Crossability analysis of cultivated rice (Oryza sativa) with O. rufipogon and O. longistaminata and F_1 -identification

NEHA CHAKRAWARTI^{1*}, RUPAM BORGOHAIN¹, RAJSHREE VERMA² and N SARMA BARUA²

Assam Agricultural University, Jorhat, Assam 785 013, India

Received: 26 October 2022; Accepted: 6 December 2022

Keywords: Interspecific hybrid, Perennial rice, Pollen viability, Ratooning ability

Perennial rice (Oryza sativa L.) is one that lives and remains productive for two or more years, rather than growing only for one season till harvest. Some wild species of rice like O. longistaminata, O. rhizomatis and O. rufipogon show perennial characteristics as these species have plant structures like rhizomes and stolons and thus, have the capacity to regenerate making the plant perennial. Perennation in rice is often manifested as the ratooning ability (re-growth) of the plant. The perennial nature and ratooning ability of rice is linked to their evolutionary pathway. Cheng et al. (2003) suggested that O. rufipogon which was the progenitor species of O. sativa, consisted of four major clades, three of which were perennial and one was annual (the annual clade is referred to as O. nivara). He postulated that the *indica* sub-species of *O sativa* was derived from the annual O. rufipogon clade while the Japonica subspecies was derived from one of the perennial O. rufipogon clades. Thus, many rice cultivars grown today were originally perennials that are now cultivated as annuals.

Perennation in *O. sativa* is by growth of axillary buds on older tillers (i.e. tillering), whereas *O. rufipogon* can additionally propagate from stolons, and *O. longistaminata* produces many long rhizomes that are the primary source of new shoots. *O. rufipogon* has high cross compatibility with *O.sativa*. However, stolon is not well suited for surviving in drought since, due to exposure in sun, the stolon become dry and unproductive. In contrast, *O. longistaminata* produces rhizomes which are protected from desiccation by insulating soil. Breeding barriers however have severely limited the production of *O. sativa/O. longistaminata* F₁ progeny. Genotypes of *O. sativa* vary greatly in their propensity to ratoon after an initial harvest of grains (Prakash *et al.* 1988, Chauhan *et al.* 1989). Hence, the variability in ratooning

¹G. B. Pant University of Agriculture, Pantnagar, Uttarakhand;
²Assam Agricultural University, Jorhat, Assam. *Corresponding author email: neha.chakrawarti.amj19@aau.ac.in

ability could be exploited for development of good ratooning or perennial rice varieties.

Present study was carried out at the Instructional cum Research (ICR) farm in Assam Agricultural University, Jorhat, Assam for the year 2019-21 with the objective to determine the crossability of wild rice species O. longistaminata and O. rufipogon with O. sativa and observe the inheritance of rhizome. Five popular cultivars of rice, viz. Ranjit, Ranjit sub-1, Binadhan-11, IR-64 and Bahadur were chosen (from first year of experiment) as these varieties also possess some specific valuable distinguished traits like good ratooning ability (Chakrawarti et al. 2022). These selected varieties were crossed (second year) as female parent with O. longistaminata and O. rufipogon as male parent. Reciprocal crossing was also done. Crossability was determined by counting the number of seeds produced per cross. It was calculated as the ratio of number of true F₁ seeds developed per cross to the total number of spiklet emasculated and was expressed as percentage.

$$Crossability = \frac{Total \ F_1 \ seeds \ produced}{Total \ number \ of \ spikelet \ emasulated} \quad \times \ 100$$

For pollen viability test, five spikelets from five random plants in parent and single plant in F_1 were collected at the stage before flower opening in the test tube containing 70% ethyl alcohol. Anthers were then squashed with 1% Iodine Potassium iodide (IKI) solution and examined under light microscope. The pollen viability was calculated as:

Pollen viability =
$$\frac{\text{No. of viable pollen grains}}{\text{Total no. of pollen grain}} \times 100$$

Crossability was estimated in two ways. Crosses were made between O.sativa as female and wild rice as male. Reciprocal crosses were also made. The number of true F_1 s after the hybridization between O. sativa varieties as female and O. longistaminata as male were found varying according to the varieties used as female. The highest percentage of seed set was found in the cross

Binadhan-11 \times *O. longistaminata* with the crossability of 22.2% followed by the cross IR-64 \times *O. longistaminata* (19.4%), Ranjit \times *O. longistaminata* (16.3%) and Bahadur \times *O. longistaminata* (11.8%). Lowest seed set was found in the cross Ranjit Sub-1 \times *O. longistaminata* (11.1%).

The number of F_1 s after the hybridization between O. sativa varieties as female and O. rufipogon as male was found different with different female parents. The number of fertile spikelets were very less (Abraham et al. 2021) . The highest percentage of seed set among O. sativa/O. rufipogon was found in the cross Ranjit × O. rufipogon (30%) followed by the cross Binadhan-11 \times O. rufipogon (26.2%), IR64 × O. rufipogon (22.2%), Bahadur × O. rufipogon (19.4%), whereas lowest crossability was exhibited by the cross Ranjit sub-1 \times O.rufipogon (13.3%). The comparable result for crossability between O. sativa/O. longistaminata was also obtained by Dayun and Sripichitt (2000). They also suggested that the extent of crossability between O. sativa and wild rice is mainly decided by pollen fertility of the male parent and the environmental factors. For O. sativa/O. rufipogon, similar and comparable crossability percentage was obtained by Niruntrayakul et al. (2009). The F_1 from O. sativa/O. longistaminata were further observed and could be differentiated from parents in terms of several qualitative and quantitative traits. It has also been suggested that this diversity in the reproductive isolation is mainly due to diversity in flowering time (Xu et al. 2020). Hybrids were found intermediate between the two parents for many distinguishing traits. None of the F₁ seeds could be recovered from the crosses in which O. longistaminata and O. rufipogon was used as female parent.

Further evaluation was done for F_1 s from O. sativa/O. longistaminata for various contrasting morphologically expressed qualitative (Table 1) and quantitative traits (Table 2) of vegetative and reproductive stage till the duration of investigation because hybrid from $IR64 \times O$. longistaminata have not come to reproductive stage. Hence, for this cross none of the traits expressed at reproductive stage were observed. It is worth to note that IR-64 is photoinsensitive in nature, however, its hybrid with O. longistaminata were photosensitive thus, they could not come to reproductive stage till the time of research (August 2021).

 F_1 s were poor performing in terms of pollen fertility, spikelet fertility and number of filled grains. The F_1 s had lower pollen viability as compared to both the parents in all the crosses. Low level of pollen fertility was also observed by Lu *et al.* (2003) while Sacks *et al.* (2006) observed spikelet fertility as low as 13% in F_1 from *O. satival O. longistaminata*. Low number of seed set in such hybrids was probably due to meiotic irregularities as reported by Kaushal *et al.* (1998). Li *et al.* (2007) concluded that the sterility of F_1 was the main barrier in gene flow within AA genome. Apart from this, positive heterosis for flag leaf length was observed in hybrid from cross Ranjit sub-1 × *O. longistaminata*, Bahadur × *O. longistaminata* and IR64 × *O. longistaminata* and longest flag leaf length was recorded in hybrid from IR64 × *O. Longistaminata*

Table 1 Comparision of various qualitative traits among parents and hybrids

			- I			a Lancard				
	Stem base	Stem base Leaf blade	Basal leaf	Flag leaf	Internode	Panicle	Awns	Anther	Stigma	Stigma exertion
	colour	pubescence	pubescence sheath colour	angle	colour	type		colour	colonr	
Male parent										
O. longistaminata	Purple	Pubescent	Light purple	Erect	Light purple Open		Long and fully awned	Pale yellow	Purple	Fully exerted
Female parent										
Binadhan-11	Green	Glabrous	Green	Erect	Green	Compact	Awnless	Yellow	White	No exertion
IR-64	Green	Glabrous	Green	Slightly	Green	Compact	Awnless	Yellow	White	No exertion
				drupy						
Ranjit	Green	Glabrous	Green	Slightly	Green	Compact	Awnless	Yellow	White	No exertion
				drupy						
Ranjit sub-1	Green	Glabrous	Green	Slightly	Green	Compact	Awnless	Yellow	White	No exertion
				drupy						
Bahadur	Green	Glabrous	Green	Erect	Green	Compact	Awnless	Yellow	White	No exertion
\mathbb{F}_1										
Binadhan11 \times O. longistaminata Purple	Purple	Glabrous	Green	Erect	Green	Intermediate	Intermediate Awn only on top grain	Pale yellow	Purple	Partially exerted
Ranjit sub-1 \times O. longistaminata	Green	Glabrous	Green	Erect	Green	Intermediate	Intermediate Long and fully awned	Light yellow	White	Partially exerted
Bahadur \times O. lonistaminata	Green	Glabrous	Green	Erect	Green	Open	Long and fully awned	Light yellow	White	Partially exerted
Ranjit × O. longistaminata	Green	Glabrous	Green	Erect	Green	Intermediate	Intermediate Partially awned	Light yellow	Purple	Partially exerted
IR64 \times O. longistaminata	Green	Glabrous	Green	Erect	Green			1		

Table 2 Comparision of hybrid with their parents for quantitative characters

No of Flag leaf length Flag leaf width Panicle length No of

	No of	Flag leaf length	Flag leaf width	Panicle length	No.of fertile	Pollen viability
	tillers	(cm)	(cm)	(cm)	grain per panicle	(%)
Male parent						
O. longistaminata	7	38.5	1.00	39.5	47	86.5
Female parent						
Binadhan-11	12	33.2	1.3	24.2	103	100
IR-64	16	53.2	1.0	22.3	83	100
Ranjit	10	22.4	1.6	29.4	120	100
Ranjit sub-1	12	45.2	1.2	27.3	135	100
Bahadur	11	60	1.5	30.5	102	100
F_1						
Binadhan11 × O. longistaminata	21	29.2	1.1	22.5	5	32.5
Ranjit sub-1 × O. longistaminata	30	59.2	1.1	30.2	10	36.4
Bahadur × O. longistaminata	35	71.5	0.7	34.5	5	30
Ranjit × O. longistaminata	26	24.7	1.00	19.6	7	40.2
IR64 × O. longistaminata	23	86.5	1.5	-	-	-

(86.5 cm). Width of flag leaf were intermediate for all the hybrids. Negative heterosis for panicle size was seen in hybrids from Binadhan-11 × O. longistaminata (22.5 cm) and Ranjit \times O. longistaminata (19.6 cm). All the F₁ hybrids from O. sativa/O. longistaminata possessed awns as that of the male parent. However, the intensity of awns was found varying with the cross. Hybrid from Ranjit sub-1 × O. longistaminata and Bahadur × O. longistaminata had long awned spikelets. The F₁ from Binadhan-11 × O. longistaminata had purple stem as that of male parent. This character can be preferably used as morphological marker at vegetative stage to assist hybrid selection in early stages. However, number of fertile grains per panicle were found very less in all the hybrids, highest being 10 seeds hybrid from Ranjit sub-1 × O. longistaminata. Pollen viability of all the hybrids were less than both the parents and least pollen viability was observed in hybrid from Bahadur \times O. longistaminata (30%)

SUMMARY

The research was conducted at Instructional cum Research (ICR) farm in Assam Agricultural University, Jorhat, Assam for the year 2019–21 with the objective to determine the crossability of wild rice species *O. longistaminata* and *O. rufipogon* with *O. sativa* and observe the inheritance of rhizome. In first year of experiment, varieties having good ratooning ability were identified. Out of them, five varieties namely Ranjit, Ranjit sub-1, IR-64, Binadhan-11 and Bahadur were crossed with both of the wild species. Crossablity of *O. longistaminata* with *O. sativa* ranged from 11.1%

(Ranjit sub-1 × O. longistaminata) to 22.2% (Binadhan11 × O. longistaminata) while O. rufipogon with O. sativa ranged from 13.3% (Ranjit sub-1 × O. rufipogon) to 30% (Ranjit × O. rufipogon). All the hybrids except for IR64 × O. longistaminata were photoinsensitive as that of their female parent. Hybrids from O. sativa/O. longistaminata exhibited various distinguishing characters which can be used as morphological marker in order to identify true interspecific hybrids in further breeding programme. The pollen viability of these interspecific hybrids were found lower than both the parents. However, rhizome formation could not be observed in any hybrid.

REFERENCES

Abraham O G, Faluyi J O and Nwokeocha C C. 2021. Intervarietal sterility and fertility restoration in *Oryza sativa* Linn. *Journal: Oryza-An International Journal on Rice December* **4**: 463–76.

Chakrawarti N, Borgohain R and Verma R. 2022. Genetic variability studies in rice (*Oryza sativa*) genotypes of Assam for ratooning ability and perennation. *Indian Journal of Agricultural Sciences* **92**(11): 1321–25.

Chauhan J S, Lopez F S S and Vergara B S. 1989. Genetic analysis of ratooning ability of rice (*Oryza sativa* L.). *Euphytica* **40**(1): 97–02.

Cheng C, Motohashi R, Tsuchimoto S, Fukuta Y, Ohtsubo H and Ohtsubo E. 2003. Polyphyletic origin of cultivated rice: Based on the interspersion pattern of SINEs. *Molecular Biology and Evolution* **20**(1): 67–75.

Dayun T and Sripichitt P. 2000. Preliminary report on transfer traits of vegetative propagation from wild rice species to *Oryza sativa* via distant hybridization and embryo rescue. *Agriculture and Natural Resources* **34**(1): 1–11.

- Kaushal P. 1998. Crossability of wild species of *Oryza* with *O. sativa* cvs. PR 106 and Pusa Basmati 1 for transfer of bacterial leaf blight resistance through interspecific hybridisation. *The Journal of Agricultural Science* **130**(4): 423–30.
- Li J Q, Lu Y G, Feng J H, Zhao X and Liu X D. 2007. The crossability and F₁ hybrid fertility between *Oryza sativa* and other AA genome species. *Journal of Plant Resources* 8: 1–6.
- Lu B R, Naredo M E B, Juliano A B and Jackson M T. 2003. Genomic relationships of the AA genome *Oryza* species. *Advances in Rice Genetics* **2**: 118–21.
- Niruntrayakul S, Rerkasem B and Jamjod S. 2009. Crossability between cultivated rice (*Oryza sativa*) and common wild rice (*O. rufipogon*) and characterization of F1 and F2 populations.

- Sci Asia 35: 161-69.
- Prakash K S, Krishnamurthy K, Panchal Y C and Prakash B G. 1988. Production practices for ratoon rice in Tungabhadra River Project [Karnataka, India]. (*In*) Workshop on Rice Ratooning, IRRI, Bangalore (India), 21–25 Apr 1986.
- Sacks E J, Dhanapala M P, Tao D Y, Cruz M S and Sallan R. 2006. Breeding for perennial growth and fertility in an *Oryza sativa/O. longistaminata* population. *Field Crops Research* **95**(1): 39–48.
- Xu X, Meng Q L, Geng M F, Ren N N, Zhou L, Du Y S and Ge S. 2020. Divergence in flowering time is a major component contributing to reproductive isolation between two wild rice species (*Oryza rufipogon* and *O. nivara*). Science China Life Sciences 63(11): 1714–24.