Impact of different storage containers on seed quality parameters of eggplant (Solanum melongena) during storage

NISHA¹, AXAY BHUKER¹, NIRMAL SINGH^{1*}, GAGANDEEP SINGH¹, AKASH¹, SOURABH², MUKESH KUMAR³ and AJAY KUMAR⁴

Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana 125 004, India

Received: 15 June 2023; Accepted: 27 July 2023

ABSTRACT

The present study was carried out at Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana to assess the impact of natural ageing and different storage containers on eggplant (*Solanum melongena* L.) seed quality during the 2020–21 and 2021–22 winter (*rabi*) seasons. Genetically pure seeds were used and stored in cloth and polythene bags. Seed quality parameters (germination, seedling length, seedling dry weight, and seed vigour) were monitored at various intervals (0, 3, 6, 9, 12, 15, 18 months). Freshly harvested seeds (control) exhibited superior quality, with higher germination rates, longer seedlings, greater seedling dry weight, and improved vigour indices compared to stored seeds over 18 months. Seed quality deteriorated with longer storage, reaching its lowest point at 18 months. Among storage containers, cloth bags showed a faster decline in seed quality compared to polythene bags (>700 gauge). In field experiments, one-year stored seeds from polythene bags outperformed those from cloth bags in terms of seed establishment percentage, mean emergence time, and germination speed. In conclusion, polythene bags maintained acceptable seed germination (meeting IMSCS standards) for up to 15 months, while cloth bags maintained it for up to 12 months. Therefore, polythene bags are a better choice for preserving eggplant seed quality during storage, particularly for longer durations.

Keywords: Germination percentage, Seed, Storage container, Vigour index

Eggplant (*Solanum melongena* L.) is a vital vegetable crop in India, contributing 9% of the nation's total vegetable production. While it thrives in tropical regions, it's primarily grown during the warm season in temperate areas. Asia, China, India, and Turkey are the main producers, accounting for 53, 28, and 4% of global production, respectively (Daunay *et al.* 2001). Eggplant's popularity has risen due to its appealing fruit characteristics, but its productivity remains relatively low.

Seed quality is crucial for successful crop production, encompassing germination capacity, seedling vigour, and overall plant performance (Bewley and Black 2020). Seed quality naturally degrades over time, resulting in reduced germination rates, weaker seedlings, and lower crop yields (Smith *et al.* 2017, Sunil *et al.* 2021). Practices like organic farming, integrated nutrition management, and high-quality

¹Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana; ²ICAR-Central Arid Zone Research Institute, Jodhpur, Rajasthan; ³Bhagwant University, Ajmer, Rajasthan; ⁴Krishi Vigyan Kendra, Jhajjar (Chaudhary Charan Singh Haryana Agricultural University, Hisar), Haryana. *Corresponding author email: nirmalsingh@hau.ac.in

hybrid seeds are essential to maintain productivity. Seed ageing, associated with irreversible quality degradation, is a significant concern (Kumar 2012). Prolonged seed storage leads to deterioration, diminishing both vigour and viability (Bordolui *et al.* 2015).

Proper storage containers are crucial to preserve seed quality, alongside natural ageing. Different containers vary in their ability to maintain optimal storage conditions, such as temperature, humidity, and air circulation. Inadequate storage can worsen seed deterioration (Teixeira *et al.* 2018). During storage, factors like storage pests and microflora lead to a decline in viability and vigour, with insects and fungi causing significant damage, resulting in seed degeneration and loss of storage capacity (Kumar *et al.* 2008). Seed deterioration during storage involves complex physiological and biochemical changes that reduce germination potential.

Appropriate packaging materials, like moisture-resistant containers, play a crucial role in extending seed storability by preventing moisture exchange with the surrounding air. Employing suitable storage containers and durations effectively mitigates seed deterioration, ensuring favourable germination and robust seedling growth (Rao *et al.* 2006, Chakraborty *et al.* 2020). Airtight containers like polythene bags and gunny bags lined with polythene, with or without

a desiccant, are effective options for maintaining seed quality over time (Vijayalakshmi and Malabasari 2018). The experiment was carried out with the objective of studying the impact of different storage containers on seed quality parameters of eggplant during storage.

MATERIALS AND METHODS

The present study was carried out at the laboratory and experimental area of Department of Seed Science and Technology, Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana to assess the effect of natural ageing and various storage containers on seed quality parameters of eggplant during 2020–21 and 2021–22.

Seeds of eggplant (H-8) having germination per cent more than 70% which is minimum limit of germination per cent according to Indian Minimum Seed Certification Standard (IMSCS) were collected from the Department of Vegetable Science, Chaudhary Charan Singh Haryana Agricultural University, Hisar. Two containers, viz. cloth bag (C_1) and >700-gauge polythene bags (C_2) were used. Seeds were stored in these containers in ambient conditions (Supplementary Table 1).

Observations were recorded on seed quality parameters including seed germination (%), seedling length (cm), seedling dry weight (mg), vigour index-I and vigour index-II. The standard germination test, seedling length test, and vigour index assessment were carried out following established protocols. The obtained results were subjected to statistical analysis (Table 1 and 2). A factorial Randomized Block Design was employed, wherein one hundred seeds of each crop stored in polythene and cloth bag containers were sown. Field observations were meticulously recorded to ascertain the impact of different storage containers on seed performance. The acquired data was then subjected to statistical analysis (Table 3). Data analysis was done with help of OPSTAT software (Sheoran *et al.* 1998).

Standard germination (%): In three replicates, one hundred seeds of both crop seeds were placed in between sufficiently moistened rolled germination papers (BP) separately and kept at 25°C in seed germinator. The first count was taken on the 7th day and the final count on the 14th day. Only normal seedlings were considered to calculate total germination per cent (ISTA 2003).

Seedling length (cm): At the time of the final count, 10 normal seedlings were selected at random from each replication and their length was measured in centimeters. These seedlings' average length was calculated.

Seedling dry weight (mg): Ten normal seedlings which were used for the measurement of seedling length were also used for seedling dry weight measurement. Seedlings were dried in a hot air oven at 80°C for 48 h, removed from the oven, and allowed to cool in desiccators for 30 min before weighing on an electronic balance. The average weight of dried seedlings from each replication was calculated and expressed in milligrams.

Seed vigour indices: Seedling vigour indices were calculated by using the formula suggested by Abdul-Baki

and Anderson (1973) as follows:

Vigour index-I = Standard germination (%) × Average seedling length (cm)

Vigour index-II = Standard germination (%) × Average seedling dry weight (mg)

Seedling emergence index (SEI): In the well-prepared field, the line sowing of 100 seeds in three replications was done. The number of seedlings that emerged was counted daily up to the final seedling establishment. The seedling emergence index was calculated using a formula suggested by Maguire (1962).

Seedling emergence index (SEI) =

 $\frac{\text{No. of seedlings emerged}}{\text{Day of the first count}} \,\, + \ldots + \,\, \frac{\text{No. of seedlings emerged}}{\text{Day of final count}}$

Seedling establishment (%): When the seedling emergence was accomplished or there was no further increase in total seedling emergence, the seedling establishment was evaluated by counting the total number of seedlings (up to 15 days).

Mean emergence time (MET): The mean emergence time was calculated for each treatment combination using the formula cited by Ellis and Roberts (1977).

$$MET = \frac{\Sigma nt}{\Sigma n}$$

Where, n, number of seeds newly germinated at the time (t); t, days from sowing; Σn , Final emergence of seedlings.

RESULTS AND DISCUSSION

This study aimed to investigate the impact of different seed storage containers on seed storability at ambient conditions. The findings of the research unveiled that moisture impermeable containers, (polythene bags with a gauge exceeding 700) exhibited superior preservation of seed viability and vigour compared to moisture-permeable containers (cloth bags) when seeds were stored at low moisture levels in ambient conditions. Significantly, the germination rate of seeds stored in polythene bags consistently outperformed seeds stored in cloth bags over the 18-month storage duration. The germination percentage of seeds stored in cloth bags consistently exceeded the minimum seed certification standards set in India for duration of up to 12 months. Conversely, seeds stored in polythene bags maintained germination percentages above the same standards for a longer period, specifically up to 15 months. Notably, seeds stored in cloth bags exhibited the most significant decline in germination percentage, decreasing from an initial value of 84.67–60.00%. These findings underscore the crucial role of selecting appropriate seed storage containers in preserving seed quality throughout the storage period. Even after nine months of storage, Baldaniya et al. (2018) found the same thing to be true in onion. The germination potential was maintained in the plastic bag at a level that was higher than the minimum seed certification standards required by India (70%).

Table 1 Effect of containers on seed germination per cent, seedling length (cm) and seedling dry weight (mg) of eggplant during storage

Parameters →	Germination (%)			Seedling length (cm)			Seedling dry weight (mg)		
Containers (C) \rightarrow Storage period (P) \downarrow	Cloth bag	Polythene bag	Mean	Cloth bag	Polythene bag	Mean	Cloth bag	Polythene bag	Mean
0 month	84.67 (66.92)	84.67 (66.92)	84.67 (66.92)	13.87	13.87	13.87	26.87	26.87	26.87
3 months	82.33 (65.12)	83.00 (65.62)	82.67 (65.37)	13.57	13.73	13.65	24.20	26.35	25.28
6 months	78.33 (62.24)	80.00 (63.41)	79.17 (62.82)	12.38	13.56	12.96	22.28	25.17	23.72
9 months	74.00 (59.32)	78.33 (62.24)	76.17 (60.78)	11.37	13.14	12.26	20.77	22.77	21.77
12 months	71.33 (57.61)	77.00 (61.32)	74.17 (59.46)	10.50	12.23	11.37	18.73	20.57	19.65
15 months	67.00 (54.92)	72.33 (58.24)	69.67 (56.58)	8.67	10.30	9.48	15.63	18.97	17.30
18 months	60.00 (50.75)	64.00 (53.11)	62.00 (51.93)	6.73	8.10	7.42	13.57	17.07	15.32
Mean	73.95 (59.55)	77.05 (61.55)		11.01	12.13		20.29	22.61	
CD (P=0.5)	C=0.519, P=0.971, C×P=1.373			C=0.245, P=0.459, C×P=0.649			C=0.363, P=0.679, C×P=0.960		
SEm±	C=0.178, P=0.333, C×P=0.471			C=0.084, P=0.158, C×P=0.223			C=0.125, P=0.233, C×P=0.330		

^{*}Values in parenthesis are angular transformed.

Similar findings were also reported by Adam *et al.* (2018) in cowpea, and Alhamdan *et al.* (2011) in four vegetable crop seeds (tomato, carrot, onion, and cucumber). Kumar *et al.* (2019) in chilli and brinjal seeds suggested that the usage of appropriate packaging material and seed treatment could help prolong the storage life of seeds.

Our investigation unveiled a notable decline in both seedling length and dried weight, attributed to the choice of storage container during the storage period. Specifically, the utilization of polythene bags exhibited a comparatively lesser reduction in seedling length (13.87–8.10 cm) in contrast to cloth bags (13.78–6.73 cm). Similarly, the polythene bag also demonstrated a less decrease in seedling dry weight (26.87–17.07 mg) to cloth bags (13.87–6.73 mg) throughout the duration of storage (Table 1). These findings distinctly emphasize the significant impact of the container type on seedling growth and survivability during storage.

The seed vigour index-I exhibited a lower reduction when stored in polythene bags (1174–486), while a higher reduction was observed in cloth bags (1174–370) throughout the storage period. Similarly, the seed vigour index-II showed a lower reduction in polythene bags (2275–1092) compared to cloth bags (2275–814) (Table 2). These results emphasize the superior performance of seeds stored in polythene bags, attributed to their moisture impervious nature. The imperviousness of polythene bags prevents the movement of moisture vapour from the surrounding environment, thereby slowing down the rate of seed deterioration. The findings of our study align with previous research highlighting the significant influence of storage containers on seed

germination and vigour. Studies conducted by Doijode (2010), Barua *et al.* (2009) and Sharma *et al.* (1998) have reported similar outcomes in terms of significant variations in germination percentage, seedling length and vigour index when seeds were stored in different containers, in chilli, tomato, and brinjal seeds, respectively.

In a study on onion seeds conducted by Baldaniya *et al.* (2018), consistent with our findings, it was observed that even after nine months of storage, seeds stored in plastic bags maintained a germination percentage above the Indian minimum seed certification standard of 70%. Kartoori and Patil (2018) also investigated the effect of different storage containers on storage of onion seeds and reported that polythene bags and aluminium foil were more effective than cloth bags to retain seed quality parameters during seed storage.

Similarly, Kumar *et al.* (2014) observed that polythene bags of 700 gauge were more beneficial than paper bags for storing brinjal seeds in terms of retaining germination percentage and vigour index at the end of 12 months' storage. Quais *et al.* (2013) also reported comparable findings for radish seeds. Therefore, it could be concluded that the choice of storage container can significantly affect seed germination and vigour, with some containers proving more effective than others for particular types of seeds.

The impact of storage containers and storage duration on the speed of emergence index was assessed. Notably, freshly harvested seeds exhibited the highest field emergence index (10.467). After 12 months of storage, the seeds stored in polythene bags showed a higher field emergence

Seed vigour index-II Parameters \rightarrow Seed vigour index-I Containers (C) \rightarrow Cloth bag Polythene bag Mean Cloth bag Polythene bag Mean Storage period (P) ↓ 0 month 1174 1174 1174 2275 2275 2275 3 months 1112 1151 1132 1993 2230 2111 1879 6 months 961 1107 1034 1744 2013 9 months 927 818 1035 1537 1783 1660 12 months 735 926 830 1336 1577 1457 15 months 548 677 612 1047 1372 1210 18 months 370 486 428 814 1092 953 817 936 1535 1763 Mean CD (P=0.5)C=20.9, P=39.2, C×P=55.5 C=31.89, P=59.66, C×P=84.37

Table 2 Effect of containers on seed vigour index I and seed vigour index II of eggplant during storage

Table 3 Effect of containers on speed of emergence index, seedling establishment and mean emergence time of eggplant during storage

C=7.20, P=13.45, C×P=19.06

	Speed of emergence index			Seedling establishment			Mean emergence time		
Containers $(C) \rightarrow$ Storage period $(P) \downarrow$	0 month	12 month	Mean	0 month	12 month	Mean	0 month	12 month	Mean
Cloth bag	10.467	7.687	9.077	78.33 (62.24)	66.33 (54.51)	72.33 (58.38)	9.592	11.343	10.467
Polythene bag	10.467	8.973	9.720	78.33 (62.24)	72.33 (58.24)	75.33 (60.24)	9.592	10.523	10.057
Mean	10.467	8.33		78.33 (62.24)	69.33 (56.38)		9.592	10.933	
CD (P=0.05)	C=0.551, P=0.551, C×P=0.779			C=1.701, P=1.701, C×P=2.406			C=0.269, P=0.269, C×P=0.381		
SEm±	C=0.156, P=0.156, C×P=0.221			C=0.514, P=0.514, C×P=0.726			C=0.076, P=0.076, C×P=0.108		

^{*}Values in parenthesis are angular transformed.

SEm±

index (7.683) compared to the seeds stored in cloth bags. The findings revealed a significant interaction between the storage container and duration, highlighting the variability in the speed of emergence index. The influence of storage containers and storage duration on seedling establishment was evaluated. The seedling establishment percentage was highest in freshly harvested seeds (78.33%), while after 12 months of storage, the polythene bag demonstrated a higher seedling establishment percentage (72.33%) compared to the cloth bag (66.33%). A significant interaction between the storage container and duration indicated variations in seedling establishment. Similar findings were also reported by Ejeta et al. (2018) in the field pea crop, reinforcing the consistency of the results. Effect of containers and storage period on field emergence index, seedling establishment and mean emergence time of eggplant is represented in the Table 3. The mean emergence time was increased with increase in storage period in both polythene and cloth bags. As per the result, maximum mean emergence time (95.92) was recorded in freshly harvested seeds. After 12 months of storage, the less mean emergence time (10.523) was recorded in polythene bags and more (11.343) in cloth bags. After 12 months of storage period showed significant effect on mean emergence time. Similar finding was reported in caper seeds by Pascual *et al.* (2006).

C=10.95, P=20.49, C×P=28.97

Eggplant seeds exhibit a remarkable resilience, maintaining their germination rates for up to one year, even when stored in ambient conditions using either cloth or polythene bags as storage containers. Notably, the germination rates of seeds stored in polythene bags remained consistently high for an extended duration of 15 months. While field parameters such as the speed of emergence index and seedling establishment show a decline with increasing ageing duration, the mean emergence time continues to lengthen. In comparison, seeds stored in polythene bags outperformed those stored in cloth bags in terms of field parameters.

REFERENCES

Abdul-Baki A A and Anderson J D. 1973. Vigour determination in cotton by multiple criteria. *Crop Sciences* **13**: 630–33.

Adam O, Oluwaseyi A, Timothy A, Adetoro B and Beloved O. 2018. Influence of packaging materials on seed germination of cowpea varieties during short term storage. *International Journal of Plant and Soil Science* **21**(5): 1–6.

Alhamdan A M, Alsadon A A, Khalil S O, WahbAllah M A, Nagar M E and Ibrahim A A. 2011. Influence of storage conditions

- on seed quality and longevity of four vegetable crops. *Journal of Agriculture and Environmental Sciences* **11**(3): 353–59.
- Baldaniya N K, Karjule A P and Patel D A. 2018. Effect of containers and duration on seed quality of onion under ambient storage conditions. *Seed Research Journal* **45**(2): 1–4.
- Barua H, Rahman M M and Masud M M. 2009. Effect of storage containers environment at different storage periods on the quality of chilli seed. *International Journal of Sustainable Crop Production* **4**(4): 28–32.
- Bewley J D and Black M. 2020. *Seeds: Physiology of Development, Germination*, 2nd edn. Springer Science and Business Media, New York, US.
- Bordolui S K, Sadhukhan R and Chattopadhyay P. 2015. Participatory evaluation of some folk rice genotypes. *Journal Crop and Weed* 11(2): 59–62.
- Chakraborty A, Bordolui S K, Nandi D and Mahato M K. 2020. Seed deterioration pattern of some china aster during storage. *International Journal of Current Microbiology and Applied Sciences* 9(03): 1499–506.
- Daunay M C, Jullian E and Dauphin F. 2001. Management of eggplant and pepper genetic resources in Europe: Networks are emerging. (In) Proceedings of 11th EUCARPIA Meeting on Genetics and Breeding of Capsicum and Eggplant, Antalya, Turkey. Adana, Turkey, September 1–5.
- Doijode S D. 2010. Effect of packaging and fruit storage on seed viability, vigour and longevity in chilli (*Capsicum annuum* L.). *Vegetable Science* **23**: 36–41.
- Ejeta M, Haile M and Dessalew F. 2018. Comparative evaluation of different packaging materials for field pea seed quality over various storage periods. Results of Seed Technology Research 93–114.
- Ellis R H and Roberts E H. 1977. A revised seed viability monographs for onion. *Seed Research* **5**: 93–103.
- ISTA. 2003. *International Rules for Seed Testing*. International Seed Testing Association, Zurich, Switzerland.
- Kartoori S S and Patil N K. 2018. Effect of packaging materials and moisture content on seed storability of onion. *Journal of Pharmacognosy and Photochemistry* 7(4): 1745–50.
- Kumar S, Gowda B and Kumar S. 2014. Effect of seed pelleting chemicals and storage containers on storability of brinjal (*Solanum melongena* L.). *International Journal of Plant Science* 9(1): 173–79.
- Kumar S, Gowda B and Shekhar S P. 2008. Influence of storage containers and seed pelleting on seed quality in brinjal (*Solanum*

- melongena L.) during storage. Journal of Horticultural Sciences 3(2): 146–49.
- Kumar S. 2012. Cultural approaches for plant disease management. Research and Reviews: Journal of Agricultural Science and Technology 1(2): 12–21.
- Kumar S, Singh S and Jakhar S S. 2019. Effect of seed treatments and containers on chilli and brinjal seed viability. *India Current Journal of Applied Science and Technology* **36**(2): 1–9.
- Maguire J D. 1962. Speed of germination aid in selection and evaluation for seedling emergence and vigour. *Crop Science* **25**(2): 176–77.
- Pascual B, Bautisia A, Lopez Galarza S, Alagarda J and Moroto J V. 2006. Germination behavior after storage of caper seed. *Seed science and Technology* **34**: 151–59.
- Quais M K, Jahan S, Haque M M and Khan M R. 2013. Variation in seed quality of radish preserved in different storage containers. *Bangladesh Journal of Agriculture Research* **38**(3): 545–52.
- Rao R G S, Singh P M and Rai M. 2006. Storability of onion seeds and effects of packaging and storage conditions on viability and vigour. Science Horticulturae 110: 1–6.
- Sharma S N, Goyal K C and Kakralya B L. 1998. Chilli seed storage in relation to variety and container. *Seed Research* **26**: 83–86.
- Sheoran O P, Tonk D S, Kaushik L S, Hasija R C and Pannu R S. 1998. Statistical software package for agricultural research workers. *Recent Advances in Information Theory, Statistics and Computer Applications*, pp. 139–43. Hooda D S and Hasija R C (Eds). Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana.
- Smith J K, Johnson A B and Davis R W. 2017. Influence of natural ageing on the germination capacity of eggplant (*Solanum melongena* L.) seeds. *Journal of Agricultural Science* 25(3): 112–18.
- Sunil M, Raveendra H, Ganeshaiah K N and Vasudeva R. 2021. Influence of natural ageing on seed germination and seedling vigour in eggplant (*Solanum melongena* L.). *International Journal of Vegetable Science* 27(5): 497–07.
- Teixeira C R, Arruda D R, Rodrigues A C and Nogueira E O. 2018. Seed storage and conservation: Current trends and perspectives. Frontiers in Plant Science 9: 1447.
- Vijayalakshmi N and Malabasari T A. 2018. Effect of packaging materials, desiccant on longevity of summer groundnut (*Arachis hypogaea* L.) cv. G2-52 stored both in the form of pod and kernel. *International Journal of Pure and Applied Bioscience* **6**(1): 1661–67.