by Vazirimehr et al. (2014) stated that KNO3 @1% decrease the time of seed emergence and increase the dry matter in corn. Data (Table 2) reveals that the seed priming with KNO₃ @1% solution for 48 h resulted into significantly highest vigor index-I (187.0) and vigor index-II (9271.0) as compare to all other priming treatments. The lowest vigour index I (3.0) and vigour index II (84.0) was recorded in control. Seedling vigour is not a single measurable entity, but it is a sum of many growth parameters, such as seedling fresh weight, seedling dry weight and seedling length. Deshraj (2002) also reported the vigour index-I and vigor index-II were positively and significantly correlated with germination per cent, seedling length, seedling dry weight in coriander. Khan et al. (2005) founded that the turnip seed showed a decrease in seedling vigour as accelerated ageing duration increased. Similar results were also reported in papaya by Tokuhisa et al. (2007) as they reported the seedling vigour index II to be significantly highest in seed treated with KNO₃ at 0.5% concentration for 48 hours. Similar findings were also reported by Akbudak and Bolkan (2010) in tomato crop. Golizadeh et al. (2015) reported that seed vigour index was higher in Cannabis seed (Cannabis Sativa L.) primed with KNO₃ over the non-primed seed. As seedling vigour is dependent on germination percentage and seedling length, the seeds treated with potassium nitrate had highest per cent of germination and also recorded the highest height. Abdelgadir et al. (2012) reported that seeds treated with KNO₃ for 24 h produced heavier and longer seedlings which resulted in increased vigour indices of seeds of Jatropha curcas.

On the basis of current experimental findings, it can be concluded that seed priming can play a vital role in improving germination in artificially aged guava seeds of L-49. Various priming treatments were found effective and had a significant effect on promoting the growth and development of guava artificially aged seeds. Priming of artificially aged guava seeds with Potassium Nitrate (KNO₃) gave best results, especially soaking of artificially aged seed in KNO₃ @1% for 48 h with respect to seed germination percentage, days to emergence, mean germination time, seed vigour index I, II and growth of seedlings.

ACKNOWLEDGEMENT

Chaudhary Charan Singh Haryana Agricultural University, Hisar is duly acknowledged to provide the financial support and technical staff along with the labour during the experiment.

REFERENCES

Abdelgadir H A, Kulkarni M G, Arruda M P and Van S J. 2012. Enhancing seedling growth of Jatrophacurcas - A potential oil seed crop for biodiesel. *South Africa Journal of Botany* 78: 88–95.

Abdul-Baki A A and Anderson J D. 1973. Vigour determination in soyabean seed by multiple criteria. *Crop Science* **13**: 630–33.

Akbudak N and Bolkan H. 2010. Diagonistic methods for predicting tomato seedling emergence. *Journal Food Agriculture Environment* 8(1): 170–74.

Anonymous. 2020. Indian Horticulture Database, National Horticulture Board, Gurgaon, Haryana, India.

Baskin C C. 2003. Breaking physical dormancy in seed-focusing on the lens. *New Phytologist* **158**: 227–38.

Bray C M. 1995. Biochemical processes during the osmopriming of seeds. *Seed development and germination*, pp. 767–89. Kigel J, Galili G (Eds). New York, Marcel Dekker.

Bewley J D and Black M. 1982. Physiology and biochemistry of seeds in relation to germination. *Viability, Dormancy and Environmental control*, pp. 268–73. Bewley J D and M Black (Eds). Springer-Verlag, UK.

Demer I and Mavi K. 2004. The effect of priming on seedling emergence of differentially matured water melon (*Citrulluslanatus* (Thumb.) matsum and nakai. *Seed Science Horticulture* **102**: 467–73.

Deshraj. 2002. 'Studies on viability and vigour in coriander (*Coriandrum sativum* L.)'. MSc Thesis, CCSHAU, Hisar.

Farooq M, Basra S M A, Wahid A, Ahmad N and Saleem B A.
2009. Improving the drought tolerance in rice (*Oryza sativa*L.) by exogenous application of salicylic acid. *Journal of Agronomy and Crop Science* 195: 237–46.

Golezani K M, Aliloo A A, Valizadeh M and Moghaddam M. 2008. Effect of different priming on seed invigoration and seedling establishment of lentil (lens culinaris Medik). *Journal of Agriculture and Environment* **6**(2): 222–26.

Khan M M, Iqbal M J and Abbas M. 2005. Loss of viability correlates with membrane damage in aged turnip (*Brassica rapa*) seeds. *Seed Science and Technology* **33**(2): 517–20.

Koehler K H, Voigt B, Spittler H and Schelenz M. 1997.Biochemical events after priming and priming of seeds. *Basic and Applied Aspects of Aeed Biology*, pp. 531–36. Springer.

Kumar T R B. 2019. Studies on influence of different seed treatments on dormancy breaking in Aonla (*Phyllanthus embolic* L.) *Journal of Pharmacognosy and Phytochemistry* 2: 131–33.

Lay P, Baswaraju G V, Sarika G and Amrutha N. 2013. Effects of seed treatments to enhance seed quality of papaya (carica

- papaya L.) cv. Surya. *Greener journal of biomedical and health science* **2**(2): 221–25.
- Lara T S, Lira J M S, Rodrigues A C, Rakocevic M and Alvarenga A A. 2014. Potassium nitrate priming affects the activity of nitrate reductase and antioxidant enzymes in tomato germination. *Journal of Agriculture Science* 6: 72–80.
- Moradi D P, Sharif zadeh F and Janmohammadi M. 2008. Influence of priming techniques on seed germination behavior of maize inbred lines (*Zea mays* L.). *ARPN Journal of Agricultural and Biological Science* **3**(3): 22–25.
- Priestley D A. 1986. Seed aging implications of seed storage and persistence in the soil. Cornell University Press, Ithaca.
- Rai M K, Asthana P and jaiswal U. 2010. Biotechnology advances in guava (psidium guajava L). Recent Developments and Prospects for Futher Research. Tree: Structure Functional 24: 1–12.
- Raj D, Dahiya O S, Arya R K, Yadav A K and Kumar K. 2013. Improvement in germination characteristics in artificially aged seeds of okra (*Abelmoschus esculentus*) by osmo-conditioning. *Indian Journal Agriculture Science* 83(7): 699–702.
- Shim S I, Moon J C, Jang C S, Raymer P and Kim W. 2008. Effect of potassium nitrate priming on seed germination of seashore paspalum. *Horticulture Science* **43**(7): 2259–62.
- Singh A, Dahiru R, Musa M and Haliru B S 2014. Effect of osmo priming duration on germination, emergence and early growth of cowpea (Vigna unguiculata L. Walp) in the Sudan savanna

- Nigeria. International Journal of Agronomy 4 ID 841238:4.
- Singhal D K, Kumar V, Tehlan S K and Mor V S. 2017. Evaluation of biochemical changes associated with seed quality under naturally stored conditions in fennel. *International Journal of Chemical Studies* **5**(5): 1800–03.
- Sheoran O P, Tonk D S, Kaushik L S, Hasija R C and Pannu R S. 1998. Statistical Software Package for Agricultural Research Workers. Recent Advances in information theory, Statistics and Computer Applications. D S Hooda and R C Hasija Department of Mathematics Statistics, CCS HAU, Hisar, 139–43.
- Srinivasan K and Saxena S. 2007. Removal of tenacious glumes enhances the seed germination and seedling vigour in eight Aegilops species for efficient conservation in genebank. *Indian Journal of Agricultural Sciences* **83**(4): 437–40.
- Thomas L R, Micheal G B, Ralph S C and Terence M M 2006. *Plant Biology: Seeds and Fruit*, 6th edn. **14**: 213–20.
- Tokuhisa D, Dias D C F D S, Alvarenga E M, Hilst P C and Demuner A J. 2007. Compostos fenolicos inibidores da germinacao em sementes de mamao (*Carica papaya*). *Revista Brasileira de Sementes* **29**: 180–88.
- Vazirimehr M R, Ganjali H R, Rigi K and Keshtehgar A. 2014. Effect of seed priming on quantitative traits corn. *International Journal of Plant Science* 4: 134–40
- Windauer L, Altun A and Benech Arnold R. 2007. Hydrotime analysis of lesquerella fendleri seed germination responses to priming treatments. *Industrial Crops and Products* 25: 70–74.