Changes in soil organic carbon pools after 15 years of Conservation Agriculture in rice (*Oryza sativa*)-wheat (*Triticum aestivum*) cropping system of eastern Indo-Gangetic plains

D M MAHALA¹, M C MEENA²*, B S DWIVEDI³, S P DATTA⁴, ABIR DEY⁵, DEBARUP DAS², C M PARIHAR², R K YADAV³, AMRESHT CHAUDHARY⁶, R K JAT⁷, K M CHOUDHARY⁸, M K GATHALA⁹ and M L JAT¹⁰

ICAR-Indian Agricultural Research Institute, New Delhi 110 012, India

Received: 5 May 2023; Accepted: 26 May 2023

ABSTRACT

The present study was carried out at Dr. Rajendra Prasad Central Agricultural University, Samastipur, Bihar during 2021–2023 to focus on examining alterations in SOC pools resulting from conservation agriculture (CA) practices in R-W system in the eastern IGP, following the collection of soil samples from a long-term trial that was initiated in rainy (kharif) season 2006. The trial included eight combinations, namely: conventional tilled rice (*Oryza sativa* L.) and wheat (*Triticum aestivum* L.) (CTR-CTW); CT rice and zero till wheat (CTR-ZTW); direct seeded rice (DSR) and wheat on permanent raised beds (PBDSR-PBW); ZTDSR and CT Wheat (ZTDSR-CTW); ZTDSR and ZT wheat without residue (ZTDSR-ZTW -R); ZTDSR-ZT wheat with residue (ZTDSR-ZTW +R); unpuddled transplanted rice-ZTW (UpTR-ZTW) and ZTDSR-sesbania brown manure-ZTW (ZTDSR-S-ZTW). Results revealed that implementing zero tillage (ZT) combined with residue retention in rice and wheat cultivation led to enhanced levels of soil organic carbon (SOC) across all four fractions, namely very labile (CVL), labile (CL), less labile (CLL), and non-labile (CNL), in comparison to the continuous and rotational tillage practices. The tillage and residue management options significantly affected the lability index (LI) and C pool index (CPI), with zero-tillage and residue retention leading to lower LI and higher CPI values. The management practices significantly affected the C management index (CMI), with zero-tillage and residue retention showing the highest CMI values. Findings showed the potential of CA practices for enhancing soil C quality as well as C sequestration in soil of the Eastern IGP of India.

Keywords: Carbon management index, Conservation agriculture, Soil organic carbon fractions, Zero-till

It is widely accepted that soil organic carbon (SOC) is a crucial indicator of soil quality, as it plays an important role in sustaining soil health and meet the nutritional requirements of the plants (Lal 2004, Sainju et al. 2017, Morris et al. 2018). In recent times, the importance of SOC in climate change mitigation has increased due to the fact that soils store a significant amount of terrestrial carbon, which is twice that of the atmosphere. As much as 24% of global CO₂ emissions can be attributed to agriculture, emphasizing the increasing importance of finding solutions that decrease emissions and sequester carbon in soil (IPCC 2014).

The adoption of conservation agriculture (CA), which involves limiting soil disturbance and preserving surface residue, has been proven to have a significant positive impact on the sequestration of SOC (Parihar et al. 2018, Dey et al. 2020). It is crucial to understand the dynamics of sequestrated SOC, given the impact that management practices can have on the SOC pools. The quantitative measurements of total SOC alone may not be sufficient to fully understand the impact of management practices; thus, SOC is sub-divided into different fractions/pools, i.e. labile or active pool and recalcitrant or passive pool. The proportional distribution of these pools in soil determines soil C quality (Chan et al. 2001).

Blair et al. (1995) proposed C management index (CMI) as an integrated approach to evaluate the quality of C in soil management systems. By considering both labile
C and total SOC, it offers a useful metric for assessing soil C modifications and sequestration resulting from the implementation of management practices (Hazra et al. 2018). The assessment of soil quality in management systems in north-western IGP has been successfully carried out using this index (Das et al. 2016). However, studies using this index in the eastern IGP are scarce. This study aims to analyze the active and passive pools of SOC and assess soil quality using the CMI under different conservation agriculture practices in the rice-wheat cropping system on a calcareous soil of the eastern IGP. In this study, we hypothesized that the reduction of tillage intensity and the incorporation of crop residues into the field would lead to an increase in all oxidizable organic C components and a consequent enhancement of the soil CMI.

MATERIALS AND METHODS

The present experiment was conducted at the experimental farm of the Dr. Rajendra Prasad Central Agricultural University, Samastipur, Bihar during 2021–23. The dominant climate in this area is a subtropical, with 70% of its average annual precipitation of 1350 mm occurring between July and September. Across the year, the range of the average monthly maximum and minimum temperatures falls between 23.8–36.9°C and 9.1–27.3°C, respectively. The soil falls under the Typic Calciorthent classification in the USDA soil taxonomy due to its calcareous composition (Soil Survey Staff 1975). At the start of the experiment, the soil of the experiment contained an average SOC content of 6.8 g/kg, and pH was 8.6.

Treatments, experimental design, and crop management: In the rainy (kharif) season of 2006, a long-term experiment was undertaken to investigate the effect of CA in a rice-wheat rotation. The testing was conducted on the following eight combinations of tillage, crop establishment, and residue management practices. CTR–CTW, Conventionally transplanted rice-conventional tilled wheat; CTR–ZTW, Conventionally transplanted rice-zero tilled wheat; PBDSR–PBW, direct seeded rice on permanent beds-zero tilled wheat on permanent beds; ZTDSR–CTW, zero-tilled direct seeded rice-conventional tilled wheat; ZTDSR–ZTW–R, zero-tilled direct seeded rice-zero tilled wheat with all residue removed; ZTDSR–ZTW+R, zero-tilled direct seeded rice-zero tilled wheat with residue retained of both crops; UpTR-ZTW, unpuddled transplanted rice-zero tilled wheat; and ZTDSR-S-ZTW, zero-tilled direct seeded rice-sesbania brown manuring-zero tilled wheat. The experiment was conducted using a completely randomized block design with three replications. Both the rice and wheat crops were supplied with recommended dose of N, P and K fertilizers and irrigation as and when required. The crop management practices for each treatment are thoroughly described by Jat et al. (2014).

Soil sampling and analysis: After 15 years of experimentation, the soil samples were collected from five places in each plot at three depths (0–5, 5–15, and 15–30 cm). Samples were composited for each plot, air-dried, ground, and passed through a 250 μm sieve before being placed in plastic bags. Total C was analyzed using dry combustion in a CHNS-O elemental analyzer (EuroVector, EA3000). Soil samples were subjected to dilute HCl digestion, and the remaining HCl was titrated with dilute NaOH to determine the amount of total inorganic carbon (SIC) present. The total organic carbon (TOC) content was then calculated by subtracting the SIC concentration from the total carbon concentration.

The study was conducted to determine the different fractions of SOC, we used the Modified Walkley and Black Method (Chan et al. 2001) and treated the soil samples with concentrated sulphuric acid (H2SO4) at three different ratios: 0.5:1, 1:1, and 2:1, corresponding to acid strengths of 12 N, 18 N, and 24 N H2SO4, respectively. Through the use of acids of different strengths for oxidation, soil organic C can be separated into four distinct fractions based on decreasing oxidizability. The calculation for each fraction is as follows:

- The very labile C (C1) fraction, consisting of highly labile carbon, was oxidized using 12 N H2SO4.
- The labile C (C2) fraction is equal to the difference between the C oxidized under 18 N H2SO4 and the oxidizable C under 12 N H2SO4.
- The less-labile C (C3) fraction is equal to the difference between the C oxidized under 24 N H2SO4 and the oxidized C under 18 N H2SO4.
- While determining the non-labile C (C4) fraction, the amount of C that is oxidized under 24 N H2SO4 is subtracted from the total organic C.

By using the four fractions described above, we can calculate the active and passive C pools, which are indicative of the soil’s carbon oxidizability. The active carbon (C) pool comprises CVL and CL, representing the labile and easily oxidizable portion, whereas the passive C pool includes CLL and CNL, which are recalcitrant and less reactive, and require more effort to extract and oxidize.

The lability index (LI), carbon pool index (CPI), and carbon management index (CMI) were calculated according to the below-mentioned equations (Sahoo et al. 2019).

\[
LI = \frac{L_{\text{sample soil}}}{L_{\text{reference soil}}}
\]

\[
\text{Lability of carbon (L)} = \frac{C_{\text{CLV}} + C_{\text{L}}}{C_{\text{CLL}} + C_{\text{NL}}}
\]

\[
\text{CPI} = \frac{\text{Sample total SOC}}{\text{Reference total SOC}}
\]

\[
\text{CMI} = LI \times CPI \times 100
\]

Statistical analysis: One-way analysis of variance (ANOVA) was used to compare the impact of various treatments on SOC fractions and different indices, including LI and CMI. Post-hoc analysis was performed using Tukey’s Honest Significant Difference (HSD) test for randomized complete block design (RCBD) to compare means. The
RESULTS AND DISCUSSION

Active carbon pools: Active pools of soil C expressed significant variation with respect to different tillage, crop establishment, and residue management options at different depths (Table 1). Zero-tillage in both the crops, i.e. rice and wheat (PBDSR-PBW, ZTDSR-ZTW-R, ZTDSR-ZTW+R and ZTDSR+S-ZTW) improved the very labile fraction of C (C_{VL}) in both rice and wheat crops compared to continuous tillage (CTR) and rotational tillage (ZTDSR-CTW, CTR-ZTW). Residue retention along with zero-tillage (ZTDSR-ZTW+R) and inclusion of sesbania (ZTDSR+S-ZTW) had the highest C_{VL} values (5.30 and 5.31 g/kg) at 0-5 cm soil depth, with about 100% increase in C_{VL} pools over CTR-CTW. Puddling of rice leads to the lowest C_{VL} values in CTR-CTW and CTR-ZTW treatments (2.65 and 2.87 g/kg, respectively). C_{VL} is an easily decomposable fraction of carbon that provides essential nutrients to plants and serves as an early indicator for comparing soil management (Hazra et al. 2018). Differences in the C_{VL} pool are associated with organic residue supply in the soil. Long-term zero-tillage treatments increase soil porosity and microbial activity, resulting in cooler and wetter soils with more labile C pools. Reduced tillage systems have been shown to have higher active C pools compared to more intensive tillage practices (Dey et al. 2020, Tigga et al. 2020).

The C_{VL} pool also showed a similar effect, with rice puddling and transplanting (CTR-CTW and CTR-ZTW) decreased the labile soil C pool (0.98 and 1.38 g/kg, respectively) (Table 1). Keeping the previous crop residue (PBDSR-PBW and ZTDSR-ZTW+R) on the soil surface significantly (P<0.05) improved the labile pool at 0–5 cm depth. At 5–15 and 15–30 cm soil depth ZTDSR-ZTW+R and inclusion of sesbania (ZTDSR+S-ZTW) significantly (P<0.05) improved the CL content and was at par with each other. C_{VL} and C_{L} pool sizes decreased with increasing soil depth across all treatments. Das et al. (2016) and Dey et al. (2020) also observed a pronounced reduction in levels of active C pool with increase in depth. Conservation agriculture practices help in SOC build-up through less mechanical disturbance, surface-retained crop residues (Parihar et al. 2018, 2019), higher plant biomass production (Jat et al. 2014), better soil hydro-physical conditions (Patra et al. 2023). Reintroducing plant-derived C into the soil increases the concentration of active C fractions, stimulating soil microorganisms and providing mineral nutrients for plant growth, leading to more C returned to the soil and an active soil C pool (Ghosh et al. 2016).

Passive carbon pools: Zero-tillage with residue retention on flat soil surface (ZTDSR-ZTW+R) and on raised beds (PBDSR-PBW) significantly improved C_{LL} (4.33 and 3.74 g/kg, respectively) at 0–5 cm depth, by 386% and 320% compared to conventionally managed systems (CTR-CTW) (Table 2). Puddled rice (CTR-CTW and CTR-ZTW) reduced soil C at 5–15 and 15–30 cm layers.

Zero-tillage with residue retention had the highest C_{NL} pool size (6.25 g/kg) at 0–5 cm depth. At 5–15 and 15–30 soil depths, CTR-CTW had the lowest C_{NL} pool size (0.92 and 0.97 g/kg, respectively). Conservation tillage (zero-tillage) increased C stabilization in the passive pool (C_{LL} and C_{NL}). C mineralization leads to more resistant C compounds which are less likely to oxidize (Singh et al. 2005). Partially decomposed plant material can also contribute to an apparent increase in passive C pool by forming mineral-humus complexes that protect it from microbial activity and slow decomposition. Straw residue's higher content of less oxidizable polysaccharide and lignin effectively improves the recalcitrant C pool, which persists in the soil for a longer period.

The distribution of active and passive pools is presented in Fig 1. The rice puddling and conventional tillage in wheat (CTR-CTW) had a higher percentage of active pools (61.1%) at 0–5 cm soil layer compared to the zero-tilled and residue retained plots (ZTDSR-ZTW+R) which had 46.5% active pools. The ZTDSR-ZTW+R treatment recorded the lowest percentage of active C pools at 15–30 cm soil depth (39.2%) among all the treatments. Though, the contribution of active pools to total SOC (61.1%) was significantly higher compared to passive pool (39%).

Table 1 Impact of different tillage and residue management methods on very labile (C_{VL}) and labile (C_{L}) pools (g/kg) of SOC

<table>
<thead>
<tr>
<th>Treatment</th>
<th>0–5 cm</th>
<th>5–15 cm</th>
<th>15–30 cm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C_{VL}</td>
<td>C_{L}</td>
<td>C_{VL}</td>
</tr>
<tr>
<td>CTR-CTW</td>
<td>2.65±0.10c</td>
<td>0.98±0.09e</td>
<td>1.46±0.04c</td>
</tr>
<tr>
<td>CTR-ZTW</td>
<td>2.87±0.14c</td>
<td>1.38±0.08de</td>
<td>1.73±0.14bc</td>
</tr>
<tr>
<td>PBDSR-PBW</td>
<td>4.35±0.45ab</td>
<td>3.10±0.24ab</td>
<td>2.27±0.12ab</td>
</tr>
<tr>
<td>ZTDSR-CTW</td>
<td>3.56±0.22bc</td>
<td>2.76±0.24bc</td>
<td>2.07±0.13bc</td>
</tr>
<tr>
<td>ZTDSR-ZTW-R</td>
<td>4.64±0.42ab</td>
<td>2.70±0.08bc</td>
<td>2.17±0.05abc</td>
</tr>
<tr>
<td>ZTDSR-ZTW+R</td>
<td>5.30±0.18a</td>
<td>3.82±0.20a</td>
<td>2.91±0.17a</td>
</tr>
<tr>
<td>UpTR-ZTW</td>
<td>3.47±0.18bc</td>
<td>2.45±0.08bc</td>
<td>2.06±0.14bc</td>
</tr>
<tr>
<td>ZTDSR+S-ZTW</td>
<td>5.31±0.32a</td>
<td>2.15±0.13cd</td>
<td>2.22±0.32abc</td>
</tr>
</tbody>
</table>

Treatment details are given under Materials and Methods. The mean values ± standard error at the same soil depth, indicated by the same lowercase letter, are not significantly different (P>0.05) according to Tukey's HSD test.
higher in a conventionally managed system (CTR-CTW). However, in absolute terms, the active and passive pools of SOC are larger (9.18 and 10.6 g/kg) in zero-tilled and surface residue retained treatments (ZTDSR-ZTW+R). The intensive tillage disrupts the soil aggregates and exposes the protected C for rapid oxidation through microbial actions (Parihar et al. 2018). While surface retained residue in CA decompose more slowly than incorporated residues in soil. Thus provide a slow but steady source of SOC to the soil. Dey et al. (2020) also indicated that all oxidizable components of SOC were improved in CA compared to conventional farming in a rice-wheat system.

Carbon management index and its components: The LI significantly changed in 0–5 cm soil layer in response to the various tillage and residue management options (Fig 2a). Systems including puddling of rice with continuous tillage (CTR-CTW) or rotational tillage (CTR-CTW) had the significantly (P<0.05) higher LI values compared with the rest of treatments having reduced form of tillage. At 15–30 cm soil layer, zero-tillage along with residue retention (ZTDSR-ZTW+R; 0.46) and brown manuring (ZTDSR-S-ZTW; 0.50) had the significantly lower (P<0.05) LI values compared to the rest of the treatments, which showed no significant effect of residue management and tillage higher in a conventionally managed system (CTR-CTW). However, in absolute terms, the active and passive pools of SOC are larger (9.18 and 10.6 g/kg) in zero-tilled and surface residue retained treatments (ZTDSR-ZTW+R). The intensive tillage disrupts the soil aggregates and exposes the protected C for rapid oxidation through microbial actions (Parihar et al. 2018). While surface retained residue in CA decompose more slowly than incorporated residues in soil. Thus provide a slow but steady source of SOC to the soil. Dey et al. (2020) also indicated that all oxidizable components of SOC were improved in CA compared to conventional farming in a rice-wheat system.

Table 2 Impact of different tillage, crop establishment, and residue management methods on less labile (C_{LL}) and non-labile (C_{NL}) pools (g/kg) of SOC in the 0–5, 5–15 and 15–30 cm soil layers

<table>
<thead>
<tr>
<th>Treatments</th>
<th>0–5 cm</th>
<th>5–15 cm</th>
<th>15–30 cm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C<sub>LL</sub></td>
<td>C<sub>NL</sub></td>
<td>C<sub>LL</sub></td>
</tr>
<tr>
<td>CTR-CTW</td>
<td>0.89±0.02c</td>
<td>1.43±0.11e</td>
<td>0.31±0.03e</td>
</tr>
<tr>
<td>CTR-ZTW</td>
<td>0.86±0.08c</td>
<td>1.61±0.12c</td>
<td>0.81±0.08de</td>
</tr>
<tr>
<td>PBDSR-PBW</td>
<td>2.22±0.07b</td>
<td>5.01±0.30b</td>
<td>1.39±0.08bc</td>
</tr>
<tr>
<td>ZTDSR-CTW</td>
<td>1.90±0.11b</td>
<td>3.36±0.17cd</td>
<td>1.14±0.17cd</td>
</tr>
<tr>
<td>ZTDSR-ZTW-R</td>
<td>2.41±0.15b</td>
<td>4.40±0.26bc</td>
<td>1.70±0.14ab</td>
</tr>
<tr>
<td>ZTDSR-ZTW+R</td>
<td>4.33±0.22a</td>
<td>6.25±0.39a</td>
<td>1.74±0.06ab</td>
</tr>
<tr>
<td>UpTR-ZTW</td>
<td>2.40±0.12b</td>
<td>3.10±0.21d</td>
<td>1.61±0.12abc</td>
</tr>
<tr>
<td>ZTDSR+S-ZTW</td>
<td>3.74±0.23a</td>
<td>4.54±0.27bc</td>
<td>1.96±0.10a</td>
</tr>
</tbody>
</table>

Treatment details are given under Materials and Methods. The mean values ± standard error at the same soil depth, indicated by the same lowercase letter, are not significantly different (P>0.05) according to Tukey’s HSD test.
However, a significantly (P<0.05) higher CPI was observed in ZTDSR-ZTW+R treatment (3.32) followed by ZTDSR-S-ZTW (2.65), PBDSR-PBW (2.47) and ZTDSR-ZTW-R (2.38) at 0–5 cm soil depth (Fig 2b). The CPI indicates the buildup of C in soil concerning reference C (in this study C present in CTR-CTW treatment). The puddling of rice along with conventionally tilled wheat (CTR-CTW) or zero-tilled wheat (CTR-ZTW) had the lowest CPI values at all three soil layers. Surface residue retention along with zero-tillage in both the crops (ZTDSR-ZTW+R) increased the CPI values by 232%, 166% and 140% at in comparison to the CTR-CTW at 0–5, 5–15 and 15–30 cm soil depths. The rest of the treatments had the intermediate effects on the CPI values. A higher CPI value indicates a more significant accumulation of SOC in the soil compared to a lower CPI value (Parihar et al. 2018). This is due to the greater supply of carbon through crop residues or manuring. The buildup of SOC is influenced by C inputs and mineralization rate (Lal 2018). Physical protection of SOC from microbial decomposition through aggregation under CA practices (Six et al. 2000) could have leads to higher CPI values than conventional systems.

In their study, Blair et al. (1995) highlighted the relevance of the CMI for evaluating soil quality and the potential for carbon sequestration. This index is widely used to compare and assess different management practices in promoting soil C buildup. The CMI was significantly affected by tillage, residue, and crop establishment methods, except at 15–30 cm soil layer (Fig 2c). Zero-tillage in rice and wheat with residue retention on the soil surface led to the highest CMI values (184 and 164) at 0–5 and 5–15 cm layers. Soils of PBDSR-PBW, ZTDSR-ZTW-R and ZTDSR-S-ZTW, and ZTDSR-CTW had 62%, 63%, 51% and 49% higher CMI values at 0–5 cm soil layer in comparison to CTR-CTW. The increased values of CMI in these treatments may be ascribed to the greater CPI values, pointing towards the accumulation of total SOC. However, the positive effect of zero-tillage adoption diminishes with increasing soil depth, and CMI...
variation at 15–30 cm depth was not significant (Fig 2c). The adoption of management practices or cropping systems that lead to higher CMI values indicate their effectiveness in improving soil quality and increasing SOC (Parihar et al. 2019). Overall, the results highlighted that the zero-tillage along with residue return is a promising way of improving CMI value and soil quality.

The study found that adopting zero-tillage and residue retention in rice-wheat systems can improve soil health and increase carbon pools, both active and passive, compared with conventional management practices. Tillage and residue management also affected the lability and carbon pool index, with zero-tillage and residue retention showing higher carbon pool index and carbon management index values. These practices can enhance soil carbon quality and promote carbon sequestration in the eastern Indo-Gangetic plains of India and other similar eco-regions worldwide.

ACKNOWLEDGMENT

The author is grateful to the Council of Scientific and Industrial Research (CSIR) for their financial support through the Junior Research Fellowship. The project was supported by the Indian Council of Agricultural Research (ICAR) under Window 3 funding to International Maize and Wheat Improvement Center (CIMMYT).

REFERENCES

