Effect of phosphorus and potassium fertilization on summer greengram (Vigna radiata) varieties

N ANTHONY BAITE¹, D NONGMAITHEM^{2*}, SAYA D², SENTISUBA² and IMNATEMJEN AIER³

School of Agricultural Sciences, Nagaland University, Medziphema Campus, Nagaland 797 106, India

Received: 30 July 2023; Accepted: 18 August 2023

Keywords: Fertility, Fertilizer, Greengram, Nutrient dynamics, Plant nutrition

Pulses are of utmost importance in addressing the issue of global food security and promoting sustainable agricultural practices. Among the various options, greengram (Vigna radiata L.) is noteworthy due to its nutritional composition, brief growth period, and capacity to enhance soil fertility via nitrogen fixation. India has an estimated area coverage of 46 lakh ha under greengram cultivation and out of which, Nagaland occupies a mere 0.002 lakh ha (DPD 2021). Improving the productivity of greengram is crucial in order to address the growing need for protein-rich food and to promote stability within the agricultural ecosystem. The effective management of nutrients, specifically phosphorus (P) and potassium (K) plays a crucial role in attaining maximum crop productivity and enhancing crop quality (Singh 2017, Sahu et al. 2020). Phosphorus plays a crucial role in facilitating energy transfer, photosynthesis, and root development (Sahu et al. 2021) whereas potassium governs water absorption, enzyme activation, and the overall vigor of plants (Kumar et al. 2022). The complex interplay between different cultivars of crops and essential nutrients has a significant impact on the overall growth, development, and productivity of plants. The importance of tailored management practices to fully optimize the potential of different varieties becomes evident when considering their response to varying nutrient levels.

The present study was carried out in the School of Agricultural Sciences, Nagaland University, Medziphema Campus, Nagaland during the summer of 2021, with the dual objectives of evaluating the performance of different summer greengram varieties and investigating the impact of phosphorus and potassium levels on their growth and yield. Additionally, the economic feasibility of the various

¹Banaras Hindu University, Varanasi, Uttar Pradesh; ²School of Agricultural Sciences, Nagaland University, Medziphema Campus, Nagaland; ³ICAR-National Research Centre on Mithun, Jharnapani, Medziphema, Nagaland. *Corresponding author email: debikanong@gmail.com

treatments was assessed. The research was carried out during the April-July of 2021. The field was laid out in factorial randomized block design with a total of 36 plots with plot size 4 m \times 3 m. The mean maximum, minimum temperature, rainfall and relative humidity during the experimental period was 33.1°C, 21.6°C, 22.26 mm and 71.95%, respectively. The initial status of soil indicates medium available nitrogen (250.88 kg/ha), P₂O₅ (32.81 kg/ ha) and K_2O (144.64 kg/ha) with high carbon (1.05%) and acidic soil. The experiment consisted of three greengram varieties, viz. G₁: IPM 02-3, G₂: SGC-20 and G₃: SGC-16 which were treated with four doses of phosphorus and potassium, i.e. F_0 , control; F_1 , 40 kg $P_2O_5 + 40$ kg K_2O ; F_2 , 50 kg $P_2O_5 + 50$ kg K_2O and; F_3 , 60 kg $P_2O_5 + 60$ kg K₂O per hectare. All fertilizers were applied at the time of sowing in a single dose in furrows. Urea was applied in all plots @20 kg/ha. The data were subjected to statistical analysis appropriate to the design by following the procedure laid out by Gomez and Gomez (1984).

Growth attributes: A consistent increase was observed in plant height as the crop advanced (Table 1). Among the varieties, IPM 02-3 exhibited the tallest plants (28.98 cm at 45 DAS and 53.09 cm at harvest), followed by SGC-20 (28.21 cm and 51.93 cm) and SGC-16 (27.64 cm and 51.79 cm). The application of fertilizer had a positive impact on plant height, with all treatments showing higher heights compared to the control. Notably, the highest height (30.73 cm at 45 DAS and 54.87 cm at harvest) was achieved with the 60 kg/ha P₂O₅ and K₂O treatment, which was statistically comparable to the 50 kg/ha P2O5 and K2O treatment at 45 DAS. Interestingly, at harvest, all fertilizer treatments yielded similar plant heights, except for the control. Leaf area index (LAI) exhibited different trends. At 45 DAS, there were no significant effects of variety or phosphorus and potassium levels on LAI. However, by 60 DAS, IPM 02-3 outperformed the other varieties, and all phosphorus and potassium treatments demonstrated statistical differences. The highest LAI was achieved with the application of 60 kg/ha P₂O₅ and K₂O. A gradual increase in dry matter was

TC 1 1 1	T CC / C '/	1 1 0 1	C 1 1 1		4 1 1 1 1
Table I	Effect of variety	I and different dose	s of phosphorus and	notacciiim on oi	cowth and wield
1 abic 1	Lilect of variety	and different dose	o or phosphorus and	potassium on gi	. O W till alla y lola

Treatment		ant ght		area dex	,	natter tion (g)	Branches/ plant	Seeds/ pod	Test weight	Seed yield	Stover yield	Harvest index
	40 DAS	Harvest	45 DAS	60 DAS	45 DAS	60 DAS			(g)	(q/ha)	(q/ha)	(%)
$\overline{G_1}$	28.98 ^a	53.09a	1.10a	2.73a	94.64 ^a	137.98 ^a	4.64 ^a	8.85	28.00a	5.48a	13.43a	28.82ª
G_2	28.21 ^b	51.93 ^a	1.05a	2.64 ^b	93.68a	136.93 ^b	4.17 ^a	7.92	27.01 ^b	5.08 ^b	12.87 ^{ab}	28.14 ^a
G_3	27.64 ^b	51.79 ^a	1.02a	2.59 ^c	93.04 ^a	136.14 ^b	4.05a	7.91	26.60^{b}	4.37 ^c	12.80^{b}	25.42 ^b
F_0	25.01 ^c	44.56 ^b	0.96a	2.22^{d}	85.44 ^b	120.38 ^b	3.56a	7.41	25.26 ^d	3.86 ^c	10.99 ^c	26.03 ^b
F_1	27.57 ^b	53.08a	0.99a	2.46 ^c	96.01a	140.42 ^c	4.17 ^a	7.98 ^a	26.47 ^c	4.47 ^b	12.37 ^b	26.51 ^b
F_2	29.79 ^a	54.37 ^a	1.07a	2.74 ^b	96.90a	143.82a	4.40a	8.40a	27.61 ^b	5.74 ^a	14.25a	28.65a
F_3	30.73 ^a	54.87 ^a	1.21a	3.21a	96.80a	143.46a	5.02a	9.14 ^a	29.47 ^a	5.84 ^a	14.51 ^a	28.68a

Means with the same letters in column are not significantly different as per Duncan's multiple range test. Refer to the methodology for treatment details.

observed in the initial growth phase, intensifying as the crop transitioned to the reproductive stage. At 45 DAS, variety had no significant effect on dry matter, and all phosphorus and potassium treatments were comparable, except for the control. By 60 DAS, IPM 02-3 showcased superior performance and the 50 kg/ha P2O5 and K2O treatment displayed significantly higher dry matter accumulation compared to F₀ and F₁, though it was at par with F₃. Branches per plant did not exhibit significant differences due to variety or fertilizer application. The varying responses in plant height, LAI, dry matter accumulation, and branches per plant could be attributed to the genetic traits of each genotype, coupled with the combined influences of phosphorus and potassium. These factors play pivotal roles in processes such as photosynthesis, cell division, cell enlargement, sugar accumulation and energy storage. Similar findings were also reported by Awomi et al. 2012, Gadi et al. 2018, Bagadkar et al. 2020, Kharkongor and Dhamak 2020.

Yield attributes: Data as presented in Table 1 showed the influence of variety and phosphorus and potassium fertilization on yield and yield attributes. Variety IPM 02-3 displayed highest values over other varieties in terms of seeds/pod, test weight, seed yield, stover yield and harvest index. However, it was found to be at par with SGC-20 in terms of stover yield and harvest index. No significant difference on seeds per pod was observed among the varieties. All phosphorus and potassium treatment recorded significantly higher yield attributes compared to control except for seeds per pods, where no significant difference was observed due to P and K fertilization. Application of 60 kg/ha P₂O₅ and K₂O recorded the highest seed/pod (9.14), test weight (29.47 g), seed yield (5.84 q/ha), stover yield (14.51 q/ha) and harvest index (28.64%). This was, however, statistically similar with the application of 50 kg/ha P₂O₅ and K₂O in attributes including seed yield, stover yield and harvest index. The variation in yield attributes as an

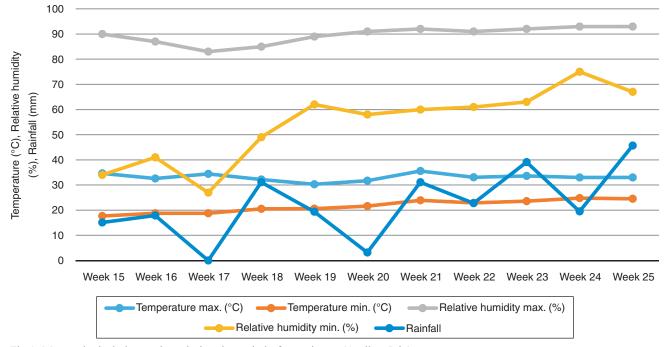


Fig 1 Meteorological observations during the period of experiment (April to July).

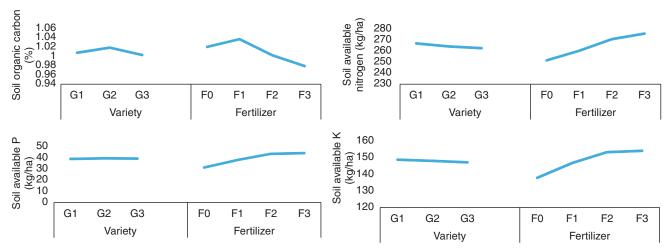


Fig 2 Effect of variety and doses of phosphorus and potassium on soil nutrient dynamics. Refer to the methodology for treatment details.

influence of variety and phosphorus and potassium could be attributed to the genetically superiority and adaptive capability of the varieties to the local condition, along with the role of phosphorus and potassium in early seed

germination, seedling establishment, shoot, flower and seed development. This was supported by the findings of Ranpariya *et al.* (2017), Singh *et al.* (2018), Bhabai *et al.* (2019).

Soil nutrient status and yield: Fig 2 portrays the data pertaining to soil nutrient level as influenced by varieties and different doses of phosphorus and potassium. Additionally, Fig 3 offers a graphical representation of the intricate relationship between soil available nutrients and the yield of greengram varieties. No significant effect of variety on the overall nutrient status was observed during investigation. Meanwhile, P and K levels had a significant effect on soil nitrogen, phosphorus, and potassium content over control. It is evident that a steady incline in the soil nutrient curve is observed with increase in P and K levels, except in the case of organic carbon, which follows a decline curve (Fig 2). Notably, an observable trend emerges (Fig 3), characterized by a consistent upward trajectory in the seed yield curve as soil available nitrogen and potassium levels increase.

Nutrient use efficiency: The data on partial factor productivity presented in Table 2 indicates that the highest seed yield per kg of nutrient applied (11.49 seed yield/kg each of P_2O_5 and K_2O) is observed with treatment

 F_2 (Since the level of P_2O_5 and K_2O is same, a separated table is not provided and the value is the individual effect of each fertilizer rate and not a combined effect of P and K). This was followed by F_1 and F_3 This suggests that optimal

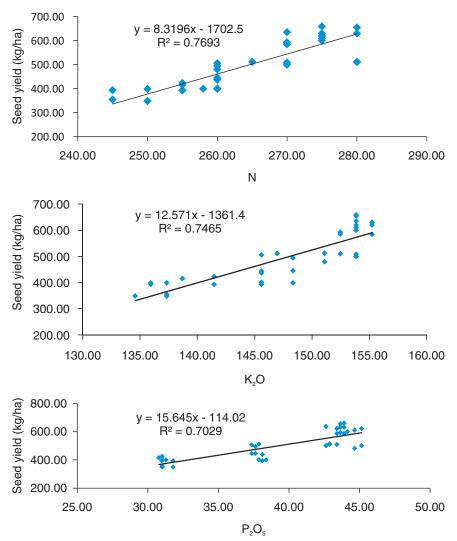


Fig 3 Relation between soil available nutrient and seed yield of greengram.

Table 2 Partial factor productivity (PFP) and economics of treatments

Partial factor productivity (kg yield/kg nutrient applied)	roductivity (kg yield/kg 1	nutrient ap	plied)		Ne	Net return (₹/ha)	(1				B:C ratio		
Nutrient \times Variety	G_1	G_2	Ğ	Mean PFP Nutrient × Variety	Nutrient × Variety	G_1	G_2	Ğ	Mean net return	Nutrient × Variety	G_1	G_2	G_3	Mean B:C ratio
${ m F}_0$	0.00	0.00	0.00	0.00	F_0	21597	19712	14785	18698°	F_0	68.0	0.82	0.61	0.77c
\mathbb{F}_1	12.59	11.05	9.93	11.19	\mathbb{F}_1	30848	24075	19117	24680 ^b	\mathbb{F}_1	1.23	96.0	92.0	0.98 ^b
F_2	12.76	11.75	9.95	11.49	\mathbb{F}_2	45466	39908	29982	38452^{a}	F_2	1.80	1.58	1.19	1.52^{a}
${ m F}_3$	10.64	10.17	8.44	9.75	\mathbb{F}_3	45317	42164	30788	39423^{a}	F_3	1.78	1.66	1.21	1.55 ^a
Mean PFP	00.6	8.24	7.08		Mean net return	35807^{a}	31465 ^b	23669°		Mean B:C ratio	1.42ª	1.25 ^b	0.94^{c}	

Means with same letters in column and in row, indicate not significantly different as per Duncan's multiple range t Refer to the methodology for treatment details. nutrient utilization is achieved with 50 kg/ha P_2O_5 and K_2O , underscoring its efficiency.

Economics of treatment: Data on economics of treatment is presented in Table 2. Among the different varieties examined, it is evident that IPM 02-3 stands out with the highest net return of ₹35807.00 and B:C ratio of 1.43. Following closely, SGC-20 showcases net returns of ₹31464 and a B:C ratio of 1.25, while SGC-16 records net returns of ₹23668 and a B:C ratio of 0.94.

When evaluating the impact of different phosphorus and potassium levels, the application of 60 kg/ha $\rm P_2O_5$ and $\rm K_2O$ yields the highest net return of ₹39423 and an elevated B C ratio of 1.55. Interestingly, application of 50 kg/ha $\rm P_2O_5$ and $\rm K_2O$ produces similar financial outcomes. The parity in net return and B:C ratio achieved with the 50 kg/ha $\rm P_2O_5$ and $\rm K_2O$ application suggests that an optimal balance can be struck without the need for the higher nutrient dosage.

SUMMARY

This experiment suggests that the utilization of the greengram variety IPM 02-3 is advantageous due to its superiority in terms of performance and adaptability over other varieties investigated. Additionally, application of 50 kg/ha P₂O₅ and K₂O demonstrates comparable performance and profitability to application of 60 kg/ha P₂O₅ and K₂O, making it an economically favourable option. Soil fertility analysis revealed P and K's role in enhancing nutrient dynamics. The relation between soil nutrient levels and greengram yield underscores the multifaceted relationship. In summary, genetic factors, coupled with optimal nutrient management, synergistically affect the growth and yield of greengram.

REFERENCES

Awomi T A, Singh A K, Kumar M and Bordoloi L J. 2012. Effect of phosphorus, molybdenum and cobalt nutrition on yield and quality of mungbean (*Vigna radiata* L.) in acidic soil of Northeast India. *Indian Journal of Hill Farming* **25**(2): 22–26.

Bagadkar A, Hiwale S and Darekar N. 2020. Effect of graded levels of potassium on growth, yield and economics of greengram. *Journal of Pharmacognosy and Phytochemistry* **9**(4): 1799–801.

Bhabai B, Mukhopadhyay D and Mitra B. 2019. Effect of biofertilizer and phosphorus on greengram (*Vigna radiata*). *Journal of Pharmacognosy and Phytochemistry* **8**(4): 505–09.

DPD (Directorate of Pulse Development). 2021. Annual report 2021–22. Ministry of Agriculture, Govt. of India, Bhopal. https://dpd.gov.in/Annual%20Report%20(2021-22).pdf

Gadi Y, Sharma Y K, Sharma S K and Bordoloi J. 2018. Influence of phosphorus and potassium on performance of greengram (*Vigna radiata* L.) in Inceptisol of Nagaland. *Annals of Plant and Soil Research* **20**(2): 120–24.

Gomez K A and Gomez A A. 1984. *Statistical Procedures for Agricultural Research*, p. 680. John Wiley and Sons, New York.

Kharkhongor T and Dhamak A L. 2020. Growth, yield and quality parameters of greengram (*Vigna radiata* L.) as influenced by graded potassium. *International Journal of Current Microbiology and Applied Sciences* 9(9): 3005–10.

Kumar S, Jat M K, Kumar R, Kumar S, Kumar S and Bhatia R. 2022. Yield, nutrient content, and their uptake by greengram (*Vigna radiata* L.) as affected by potassium and zinc application

- in coarse textured soil of south-west Haryana. *The Pharma Innovation Journal* 11(3): 117–21.
- Ranpariya V S, Polara K B, Hirpara D V and Bodar K H. 2017. Effect of potassium, zinc and FYM on content and uptake of nutrients in seed of summer greengram (*Vigna radiata* L.) and post-harvest soil fertility under medium black calcareous soil. *International Journal of Chemical Studies* 5(5): 1055–58.
- Sahu S, Shankar T, Maitra S, Adhikary R, Mondal T and Duvvada S K. 2021. Impact of phosphorus and sulphur on the growth and productivity of greengram (*Vigna radiata*). *Research on Crops* **22**(4): 785–91.
- Sahu S, Shankar T, Maitra S, Mohapatra S and Swamy G V V S N. 2020. A review on the effect of phosphorus and sulphur on growth, productivity and nutrient uptake of greengram (*Vigna radiata* L.). *Agro Economist-An International Journal* 7: 91–93.
- Singh D P. 2017. Effect of potassium and sulphur on performance of greengram (*Vigna radiata*) in alluvial soil. *Annals of Plant and Soil Research* **19**(2): 223–26.
- Singh R, Singh P, Singh V and Yadav R A. 2018. Effect of phosphorus and PSB on yield attributes, quality and economics of summer greengram (*Vigna radiata L.*). *Journal of Pharmacognosy and Phytochemistry* 7(2): 404–08.