# Morphological characterization and performance of different pineapple (Ananas comosus) varieties in northern parts of West Bengal

NILESH BHOWMICK<sup>1\*</sup>, PRAHLAD DEB<sup>2</sup>, PARTHASARATHI MUNSI<sup>2</sup> and SWAPAN KR GHOSH<sup>1</sup>

Uttar Banga Krishi Viswavidyalaya, Pundibari, Cooch Behar, West Bengal 736 165, India

Received: 18 May 2020; Accepted: 08 December 2021

### ABSTRACT

Pineapple [*Ananas comosus* (L.) Merr.] is popular all over the world for its pleasant aroma, sweet-acidic taste and smooth pulp texture. It is the third most important fruit on the basis of global trade after banana and citrus. The present investigation was carried out in 2014–16 to assess the growth behaviour and performance of different pineapple varieties like Kew, Queen, Mauritius, Haricharanvita, Baruipur Local, MD-2, MTS, and Amritha in northern parts of West Bengal. The experiment was laid in Randomized Block Design (RBD) for successive two years. The indigenous Haricharanvita variety showed the maximum vigour in terms of plant height, leaf length and canopy spread. The maximum numbers of leaves were recorded in Kew followed by Queen. Maximum leaf area was also recorded in Kew and the maximum numbers of suckers were produced by Mauritius followed by Baruipur Local. Mauritius exhibited earliest (325.75 days) and maximum flowering (98.34%), required lowest time (109.45 days) for maturity compared to all varieties assessed. Indigenous Haricharanvita and Baruipur Local exhibited delayed and lesser flowering percentage with longest fruit maturity time. Highest yield (without crown) was recorded in Kew (89.70 t/ha), followed by Mauritius (57.54 t/ha), while it was lowest in Baruipur Local (31.00 t/ha). Among the physico-chemical parameters, Mauritius recorded highest pulp percentage (62.70%), TSS (18.10°brix), total sugar (12.87%), ascorbic acid (45.52 mg/100g) content, TSS: acid ratio (28.14) and lowest peel (17.82%) and crown (17.79%) content. Among the different varieties studied, Mauritius was found to be the best table purpose variety under northern part of West Bengal.

**Keywords**: Growth, Performance, Pineapple, Suckers, Variety

Pineapple is an important tropical fruit, globally preferred for aroma, and the special blend of sweet and acidic taste of its soft pulp. Ananas, the original name of pineapple, comes from the word 'Tupi' (Rio de Janeiro, Brazil), and comosus means 'tufted' (Herbst 2001, Annon 2015). Due to the presence of crown at the top pineapple is also called as 'King of Fruits' as well as 'Golden Queen' in some areas. It is a xerophytic, succulent, tropical, herbaceous, perennial monocot plant which bears flowers on a terminal inflorescence which gets converted into a large, edible fruit (Annon 2008). India has a considerable share of global pineapple production and West Bengal is the leading pineapple producer in India followed by Assam and Tripura. Kew, a late maturing variety under Cayenne pineapple group particularly valued for its canning quality, is intensively cultivated in Darjeeling (Siliguri sub-division), Jalpaiguri, Uttar Dinajpur and Cooch Behar districts in

West Bengal. Queen and Mauritius are popular table varieties for good pulp quality. Recently, MD-2 is being preferred worldwide for its multiple disease resistance, taste, quality, sweetness and yellow pulp. Monoculture of Kew variety as well low soil pH coupled with faulty cultural, nutrient management practices often lead to more chances of disease and pest infestation and production of uneven fruit with high nitrate content which hinders the processing as well as export. Choice of cultivating different varieties instead of only 'Kew' can alleviate the problem. However, performance of different pineapple varieties is not known due to the non-availability of research work on this aspect under northern climatic condition of West Bengal. Keeping this in view, the present study was carried out to assess the comparative performance of commercial 'Kew' and other pineapple varieties for growth behaviour, yield and quality in northern part of West Bengal.

## MATERIALS AND METHODS

This experiment was conducted at the Instructional Farm, Department of Pomology and Post-Harvest Technology, Uttar Banga Krishi Viswavidyalaya, Pundibari, Cooch Behar, West Bengal (26°19'86" N latitude and 89°23'53"E longitude, altitude 43 m amsl). The land was medium high in situation with good drainage facility. The soil is coarse

<sup>1</sup>Uttar Banga Krishi Viswavidyalaya, Pundibari, Cooch Behar, West Bengal; <sup>2</sup>Palli Siksa Bhavana, Visva-Bharati, Sriniketan, Birbhum, West Bengal. \*Corresponding author email: nileshbhowmick@gmail.com

textured sandy loam with poor water holding capacity. The climatic condition of this zone is characterized by high rainfall and humidity, moderate temperature, prolonged winter with high residual soil moisture. The investigation was carried out considering the eight pineapple varieties as different treatments in Randomized Block Design (RBD) for successive two years (2014–15 and 2015–16) to study their growth habit, flowering and fruiting characteristics.

The varieties selected were Kew (late-maturing commercial variety of West Bengal), Queen (most preferred table purpose variety of homestead garden in North-eastern states including West Bengal), Mauritius (most suited table purpose variety and has best quality, high keeping quality, transportability under Queen group), Haricharanvita (indigenous to northern parts of West Bengal, vigorous, having long, slender, leaves with heavily serrated leaf margins), Baruipur Local (indigenous to southern parts of West Bengal, moderately vigorous with profusely serrated leaf margins), MD-2 (world leading pineapple variety, originated from Hawaii and preferred for its colour, flavour, shape, lifespan and ripeness), MTS (developed by Kerala Agricultural University, Kerala) and Amritha (hybrid between 'Kew' and 'Ripley Queen' from Kerala Agricultural University (Annon 2017).

Healthy, disease free, homogenous (300–400 g) planting materials (suckers) were selected, processed and treated with fungicides and planted during the month of February, 2014 and 2015 separately in double row system (plant to plant distance 25 cm, distance between two rows 35 cm and distance between two beds 90 cm) in 3 beds each consisting of 25 plants with inter bed guard rows. Standard dose of manures and fertilizers were applied following proper application schedule.

Different growth parameters like plant height, number of leaves, character of D-leaf (length, breadth, area), suckering habit were recorded as suggested by Ubi *et al.* (2016). Parameters on flowering-fruiting behaviour like days taken to 50% flowering, flowering percentage, maturity period etc. were studied as well as fruit yield was estimated with and without crown. Fruit physico-chemical properties were recorded following the standard procedure (Ranganna 1977, AOAC 1984). The statistical analysis was followed by mean separation for different parameters which was performed using Least Significant Difference (LSD) test (P≤ 0.05). Normality of residuals under the assumption of ANOVA was tested using Kolmogrov-Smirnov, Shapiro-Wilk, Cramer-Von Mises and Anderson Darling procedure using Proc-Univariate procedure of SAS (version 9.3).

# RESULTS AND DISCUSSION

Comparison of phenological studies and flowering, fruiting characteristics of different pineapple varieties are discussed below with the pooled means of two years data (2014–15 and 2015–16).

Phenological parameters of pineapple varieties: The local Haricharanvita variety showed the maximum vigour in terms of plant height (102.64 cm) at 18 months after planting,

followed by Kew (99.48 cm) while the most dwarf cultivar was Amritha (69.41 cm) which was statistically at par with MTS (72.30 cm) and MD-2 (78.76 cm). Maximum height of Haricharanvita might be due to genetic nature as well as local origin of this geographical condition. Normally, the height of Kew (vigourous smooth Cayenne group) is more than the Queen and Mauritius cultivars (Queen group), which is evident from the result of the present experiment. Similar result was observed by Joy and Anjana (2016) who reported that the growth characters of Mauritius and MD-2 were similar in plant height while Amritha was shorter. The plant height of different pineapple varieties was reported to vary between 48 and 110 cm which is similar with the result of present experiment (Rosmania et al. 2019, Neri et al. 2021). Lowest number of leaves were recorded in Amritha (43.60) which was statistically at par with MTS (44.60) and MD-2 (50.32), whereas, the maximum numbers of leaves were recorded in Kew (70.27) which was statistically at par with Queen. Joy and Anjana (2016) reported that the number of leaves progressively increased from 20 at 3 months to 34 at 12 months. Leaf number of cv. Queen varied between 36-61.90 (Rosmania et al. 2019). Analysis of D-leaf was used to estimate growth and plant nutritional status. Present study indicated significant variation of D-leaf characters among the pineapple varieties. Haricharanvita has maximum D-leaf length (77.46 cm) while it is lowest in MTS (55.49 cm) closely followed by Amritha (57.29 cm). The D-leaf length of Haricharanvita was higher probably due to its vigorous nature and could be considered as a desirable varietal selection trait (Prakash et al. 2009). Significant difference of D-leaf length was also observed by Laishram et al. (2012) and Neri et al. (2021). Leaf breadth was recorded maximum with Kew (5.27 cm) followed by Queen (5.21 cm), Baruipur Local (5.08 cm), MD-2 (5.04 cm). Leaf area was recorded maximum with Kew (388.12 cm<sup>2</sup>), which was statistically at par with Queen (361.36 cm<sup>2</sup>), Baruipur Local (357.14 cm<sup>2</sup>) followed by MD-2 (307.27 cm<sup>2</sup>), Mauritius (306.20 cm<sup>2</sup>), Haricharanvita (295.40 cm<sup>2</sup>), MTS (260.08 cm<sup>2</sup>) and lowest in Amritha (218.34 cm<sup>2</sup>). The local cultivar Haricharanvita expressed the maximum canopy volume (1076.47 litre) and lowest canopy volume was recorded in Amritha (259.49 litre). Haricharanvita produced the maximum numbers of slips (2.44) followed by Queen (2.09) and least by MD-2 (1.22) as well as Amritha (1.22). On the other hand, the maximum numbers of suckers were produced by Mauritius (2.77) followed by Baruipur Local (2.52) and least by Amritha (1.40). Chan and Lee (1995) reported that Queen strain Tailung produced excessive suckers (about 6/plant). Cabral et al. (2005) reported higher number of suckers and few slips in the Cayenne cultivar. These results are in conformity with the present experiment. Flowering and fruiting habit of different pineapple varieties are presented in Table 1. Among the different varieties assessed, Mauritius required lowest duration to provide 50% flowering (325.75 days) followed by Kew (339.52 days) while Haricharanvita (371.32 days) and Baruipur Local (365.57 days) showed maximum duration

Table 1 Performance of different pineapple varieties with respect to morphological, flowering-fruiting characters and yield

| Variety            | Plant Leaf height (cm) (nos.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Leaf<br>(nos.) | Leaf length<br>(cm) | Leaf<br>breadth<br>(cm) | Leaf area (cm²) | Canopy<br>volume<br>(litre) | Slips<br>(nos.) | Sucker<br>(nos.) | Days<br>for 50%<br>flowering | Flowering (%) | Maturity<br>(days) | Eye<br>(nos.) | Yield with out crown (t/ha) |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------------|-------------------------|-----------------|-----------------------------|-----------------|------------------|------------------------------|---------------|--------------------|---------------|-----------------------------|
| Kew                | 99.48ab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 70.27a         | 73.35ab             | 5.27a                   | 388.12a         | 812.35b                     | 1.48cd          | 1.56c            | 339.52e                      | 91.11b        | 129.90c            | 115.80a       | 89.70a                      |
| Queen              | 90.35bc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 66.84 ab       | 69.42b              | 5.21a                   | 361.36a         | 645.12c                     | 2.09b           | 2.19b            | 351.29c                      | 88.89b        | 120.77e            | 107.48b       | 54.96b                      |
| Mauritius          | 82.92bc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 55.97cd        | 63.85c              | 4.80bc                  | 306.20b         | 521.04d                     | 1.81bc          | 2.77a            | 325.75f                      | 98.34a        | 109.45f            | 99.28c        | 57.54b                      |
| Haricharanvita     | 102.64a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 60.18 bc       | 77.46a              | 3.82b                   | 295.40bc        | 1076.47a                    | 2.44a           | 2.38b            | 371.32a                      | 78.34c        | 143.97a            | 101.45c       | 39.82c                      |
| Baruipur Local     | 91.36b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 51.54 de       | 70.37b              | 5.08ab                  | 357.14a         | 787.63b                     | 1.64c           | 2.52ab           | 365.57b                      | 75.56c        | 136.27b            | 88.23e        | 31.00d                      |
| MD-2               | 78.76cd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 50.32 def      | 60.93cd             | 5.04ab                  | 307.27b         | 460.84e                     | 1.22d           | 1.47c            | 340.15e                      | 77.23c        | 122.15de           | 94.45d        | 36.45cd                     |
| MTS                | 72.30cd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 44.60ef        | 55.49e              | 4.68c                   | 260.08c         | 305.51f                     | 1.27d           | 1.60c            | 342.44d                      | 77.23c        | 125.67cd           | 85.25ef       | 34.53cd                     |
| Amritha            | 69.41d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 43.60 f        | 57.29de             | 3.82d                   | 218.34d         | 259.49g                     | 1.22d           | 1.40c            | 342.85d                      | 76.12c        | 126.58cd           | 84.53f        | 33.74cd                     |
| $\mathrm{SEm} \pm$ | 3.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.33           | 1.50                | 0.12                    | 12.57           | 10.61                       | 0.12            | 0.12             | 0.27                         | 1.28          | 1.48               | 66.0          | 2.28                        |
| LSD at 5%          | 10.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7.07           | 4.56                | 0.36                    | 38.18           | 32.49                       | 0.35            | 0.36             | 0.82                         | 3.88          | 4.50               | 3.00          | 06.9                        |
| **NAoone           | **None the relation of the tentor of the transfer of the transfer of the tentor of the transfer of the tentor of t | tor tor oro    | Goontly differ      | tac                     |                 |                             |                 |                  |                              |               |                    |               |                             |

\*\*Means with the same letter are not significantly different

for achieving 50% flowering, respectively. The performance of Mauritius variety regarding the flowering percentage was excellent (98.34%, significantly highest) followed by Kew (91.11%) and Queen (88.89%) which is highly desirable. The lowest flowering was observed in Baruipur Local (75.56%) followed by Amritha (76.12%), MTS (77.23%), MD-2 (77.23%) and Haricharanvita (78.34%). Prakash et al. (2009) also reported higher flowering percentage in PQM-1 compared to other cultivars. In the present study, Mauritius required lowest time for maturity (109.45 days) followed by Queen (120.77 days) and MD-2 (122.15 days). Haricharanvita, the local cultivar of North Bengal, required longest time to mature (143.97 days) followed by Baruipur Local (136.27 days), this might be due to vigorous nature of the plant. Late maturity can offer an additional option to fruit growers, consumers and canning industry to get fresh fruit over a longer period (Prakash et al. 2009). Similar finding was also reported by Joy and Anjana (2016) regarding flowering, fruit maturity, suckering and slip formation of Amritha and Mauritius varieties. The numbers of eyes were recorded highest in Kew (115.80) followed by Queen (107.48) and the lowest in Amritha (84.53) which were statistically at par with MTS (85.25). Similar result was reported in PQM-1 (84.6) by Prakash et al. (2009). The estimated yield without crown was recorded highest in Kew (89.70 t/ha), followed by Mauritius (57.54 t/ha) and Queen (54.96t/ha) and observed lowest in Baruipur Local (31.00 t/ha), followed by Amritha (33.74 t/ha), MTS (34.53 t/ha) and MD-2 (36.45 t/ha). Joy and Anjana (2016) also observed maximum yield of 34.07 t/ha in Mauritius followed by MD-2 (30.83 t/ha), whereas, Amritha produced least yield (26.98 t/ha). Yield of Sensuous pineapple varied between 59-100 t/ha (Valleser 2018). It was found that Moris Taiwan was about 15% higher yielding than the other Queen genotypes (Chan and Lee 1995). These reports are in line with the present experiment.

Fruit physico-chemical properties of pineapple varieties: Fruit length was maximum (22.36 cm) in Kew, closely followed by Queen (19.58 cm), and Mauritius (18.57 cm). Baruipur Local recorded the maximum crown length (33.99cm), followed by Haricharanvita (30.07 cm) and Kew (27.27 cm). The lowest crown length was observed with Mauritius (19.10 cm) which was statistically at par with MD-2 (20.43 cm), MTS (19.71 cm) and Amritha (19.80 cm). Fruit length with crown was maximum for Kew (49.62 cm) which was statistically at par with Baruipur Local (49.10 cm). The fruit length with crown was lowest in Amritha (33.99 cm) followed by MTS (34.40 cm) and MD-2 (36.10 cm) (Table 2). The smaller crown size is an important desirable characteristic for marketing, processing as well as for better fruit quality. Fruit circumference was maximum in Baruipur Local (40.28 cm) followed by Queen (39.42 cm), Kew (37.01 cm) and lowest in Amritha (20.79 cm). It is evident that variety Kew possessed significantly maximum fruit weight (1877.10 g). Higher fruit weight was also observed in Queen (1196.56 g), Mauritius (1109.45 g) and Haricharanvita (1101.45 g). Amritha yielded the smallest

Table 2 Physico-chemical parameters of different pineapple varieties

| Variety            | Fruit length (cm)                                             | Crown length (cm) | Fruit +<br>Crown<br>(cm) | Fruit circumference (cm) | Fruit<br>weight<br>(g) | Crown<br>weight<br>(g) | Pulp (%) | Peel (%) | Crown (%) | TSS<br>(°brix) | Total sugar<br>(%) | Ascorbic acid (mg/100g) | TSS:<br>Acidity |
|--------------------|---------------------------------------------------------------|-------------------|--------------------------|--------------------------|------------------------|------------------------|----------|----------|-----------|----------------|--------------------|-------------------------|-----------------|
| Kew                | 22.36a                                                        | 27.27bc           | 49.62a                   | 37.01ab                  | 1877.10a               | 1098.67a               | 58.54b   | 21.64d   | 17.98d    | 15.29b         | 11.97b             | 37.65bc                 | 22.58b          |
| Queen              | 19.58b                                                        | 24.70c            | 44.28b                   | 39.42a                   | 1196.56b               | 704.66b                | 58.89b   | 20.11e   | 19.23c    | 18.00a         | 12.38b             | 39.80b                  | 27.13a          |
| Mauritius          | 18.57b                                                        | 19.10d            | 37.67c                   | 32.13bc                  | 1109.45b               | 695.99b                | 62.70a   | 17.82f   | 17.79d    | 18.10a         | 12.87a             | 45.52a                  | 28.14a          |
| Haricharanvita     | 15.32c                                                        | 30.07b            | 45.40b                   | 28.79cd                  | 1101.45b               | 495.51c                | 44.99e   | 25.17b   | 27.86a    | 13.54d         | 9.61e              | 33.04cd                 | 17.91d          |
| Baruipur Local     | 15.11cd                                                       | 33.99a            | 49.10a                   | 40.28a                   | 884.18c                | 384.25d                | 43.46f   | 26.92a   | 27.47a    | 12.21e         | 9.03f              | 32.04d                  | 15.70e          |
| MD-2               | 15.67c                                                        | 20.43d            | 36.10cd                  | 24.65de                  | 926.16c                | 517.06c                | 55.83c   | 21.88d   | 20.41b    | 14.82c         | 10.63c             | 34.40cd                 | 20.90c          |
| MTS                | 14.69cd                                                       | 19.71d            | 34.40d                   | 23.14e                   | 879.80c                | 476.49c                | 54.17d   | 23.36c   | 20.62b    | 14.11c         | 9.99de             | 32.92cd                 | 18.99d          |
| Amritha            | 14.19d                                                        | 19.80d            | 33.99d                   | 20.79e                   | 871.39c                | 475.63c                | 54.58d   | 23.03c   | 20.50b    | 13.93d         | 10.12d             | 34.63bcd                | 19.05d          |
| $\mathrm{SEm} \pm$ | 0.36                                                          | 96.0              | 1.01                     | 1.79                     | 46.63                  | 25.85                  | 0.19     | 0.14     | 0.24      | 0.24           | 0.13               | 1.74                    | 0.40            |
| LSD at 5%          | 1.08                                                          | 2.92              | 3.08                     | 5.42                     | 141.43                 | 78.41                  | 0.56     | 0.41     | 0.85      | 0.71           | 0.41               | 5.28                    | 1.20            |
| **Means with       | **Means with the same letter are not significantly different. | are not signi     | ficantly diff            | erent.                   |                        |                        |          |          |           |                |                    |                         |                 |

fruit (871.39 g) followed by MTS (879.80 g) and Baruipur Local (884.18 g). The pooled mean value indicates that Amritha yielded smallest crown (178.64 g) and it was statistically at par with MTS (181.40 g), MD-2 (189.02 g), and Mauritius (196.56 g). On the other hand, bigger fruited Kew had largest crown (337.64 g) followed by Haricharanvita (307.03 g) and Baruipur Local (242.94 g) which may be due to the genetical character. Larger fruit and crown were also reported by Laishram et al. (2012) and Lu et al. (2014) in Kew and Giant Kew, while lower fruit weight in Queen was reported by Chan and Lee (1995). Joy and Anjana (2016) reported that the Mauritius and MD-2 varieties had almost similar fruit weight while Amritha had smaller fruits. Kew also exhibited the maximum weight (1539.46 g) without crown, followed by Queen (966.47 g) and Mauritius (912.88 g).

Mauritius showed the maximum pulp content (62.70%), followed by Queen (58.89%) and Kew (58.54%) and it was minimum in indigenous Haricharanvita (44.99%) and Baruipur Local (43.46%). Lowest peel (17.82%) and crown (17.79%) content was recorded with Mauritius followed by Queen (20.11%) and Kew (17.98%), respectively. Haricharanvita and Baruipur Local exhibited higher crown (27.86% and 27.47%), peel (25.17%, 26.92%) and lower pulp (44.99%, 43.46%) content compared to all other studied varieties which indicated their inferiority. MD-2 had least pulp content (57%). These observations were in agreement with Joy and Anjana (2016) who reported that the Amritha and Mauritius had higher pulp (62% and 61% respectively) mainly due to the smaller crown. Higher total soluble solids (above 12°brix) with low titratable acidity (0.4-0.6%) are considered better for consumable quality of pineapple fruits (Ercisli 2007, George et al. 2016). In this present experiment, Mauritius showed maximum TSS (18.10°brix) followed by Queen (18.00°brix) and minimum TSS was recorded with indigenous Haricharanvita (13.54°brix) and Baruipur Local (12.21°brix). Significantly maximum total sugar was recorded in Mauritius (12.87%) followed by Queen (12.37%) and Kew (11.97%). Lower total sugar content was observed in indigenous Baruipur Local (9.03%) and Haricharanvita (9.61%). Chan and Lee (1995) reported that Queen strain Tailung had high sugar content (15.5%) and very good eating quality which confirms the finding of the present study. Mauritius recorded the highest ascorbic acid (45.52 mg/100g) content followed by Queen (39.80 mg/100g) and Kew (37.65 mg/100g), whereas, it was least in Baruipur Local (32.04 mg/100g) followed by MTS (32.92 mg/100g) and Haricharanvita (33.04 mg/100g). Lu et al. (2014) reported ascorbic acid range of 33.57 mg/100 g in MD-2 to 5.08 mg/100 g in Smooth Cayenne. Similar finding was also reported by Ramsaroop and Saulo (2007). The maximum TSS:Acidity ratio was recorded in Mauritius (28.14) followed by Queen (27.13) and Kew (22.58), whereas, the lowest value was recorded in Baruipur Local (15.70) followed by Haricharanvita (17.91). Lu et al. (2014) reported that the TSS:Acidity ratio is the most reliable parameter index for evaluating pineapple fruit quality and it ranges from 17.15 in Smooth Cayenne to 41.08 in Ripley.

The performance of different pineapple varieties was evaluated and local pineapple var. Haricharanvita exhibited highest plant height and canopy spread. Highest flowering percentage was noticed in Mauritius variety and it was lowest in Baruipur Local. The days required for flowering was minimum in Mauritius which indicates its early maturity. Though the estimated yield was recorded highest in Kew variety, followed by Mauritius, the superiority of Mauritius over other varieties was assessed in this study for high flowering percentage, low maturity period and excellent pulp quality, higher TSS, total sugar content, ascorbic acid content, TSS:Acidity ratio including low crown percentage. Mauritius pineapple performed best under northern part of West Bengal and can be recommended for further commercial cultivation particularly for table purpose.

### REFERENCES

- Anonymous. 2008. *The Biology of Ananas comosus var. comosus* (*Pineapple*). Department of Health and Ageing, Office of the Gene Technology Regulator, Australian Government.
- Anonymous. 2015. Pineapple. Retrieved from http://www. newworldencyclopedia.org/entry/Pineapple on 02 November 2015.
- Anonymous. 2017. Retrieved from http://prsvkm.kau.in/ml/ node/461 on 07 July 2017.
- AOAC. 1984. Official Methods of Analysis, 14th edn, p 16. Association of Official Agriculture Chemist, Washington D C.
- Cabral J R S, A P de Matos and G C d'Eeckenbrugge. 2005. Variation for main quantitative traits in the seedling and vegetative cycles of the pineapple hybridization program. Acta Horticulturae 666: 83–92
- Chan Y K and Lee H K. 1995. Evaluation of performance and stability of six genotypes of Queen pineapple. *MARDI Research Journal* 23(1): 1–9.
- Ercisli S. 2007. Chemical composition of fruits in some Rose (*Rosa* spp.) species. *Food Chemistry* **104**(4): 1379–84
- George D S, Razali Z and Somasundram C. 2016. Physiochemical changes during growth and development of pineapple [*Ananas comosus* (L.) Merr. cv. Sarawak]. *Journal of Agricultural Science and Technology* **18**: 491–503.
- Herbst S T. 2001. The New Food Lover's Companion:

- Comprehensive Definitions of Nearly 6,000 Food, Drink, and Culinary Terms. Barron's Cooking Guide. Hauppauge, New York
- Joy P P and Anjana R. 2016. 'Organic versus inorganic nutrient management of pineapple varieties for safe and sustainable production'. Project Report. Pineapple Research Station, Vazhakulam, Kerala Agricultural University, Kerala.
- Laishram M, Meitei W I and Singh N G. 2012. Effect of double and single row system of planting on growth and yield of pineapple [Ananas comosus (L.) Merr.] cv. Kew. Asian Journal Horticulture 7(2): 259–62.
- Lu X H, Sun D Q, Wu Q S, Liu S H and Sun G M. 2014. Physicochemical properties, antioxidant activity and mineral contents of pineapple genotypes grown in China. *Molecules* 19: 8518–32
- Neri J C, Melendez Mori J B, Valqui N C V, Huaman E H, Silva R C and Oliva M. 2021. Effect of planting density on the agronomic performance and fruit quality of three pineapple cultivars [Ananas comosus (L.) Merr.]. International Journal of Agronomy doi.org/10.1155/2021/5559564
- Prakash J, Bhattacharyya S, Chattopadhyay S, Roy S, Das S P, and Singh N P. 2009. PQM-1: A newly developed superior clone of pineapple for northeastern India as evident through phenotype, fruit quality and DNA polymorphism. *Scientia Horticulturae* **120**: 288–91
- Ramsaroop R E S and Saulo A A. 2007. Comparative consumer and physicochemical analysis of Del Monte Hawaii Gold and Smooth Cayenne pineapple cultivars. *Journal of Food Quality* 30: 135–59
- Ranganna, S. 1977. *Handbook of Analysis and Quality Control for Fruit and Vegetable Products*. Tata McGraw-Hill Publishing Company Limited, New Delhi
- Rosmaina M A A, Elfianis O R, Zulfahmi. 2019. Morphology and fruit quality characters of pineapple (*Ananas comosus* L. Merr) cv. Queen on three sites planting: freshwater peat, brackish peat and alluvial soil. *IOP Conference Series: Earth and Environmental Science* 391: 012064
- Ubi W, Ubi G M, Okweche T, Ubi M W, Theodore C U and Ackley U A. 2016. Variability in growth attributes of two pineapple (*Ananas comosus*) cultivars grown in the basement complex soils of Southern Nigeria as influenced by different time of nitrogen side dressing application. *Direct Research Journal of Agriculture and Food Science* 4(8): 214–19
- Valleser C V. 2018. Planting density influenced the fruit mass and yield of 'Sensuous' pineapple. *International Journal of Scientific and Research Publications* 8(7): 113–19