Efficacy of Bio-rational insecticides against Perilla leaf moth on sweet basil (*Ocimum basilicum*)

ASHOK KUMAR^{1*}, R SWAMINATHAN¹, M K MAHLA¹, K C AHIR¹, R S CHOUDHARY¹, D KACHHAWA² and KAVITA KUMAWAT¹

Maharana Pratap University of Agriculture and Technology, Udaipur, Rajasthan 313 001, India

Received: 19 September 2021; Accepted: 08 December 2021

ABSTRACT

The present study was carried out during *kharif* 2016–18 at Agronomy Farm, Rajasthan College of Agriculture, MPUAT, Udaipur. The Perilla leaf moth, *Pyrausta panopealis* Walker (Lepidoptera: Pyralidae) is an important and major insect pest of sweet basil, therefore, ecofriendly bio-rational insecticides were evaluated against perilla leaf moth in the present experiment. The experiment was laid out in uniformly sized plots measuring 12 m² (4 m × 3 m) in Randomized Block Design containing six treatments and four replications. The treatment schedule comprised two sprayings, the first 15 days after transplanting and the second 45 days after transplanting. The different treatments, viz. *Azadirachta indica* oil (3%) followed by *Bacillus thuringiensis* (1.5 kg/ha); NSKE (5%) followed by Spinosad 45 SC (150 ml/ha); Azadirachtin 1500 ppm (1%) followed by Lambda Cyhalothrin 4.9 CS (1 L/ha); *Pongamia pinnata* oil (3%) followed by Cypermethrin 10 EC (0.005%); Nicotine Sulfate 40 S (0.02%) followed by Deltamethrin 2.8 EC (0.015%) and Untreated control. Among the treatments, the Azadirachtin 1500 ppm (1%) was most effective against perilla leaf moth at 3, 5 and 7 days after first spray. After second spray the Spinosad 45 SC (150 ml/ha) was superior treatment against perilla leaf moth at 3, 5 and 7 days; whereas, the *Azadirachta indica* oil (3%) followed by *Bacillus thuringiensis* (1.5 kg/ha) was least effective against perilla leaf moth at 3, 5 and 7 days after second spray during both the subsequent years.

Keywords: Basil, Bio-rational insecticides, Cochlochila bullita, Perilla leaf moth

Sweet basil, [Ocimum basilicum (L.)] is an annual, aromatic herb, belonging to the family Lamiaceae. Its origin is from the tropical regions of south-eastern Asia and it is widely grown as an aromatic crop and used as a culinary herb, spice, condiment, ornamental plant, seasoning and medicinal plant (Simon et al. 1990) in many countries of the world. Its extract can be used as a fungicide, botanical insecticide, antifeedant and in the preparation of food baits in agriculture (Stein and Klingauf 1990, Amresh et al. 2002, Ji et al. 2003). The economical important parts of Ocimum are mainly its leaves and tender parts of the shoots and seeds, which yield various essential oil which is extracted and used as flavoring agent in food, perfumery and pharmaceutical industries (Simon et al. 1990). Its oil contains a heterogeneous group of aromatic compounds, mainly monoterpenes, sesquiterpenes and phenols which are responsible for the characteristic pleasant odour and flavors (Pushpangadan and Bradu 1995). The flavour and smell of

¹Rajasthan College of Agriculture, Maharana Pratap University of Agriculture and Technology, Udaipur, Rajasthan; ²Krishi Vigyan Kendra, Dholpur, SKN Agriculture University, Jobner, Rajasthan. *Corresponding author email: bishnoiashok92@ gmail.com sweet basil variety is largely determined by the presence of chemical components like cinnamate, citronellol, geraniol, linalool, methyl chavicol, myrcene, pinene, ocimene and terpinol in the essential oil. The essential oil from sweet basil has antioxidants (Lee *et al.* 2005), antimicrobial (Koba *et al.* 2008), antifungal and insect repelling properties (Dube *et al.* 1989).

While the demand in the aromatic industry is increasing, there is a growing concern about improving the production and quality of sweet basil (Smitha *et al.* 2014). Sweet basil has been found to be infested by more than 30 species of insects and mites (Hamasaki *et al.* 1994, Dhiman and Datta 2013). The Perilla leaf moth, *Pyrausta panopealis* Walker (Lepidoptera: Pyralidae) is distributed in South-East Asia including China, Japan and India, and also in South America (Oh *et al.* 2010), however, in India the pest was observed and reported based on the light trap collection (Gurule and Nikam 2013, Raha *et al.* 2017). Keeping the economic and medicinal value of the sweet basil, ecofriendly bio-rational insecticides were evaluated against perilla leaf moth in the present experiment.

MATERIALS AND METHODS

The present study was carried out during *kharif* 2016–18 at Agronomy Farm, Rajasthan College of Agriculture,

MPUAT, Udaipur, located at 23.4°N Longitude and 75°E Latitude at an elevation of 579.5 MSL in Rajasthan. The climate of the region is subtropical, characterized by mild winters and hot summers that provide a safe and long growing season for most crops. The average annual rainfall of this tract ranges from 650 to 750 mm. During 2016–17 and 2017–18 the annual precipitation was 660.9 mm and 814.6 mm. The experimental field was prepared by ploughing once followed by cross harrowing and planking. Required quantities of manure and fertilizers were added in accordance with the package and practice of the zone. To raise healthy seedlings, seeds of recommended variety of sweet basil were sown in well prepared, raised (10-15 cm height) nursery beds using the seed rate of 125 g/ha. The nursery was raised in the first week of June each year during Kharif 2016-17 and 2017-18. Mature seedlings of sweet basil were transplanted after 4 weeks of seed germination when the plants attained a height of 10–15 cm. Recommended bio-rational insecticides including plant oils, bio-pesticides and bio-rational insecticides were evaluated for their efficacy against the perilla leaf moth of sweet basil during the two successive crop seasons of *Kharif*, 2016–17 and 2017-18. The experiment was laid out in uniformly sized plots measuring 12 m² (4 m × 3 m) in Randomized Block Design containing six treatments and four replications; in all, there were 24 plots. The row to row and plant to plant spacing for sweet basil was 60 cm and 40 cm, respectively. The treatment schedule comprised two sprayings, the first 15 days after transplanting and the second 45 days after transplanting. The different treatments, viz. Azadirachta indica oil (3%) followed by Bacillus thuringiensis (1.5 kg/ha), NSKE (5%) followed by Spinosad 45 SC (150 ml/ ha), Azadirachtin 1500 ppm (1%) followed by Lambda Cyhalothrin 4.9 CS (1 L/ha), Pongamia pinnata oil (3%) followed by Cypermethrin 10 EC (0.005%), Nicotine Sulfate

40 S (0.02%) followed by Deltamethrin 2.8 EC (0.015%) and Untreated control.

Observations on perilla leaf moth sampled by sondage method in which 10 plants were gently shaken to collect insects on an enamel tray with a piece of white cloth dipped in alcohol. The fallen insects were counted visually and collected. The vortis suction sampler was used once during mid-September for collecting these insect pests with a view have the collection of specimens. Observations were recorded for the numbers of insect pests per plant from 5 plants selected at random from each replicate one day before the insecticidal treatments and 3, 5 and 7 days after the treatments. The decrease or increase in numbers of insect pests after treatments in comparison to that in the control were estimated. The reduction in insect pests as a result of the spray treatments were computed by comparing with the pre-treatment population and expressed as a percentage using the method adopted by Henderson and Tilton (1955) after suitable transformation of the data. The data were subjected to analysis of variance using suitable mathematical/statistical procedures.

Population Reduction (%) = 100
$$\left\{1 - \frac{\text{Ta.Cb}}{\text{Tb.Cb}}\right\}$$
 where Ta, numbers of insects in the treatments after

where Ta, numbers of insects in the treatments after application; Tb, numbers of insects in the treatments before application; Ca, numbers of insects in the control after application; Cb, numbers of insects in the control before application.

RESULTS AND DISCUSSIONS

Perilla leaf moth: After the first spray, the pre-treatment population of perilla leaf moth (before first spray) did not vary significantly among the treatments and ranged from 3.50–4.00 Perilla leaf moth larvae/5 plants during *Kharif* 2016–17 (Table 1) and it was statistically at par among

Table 1 Efficacy of bio-rational insecticides against perilla leaf moth infesting sweet basil during Kharif 2016–17

Treatment Schedule	Mean population reduction (%)								
	1 st Spray				2 nd Spray				
	PTP	3rd DAS	5 th DAS	7 th DAS	PTP	3rd DAS	5 th DAS	7 th DAS	
Azadirachta indica oil (3%) followed by Bacillus thuringiensis (1.5 kg/ha)	3.50	45.15 (50.26)	46.76 (53.07)	43.64 (47.62)	8.00	40.50 (42.18)	44.13 (48.49)	41.16 (43.31)	
NSKE (5%) followed by Spinosad 45 SC (150 ml/ ha)	4.00	48.38 (55.89)	49.39 (57.63)	46.73 (53.01)	7.25	61.40 (77.09)	63.83 (80.55)	61.03 (76.54)	
Azadirachtin 1500 ppm (1%) followed by Lamda Cyhalothrin 4.9 CS (1 L/ ha)	3.50	50.82 (60.08)	53.48 (64.59)	49.25 (57.39)	8.00	59.20 (73.79)	61.10 (76.64)	57.69 (71.43)	
Pongamia pinnata oil (3%) followed by Cypermethrin 10 EC (0.005%)	3.75	42.71 (46.01)	45.96 (51.68)	42.84 (46.24)	7.75	54.42 (66.14)	56.85 (70.09)	53.57 (64.73)	
Nicotine Sulfate 40 S (0.02%) followed by Deltamethrin 2.8 EC (0.015%)	3.50	41.75 (44.34)	42.57 (45.76)	37.77 (37.52)	8.25	56.14 (68.96)	58.34 (72.46)	54.31 (65.97)	
Untreated control	3.75	-	-	-	7.50	-	-	-	
SEm ± CD(P=0.05)	0.41 NS	1.93 5.92	1.85 5.68	2.19 6.73	0.49 NS	2.27 6.95	2.05 6.30	2.68 8.22	

Figures in parentheses are retransformed per cent values. PTP, Pre-Treatment Populations; DAS, Days After Spray.

treatments. The maximum per cent mean reduction in the population of perilla leaf moth was recorded in the treatment schedule Azadirachtin 1500 ppm (1%) with 60.08, 64.59 and 57.39% mean reduction at 3, 5 and 7 days after spray respectively. The response was statistically at par with treatment schedule of NSKE (5%) at 3, 5 and 7 days after spray with 55.89, 57.63 and 53.01% mean reduction respectively. The minimum per cent mean reduction in the population of perilla leaf moth at 3, 5 and 7 days after spray was recorded in the treatment schedule Nicotine Sulfate 40 S (0.02%) with 44.34, 45.76 and 37.52% mean reduction respectively; however, it was found at par with Pongamia pinnata oil (3%) which was observed 46.01, 51.68 and 46.24% mean reduction at 3, 5 and 7 days after spray respectively. After the second spray, the pre-treatment population of perilla leaf moth (before the second spray) did not vary significantly among the treatments ranging from 7.25–8.25 larvae/5 plants during *Kharif* 2016–17 (Table 1). The maximum mean reduction in the population of perilla leaf moth at 3, 5 and 7 days after treatment was recorded in Spinosad 45 SC (150 ml/ha) with the reduction values being 77.09, 80.55 and 76.54%, respectively; which was at par with Lambda Cyhalothrin 4.9 CS (1 L/ha) with reduction values 73.79, 76.64 and 71.43% at 3, 5 and 7 days after spray. The minimum mean reduction (42.18, 48.49 and 43.31%) was recorded in the treatment of Bacillus thuringiensis (1.5 kg/ ha) after 3, 5 and 7 days of spray, respectively.

The resultant data of the first spray, 2017–18 are presented in the Table 2. The observation showed that pretreatment population of perilla leaf moth ranged from the 11.75–13.00 larvae/5 plants and did not vary significantly among different treatments. After 3, 5 and 7 days of treatments, the maximum mean reduction in perilla leaf moth population (61.16, 65.01 and 59.69%) were recorded in Azadirachtin 1500 ppm (1%), respectively; which was

significantly superior over all the rest of treatments. The minimum mean reduction in perilla leaf moth population was recorded in Nicotine Sulfate 40 S (0.02%) with the population reduction values were 45.03, 46.38 and 40.03%; whereas it was at par with the treatment schedule of *Pongamia pinnata* oil (3%) with mean reduction of 47.29, 50.09 and 44.81% at 3, 5 and 7 days after spray, respectively. During second spray, 2017–18, the pre-treatment population of perilla leaf moth (before the second spray) did not vary significantly among the treatments ranging from 12.75–14.50 larvae/5 plants (Table 2). The maximum mean reduction in the population of perilla leaf moth at 3, 5 and 7 days after treatment application was recorded in Spinosad 45 SC (150 ml/ha) with the reduction values of 79.67, 82.34 and 77.67%, respectively followed by Lambda Cyhalothrin 4.9 CS (1 L/ ha) with per cent mean reduction 74.60, 76.17 and 72.59% at 3, 5 and 7 days after spray respectively. The minimum mean reduction was recorded in Bacillus thuringiensis (1.5 kg/ha) after 3, 5 and 7 days of spray with the population reduction values being 41.28, 47.05 and 42.84% followed by treatment schedule of Cypermethrin 10 EC (0.005%) with mean reduction being 65.04, 69.09 and 62.73% respectively.

Similarly, the present investigation, Olson and Bidlack (2008) evaluated selected pest control treatments, consisting of hand removal, horticultural oil, pyrethrum and *Bacillus thuringiensis* var. kurstaki (Bt) against insect pests of sweet basil, *Ocimum basilicum* (L.). They reported that though *Bt*. was the best treatment for controlling lepidopteran pests, the innate ability of sweet basil to discourage herbivory could be sufficient when insects are not abundant. The larvicidal effect of ten on-the-market environment friendly agricultural materials was evaluated against the Perilla leaf moth (*P. panopealis*) indicating that 7 out of the 10 materials tested caused more than 90% mortality of the Perilla leaf moth caterpillars within 12 h (Hyung *et al.* 2010). Similar

Table 2 Efficacy of bio-rational insecticides against perilla leaf moth infesting sweet basil during Kharif, 2017–18

Treatment Schedule	Mean population reduction (%)								
	1st Spray				2 nd Spray				
	PTP	3 rd DAS	5 th DAS	7 th DAS	PTP	3 rd DAS	5 th DAS	7 th DAS	
Azadirachta indica oil (3%) followed by Bacillus thuringiensis (1.5 kg/ha)	12.25	45.75 (51.31)	47.70 (54.71)	44.20 (48.60)	13.50	39.98 (41.28)	43.31 (47.05)	40.88 (42.84)	
NSKE (5%) followed by Spinosad 45 SC (150 ml/ ha)	11.75	47.74 (54.77)	48.65 (56.35)	46.49 (52.60)	12.75	63.20 (79.67)	65.15 (82.34)	61.80 (77.67)	
Azadirachtin 1500 ppm (1%) followed by Lamda Cyhalothrin 4.9 CS (1 L/ ha)	13.00	51.45 (61.16)	53.73 (65.01)	50.59 (59.69)	13.25	59.74 (74.60)	60.78 (76.17)	58.43 (72.59)	
<i>Pongamia pinnata</i> oil (3%) followed by Cypermethrin 10 EC (0.005%)	12.25	43.45 (47.29)	45.05 (50.09)	42.02 (44.81)	13.75	53.75 (65.04)	56.22 (69.09)	52.37 (62.73)	
Nicotine Sulfate 40 S (0.02%) followed by Deltamethrin 2.8 EC (0.015%)	11.75	42.15 (45.03)	42.92 (46.38)	39.25 (40.03)	14.50	56.31 (69.24)	59.02 (73.50)	54.86 (66.87)	
Untreated control	12.00	-	-	-	13.00	-	-	-	
SEm ± CD(P=0.05)	0.76 NS	1.43 4.39	1.58 4.85	1.61 4.95	0.79 NS	2.28 6.98	1.96 6.02	2.09 6.41	

Figures in parentheses are retransformed per cent values. PTP, Pre-Treatment Populations; DAS, Days After Spray.

work on sweet basil pest management showed that foliar application of *Bacillus thuringiensis* (1 kg/ha) recorded better management of the leaf eating caterpillar population (2.27 caterpillars per plant), followed by application of EPN @5000 IJS/litre (2.60 caterpillars per plant) and neem oil @1 per cent (3.0 caterpillars per plant) as against 8.67 leaf eating caterpillars per plant in untreated control (Anonymous 2017).

REFERENCES

- Amresh Y S, Nagrud V B and Somaskhar B. 2002. Use of botanicals and fungitoxicant against *Alternaria helianthis* (Hansf.). *Indian Journal of Plant Protection* **30**: 55–58.
- Anonymous. 2017.AICRP on MAPB Annual Report 2016-17, Dr. Rajendra Prasad Central Agricultural University, Pusa. pp. 405.
- Dhiman SC and Datta O. 2013. Seasonal occurrence of *Cochlochila bullitaa* serious pest of *Ocimum basilicum*. *Annals of Plant Protection Sciences* **21**: 184–85.
- Dube S, Upadhyay P D and Tripathi S C 1989. Antifungal, physicochemical, and insect-repelling activity of the essential oil of *Ocimum basilicum. Canadian Journal of Botany* **67**: 2085–87.
- Gurule S A and Nikam S M. 2013. The moths (Lepidoptera: Heterocera) of northern Maharashtra: A preliminary checklist. *Journal of Threatened Taxa* **5**: 4693–4713.
- Hamasaki R T, Valenzuela H R, Tsuda D M and Uchida J Y. 1994. Fresh basil production guidelines for Hawaii. *Research Extension Series* **154**: 1–9.
- Henderson C F and Tilton E W. 1955. Test with acaricides against the brown wheat mite. *Journal of Economic Entomologyv* **48**: 157–61.
- Hyung Keun Oh, Won Kee Kim, Ah Rang Kang, In Seon Kim, Hyang Burm Lee and Iksoo Kim. 2010. Life Cycle of the Perilla Leaf Pyralid Moth, *Pyrausta panopealis* (Lepidoptera: Pyralidae) and Test of Larvicidal Effect of Some Commercial Natural Products). *International Journal of Industrial*

- Entomology 21: 133-37.
- Ji Ji T, Napolean A, Stonehous J and Verghese A. 2003. Effective food traits for trapping fruit flies. *Insect Environment* 9: 143–44.
- Koba K, Poutouli P W, Raynaud C, Chaumont J P and Sanda K. 2008. Chemical composition and antimicrobial properties of different basil essential oils chemotypes from Togo. *Bangladesh Journal of Pharmacology* 4: 1–8.
- Lee S J, Umano K, Shibamoto T and Lee K G. 2005. Identification of volatile components in basil (*Ocimum basilicum*L.) and thyme leaves (*Thymus vulgaris* L.) and their antioxidant properties. *Food chemistry* **91**: 131–37.
- Oh H K, Kim W K, Kang A R, Kim I S, Lee H Y and Kim I. 2010. Life cycle of the perilla leaf pyralid moth, *Pyrausta panopealis* (Lepidopteran: Pyralidae) and test of larvicidal effect of some natural products. *International Journal of Industrial Entomology* 21: 133–37.
- Olson P E and Bidlack J E. 2008. Yield and enzyme activity of sweet basil (*Ocimum basilicum*) subjected to alternative pest control. *Journal of Herbs Spices and Medicinal Plants* 4: 3–16.
- Pushpangadan P and Bradu B L. 1995. Medicinal and aromatic plants. *Advances in Horticulture*, Vol II. K L Chadha and R Gupta (Eds) New Delhi, India: Malhotra Publishing House.
- Raha A, Sanyal A K, Majumder A and Chandra K. 2017.
 An inventory of Pyraloidea Latreille, 1809 (Lepidoptera: Heterocera) from Chhattisgarh. *National Journal of Life Sciences* 14: 41–45.
- Simon J E, Quinn J and Murray R G. 1990. Basil: a source of essential oils. *Advances in New Crops*, pp. 484–89. J Janick and J E Simon (Eds). Portland, OR, Timber Press.
- Smitha G, Varghese T S and Manivel P. 2014. Cultivation of Ocimum. ICAR Directorate of Medicinal and Aromatic Plants Research, Anand, Gujarat. Technical Report.
- Stein U and Klingauf F. 1990. Insecticidal effect of plant extracts from tropical and subtropical species. Traditional methods are good as long as they are effective. *Journal of Applied Entomology* **110**(2): 160–66.