
82

1College of Basic Sciences and Humanities, Rajendra Prasad 
Central Agricultural University, Samastipur, Bihar; 2Centre for 
Advanced Studies on Climate Change, Rajendra Prasad Central 
Agricultural University, Samastipur, Bihar; 3Post Graduate College 
of Agriculture, Rajendra Prasad Central Agricultural University, 
Samastipur, Bihar. *Corresponding author email: sumeet.singh@
rpcau.ac.in

Indian Journal of Agricultural Sciences 95 (8): 950–956, August 2025/Article
https://doi.org/10.56093/ijas.v95i8.142603

Morpho-molecular diversity analysis of indigenous rice (Oryza sativa) 
germplasm 

SARITA KUMARI1, SATYAN1,  V K SHARMA1, ASHUTOSH SINGH2 and SUMEET KUMAR SINGH3*

Dr. Rajendra Prasad Central Agricultural University, Samastipur, Bihar 848 125, India

Received: 18 September 2023; Accepted: 2 July 2025

ABSTRACT

Wild relatives of crops serve as the reservoir of kingpin genes related to various agronomic traits that play a 
significant role in crop improvement for sustainable agriculture. However, bequeathing these genes from wild rice 
has often been compromised due to climate change and anthropogenic activities posing serious threats to their natural 
habitats, leading to erosion of diversity. The experiment was carried out during 2021–2023 at Dr. Rajendra Prasad 
Central Agricultural University, Samastipur, Bihar aimed to study the utility of ISSR markers for genetic diversity 
analysis, population stratification, and identification of suitable donors for using in breeding programme for yield 
and climate resilience in rice (Oryza sativa L.). The results suggested that ISSR markers are highly informative for 
diversity analysis in rice. These markers showed a high level of polymorphism (85.40%) with high Polymorphic 
Information Content, Marker Index, and Resolving Power. ISSR markers; UBC807, UBC812, and UBC841 were 
identified as highly informative markers for rice. Two subpopulations were identified based on parametric and non-
parametric approaches for population characterization, having the potential to be used in marker-trait association studies. 
Germplasms NKSWR 372, NKSWR 457, NKSWR 126, and NKSWR 245 exhibited superior agronomic performance 
comparatively. These elite genotypes may be utilized as potential donor for various rice improvement programmes. 
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The geographical diversity of India has contributed 
to intricate crop evolution and adaptation in response to 
progressively changing climatic conditions. Wild rice (Oryza 
spp.) growing across all the fifteen agro-climatic zones 
of the country serves as gold mines for genes regulating 
agronomically important traits and wider adaptability against 
biotic and abiotic stresses (Kumari et al. 2017, Kumari 
and Singh 2018). However, there is very limited literature 
available on the genetic background of these local wild rice. 
The collection, multiplication, and conservation of wild rice 
accessions from different agro-climatic zones is inevitable 
work for the nation to combat the future inescapable demand 
of the growing population under climate change regimes. 
Oryza rufipogon and Oryza nivara are the two progenitors of 
Indian cultivated rice (Samal et al. 2018). However, recent 
studies consider them as O. rufipogon Griff. Species complex 

(ORSC) (Kim et al. 2016). More than 300 accessions of 
Oryza rufipogon and 700 accessions of Oryza nivara are 
being conserved at the National Gene Bank. The NIPB, New 
Delhi, has also initiated efforts to collect various accessions 
of ancient rice from different agro-climatic zones (Tripathy 
et al. 2018). The characterization of this collected germplasm 
identified three subgroups based on pSINEs, SSR, and SNP 
markers (Singh et al. 2018, Kumari et al. 2021a). However, 
these marker systems are codominant, highly polymorphic, 
and locus-specific, but they need extensive input and cost 
for the development of locus-specific information in a 
particular species. Thus, a low-cost marker system needs to 
be developed that is highly polymorphic for a species and 
provides multi-locus comparison irrespective of their genetic 
background. Similar systems have been developed for the 
SSR named hypervariable SSR (HvSSR) markers for rice 
that can compare more than 700 rice accessions with only 
33 SSR markers (Singh et al. 2016). The advantage of ISSR 
markers over SSR is that a single ISSR primer binds to a 
number of loci, and genetic polymorphism in the genome of 
unknown species may be observed at a much lower cost. The 
ISSR method was proven especially useful in the Poaceae 
family for the analysis of nearly isogenic lines (Akagi et 
al. 1996) and in the differentiation of rice varieties (Parsons 
et al. 1997). Multi-locus binding also ensures an unbiased 
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comparison of the genome. Thus, the identification of a 
set of ISSR primers with high polymorphism percentage 
and information content will reduce the cost and provide 
an ideal system for genetic diversity analysis. The present 
study was conducted with the intention to examine the role 
of ISSR primers for diversity analysis in rice and identify the 
informative ISSR primers, in addition to the identification 
of genotypes with higher agronomic performance based on 
principal component biplot analysis. 

MATERIALS AND METHODS
Materials: The experiment was carried out during 

2021–2023 at Dr. Rajendra Prasad Central Agricultural 
University, Samastipur, Bihar. A total of 22 diverse wild 
rice accessions were collected from NIPB, New Delhi 
(Supplementary Table 1), and 15 ISSR primers were used 
for the present study (Table 1).

Estimation of morphological variations: The accessions 
were grown in the field during rainy (kharif) season 2022, 
in a randomized block design (RBD) with two replications. 
Standard agronomic practices were performed to raise the 
crop. Agronomically important traits; plant height (PH), 
tiller number (TN), days to 50% flowering (DTF), panicle 
number (PN), panicle length (PL), seed yield/plant (SY), and 
biological yield/plant (BY) were recorded from ten plants/
plot in each replication and mean data were used for the 
analysis (Supplementary Table 2). The variation among the 
genotypes for the mentioned agro-morphological trait was 
estimated through analysis of variance (ANOVA). Principal 
component analysis was done using phenotypic data, and 
their contribution to the phenotypic variance was estimated 
using various packages of R programme.

Estimation of genetic diversity
Genomic DNA isolations: The young leaves (0.1 g) of 

ten different plants of each wild rice accession were collected, 
and DNA was isolated using a modified CTAB-DNA isolation 
method (Doyle and Doyle 1987). The quality and quantity 
of isolated DNA were assessed through 0.8% agarose gel 
electrophoresis and a nanodrop spectrophotometer. An equal 
amount of DNA from each leaf was bulked. 

ISSR genotyping: The isolated DNA from the sample 
was diluted and used for PCR analysis using master mix 
1X concentration of buffer with 0.5 µM concentration of 
ISSR primers, and the PCR reactions were performed. 
The reproducible and consistent bands were only used for 
analysis. Genotyping data were scored as presence (1) and 
absence (0) of the band for each primer binding site that 
is regarded as a locus. The annealing temperatures were 
standardized to meet the number of bands up to 10 loci 
for each ISSR primer. The Resolution power (Rp) (Gilbert 
et al. 1999), Marker Index (MI) (Prevost and Wilkinson 
1999), and Polymorphic Information Content (PIC) (De 
Rick et al. 2001) were calculated for each primer. 

Analysis of population structure: Both the 
phenotyping and genotyping data were used for analysis 
of the population structure of the procured accessions. 

Each primer binding site was considered as a locus, 
and data were scored as presence (1) and absence (0). 
STRUCTURE software with 10000 burn-in and 100000 
MCMC replication with assumed K value; 2–10 and 5 
iterations for each number of K value were used for 
determination of population structure (Pritchard et al. 
2001). 

The optimum number of clusters was estimated 
through both hierarchical and non-hierarchical 
approaches using polymorphic ISSR markers data with 
R-program-based packages. In the hierarchical approach, 
Unweighted-Pair Group Method Arithmetic Average 
(UPGMA) clustering was done with calculated Jaccard’s 
similarity coefficient using NTSYSpc (Rohlf 2000). The 
Non-hierarchical K-mean clustering algorithm was used 
to identify the optimum number of clusters with the sum of 
square function of the Elbow method (Syakur et al. 2018). 
Principal component analysis was done for estimating 
the contribution and correlation among quantitative 
variables and individuals using R stat packages. The 
result of PCA was observed as biplot analysis for the 
individuals and variables.

Estimation of genetic variability: The number of 
subpopulations was identified by STRUCTURE analysis 
with the optimum K value. The STRUCTURE output 
with Q1 and Q2 inferred ancestry of each individual 
was used for the estimation of genetic diversity analysis 
(Supplementary Table 3). Genetic diversity was estimated 
between subpopulations Q1 and Q2 for the gene 
frequency, analysis of molecular variance (AMOVA), 
and Principal coordinate analysis (PCoA) using GenAlex 
software (Pagnotta 2018). 

RESULTS AND DISCUSSION
The crop genetic diversity is the demand of plant 

researchers for identification of novel donors with wider 
adaptability and high yield potential, having novel genes and 
alleles that can be utilized with biotechnological approaches 
(Kumari et al. 2021b, Kumar et al. 2022, Kothari et al. 
2024). The widening of the genetic base is the need for 
breeding climate-resilient cultivars (Rahman et al. 2017, 
Wang et al. 2018). The present study was conducted with 
22 wild rice accessions of seven different states belonging 
to six different agro-climatic zones of India (Supplementary 
Table 1). The choice of a molecular marker is highly crucial 
to identify the level of polymorphism among them and to 
discriminate between two genotypes. A dominant marker 
is the preferred choice for diversity analysis (Nelson and 
Anderson 2013). It does not require sequence information 
to design and provide unbiased comparisons of multiple 
loci of the genome. Among dominant markers, ISSR is 
most preferable (El-Bakatoushi et al. 2018). It has been 
used for diversity analysis, germplasm characterization, 
and population identification in various species due to 
their multilocus and multiallelic characteristics (Tu Anh et 
al. 2018). A total of 15 ISSR primers based on previous 
reports were chosen for the present analysis. The PIC, MI, 
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wheat, 84.8% polymorphism was reported for ISSR (Abou-
Dief et al. 2013). Similarly, in rice, 71% polymorphism 
was reported for African rice (Eltaher et al. 2018), while 
82.96% for rice from south-eastern countries (Moonsap 
et al. 2019). A significantly higher level of polymorphism 
percentage, 85.4% was observed for the present rice 
germplasm collected from six different agro-climatic zones 
of India with the present set of ISSR markers as compared 
to the earlier reports. 

The identification of a number of subpopulations among 
the accessions studied was the prerequisite for understanding 
the genetic diversity and ancestry relationship among 

and Rp parameters were calculated to identify the most 
informative ISSR primer for diversity analysis in rice. It was 
observed that all the chosen sets of markers had PIC value 
>0.1 with average PIC value >0.3 (Table 1). It indicated 
that they were highly polymorphic as per the PIC value for 
dominant markers (Serrote et al. 2020). UBC807, UBC812, 
and UBC841 were highly informative ISSR primers for rice 
based on PIC value with high MI and Rp of markers (Table 1) 
(Serrote et al. 2020). The earlier reports identified UBC810 
(Terzopoulos and Bebeli 2008) and UBC848 (Salazar-
laureles et al. 2015) ISSR markers for fababean. UBC890 
(Kumar et al. 2012), UBC879 (Gautam et al. 2016), and 
UBC818 (Nath et al. 2017) as highly 
informative ISSR markers for sesame, 
chickpea, and green gram, respectively. 
For rice, UBC807 has been reported 
as a highly informative marker for 
diversity analysis in southeastern and 
South African countries (Moonsap et 
al. 2019). UBC841 has been reported 
as a highly informative ISSR marker 
for diversity analysis in Indian rice 
(Dharmaraj et al. 2018). UBC812 has 
been reported for medicinal shrubs as 
a highly informative marker (Alansi 
et al. 2016). The average polymorphic 
percentage for pulses was reported in 
the range of 65% (Black gram), 68% 
(chickpea) to 79% (green gram) for 
ISSR markers (Pakseresht et al. 2013, 
Das et al. 2014, Nath et al. 2017). In 

Table 1  Polymorphic information of studied markers among wild rice accessions

S.no ISSR PRIMERS 5'-3' Sequence Tm (°C) MW (bp) TB PB PP PIC MI Rp
1 PRIMER 1 (CT)8G 43 250-1000 5 4 80 0.20 0.80 1.27
2 PRIMER 2 (CT)8A 43 350-1000 3 3 100 0.34 1.01 1.55
3 PRIMER 3 (AC)8G 45 350-1000 4 3 75 0.29 0.87 2.09
4 PRIMER 4 (TC)8A 43 600-1000 3 2 66.6 0.30 0.60 1.45
5 ISSR13 (GACA)4 43 350-750 4 3 75 0.31 0.93 1.91
6 UBC807 (AG)8T 43 300-900 6 6 100 0.37 2.20 3.18
7 UBC808 (AG)8C 45 300-700 4 3 75 0.20 0.60 1.00
8 UBC810 (GA)8T 45 350-1000 4 4 100 0.37 1.48 2.36
9 UBC812 (GA)8A 43 500-1000 4 4 100 0.44 1.76 2.73
10 UBC818 (CA)8G 43 500-600 2 1 50 0.23 0.23 0.73
11 UBC841 (GA)8CTC 48 400-1000 4 4 100 0.46 1.85 3.09
12 UBC842 (GA)8CTG 43 350-900 5 5 100 0.27 1.33 1.91
13 UBC848 (CA)8AAGG 51 350-500 3 3 100 0.14 0.42 0.45
14 UBC857 (AC)8CTG 51 250-1250 5 4 80 0.33 1.33 2.36
15 UBC866 (CTC)6 52 250-1000 5 4 80 0.37 1.48 3.09
  Average 4 3.5 85.4 0.3 1.12 1.94
  Total 61 53

MW, Molecular weight; TB, Total band; PB, Polymorphic band; PP, Polymorphic percentage; PIC, Polymorphic information content; 
MI, Marker index, Rp, Resolving power.

Fig. 1	 Determination of population structure using STRUCTURE A) Barplot depicting 
the distribution of wild rice accessions among two populations; Q1 and Q2.  
1, NKSWR214; 2, NKSWR177; 3, NKSWR453; 4, NKSWR402; 5, NKSWR310; 
6, NKSWR243; 7, NKSWR190; 8, NKSWR162; 9, NKSWR223; 10, NKSWR117;  
11, NKSWR171; 12, NKSWR457; 13, NKSWR372; 14, NKSWR136;  
15, NKSWR158; 16, NKSWR110; 17, NKSWR207; 18, NKSWR119;  
19, NKSWR168; 20, NKSWR247; 21, NKSWR245 and 22, NKSWR126.
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them and their subsequent implication for marker-trait 
association studies (Eltaher et al. 2018). Both parametric and 
nonparametric test was performed to identify the number of 
subpopulations among them (Alhusain and Hafez 2018). A 
Bayesian model-based STRUCTURE analysis with optimum 
K value indicated the presence of two subpopulations (Fig. 
1 and Supplementary Fig. 1). 

The inferred cluster gave the estimate of the membership 
coefficient of individuals among a given population, called 
inferred ancestry, estimated using allelic divergence. The 
mean value of the inferred cluster of two subpopulations 
around the center showed the perfect partition of individual 
accession between populations. The Fst value gave the 
estimate of the fixation index for alternate alleles in the given 
populations. It was higher for population Q2, which indicated 
its high fixation rate. The genetic diversity of Q1 population 
was higher than Q2 as per the estimate of polymorphic 
percentage loci, different alleles, effective alleles, Shannon 
diversity index, and gene diversity (Table 2). 

The statistical significance of variance between 
populations inferred by STRUCTURE analysis was 
estimated with the partition of molecular variance between 
populations and within populations. A high variation was 
observed within a population (83%) as compared to between 
populations (Table 3). 

The significance of variation was estimated with PhiPT 
value [analogue of fixation index (FST)] that measures 
population differentiation due to genetic structure (Capo-
Chichi et al. 2023). The PhiPT value ranged from 0 (no 
genetic differentiation) to 1 (total genetic differentiation), 
which was used to estimate the extent to which populations 
differ in terms of genetic makeup, especially for the 
dominant markers where information of heterozygous loci 
is lacking (Mokuolu et al. 2024). The PhiPT value was 
0.172 (>0.15) with p<0.001 indicating large significant 
differentiation among populations in rice (Frankham et al. 

2002, Luong et al. 2021). The type of subgroup was also 
analyzed with a non-parametric test using hierarchical (Fig. 
2A) and non-hierarchical clustering methods (Fig. 2B and 
Supplementary Fig. 2). However, two groups were found 
following STRUCTURE output in hierarchical clustering; 
AMOVA, PhiPT analysis, and cluster analysis. But non-
hierarchical clustering grouped them into four groups that 
were similar to the findings of principal coordinate analysis 
(Supplementary Fig. 3) (Syakur et al. 2018). Hierarchical 
and non-hierarchical clustering are the methods of grouping 
the rice accessions for the study of genetic variation and 
the development of improved breeding strategies (Sinaga et 
al. 2025). Hierarchical clustering involves an unsupervised 
model to create clusters in a pre-defined order using top-
down and bottom-up approaches to group similar clusters 
together in a hierarchical manner and develop a tree-like 
structure (Chhabra and Mohapatra 2022, Yu and Hou 2022). 
However, non-hierarchical clustering does not follow and 
develop a tree-like structure; instead, it uses the K-means 
clustering method, where clusters are formed based on 
grouping the accession by breaking and merging the clusters. 
The present study identified two clusters for hierarchical and 
four for non-hierarchical approaches. The clusters number 
showed discrepancy in output by both the approaches but 
closed examination of clustering by Elbow method and 
PCoA showed that the population Q1 was tri-partite by 
non-hierarchal clustering methods; Elbow method-based 
K-mean clustering (Fig. 2B and Supplementary Fig. 2) and 
PCoA (Supplementary Fig. 3). Here, the highest and lowest 
values with the average value are used to develop a centroid 
value and then the distance from the centroid value is used 
to partition between clusters made in such a way that non-
overlapping groups have no hierarchical relationship among 
them (Oti et al. 2021, Ay et al. 2023). The non-hierarchical 
clustering has been used to study the different cultivated 
and wild rice accessions of O. rufipogon and O. nivara for 
their genetic variability (Panda et al. 2021, Mutembei and 
Nyongesa 2024, Singh et al. 2024).

The closed examination of clustering by the Elbow 
method and PCoA showed that the population Q1 was tri-
partite by non-hierarchical clustering methods and PCoA. 
This indicated that both the parametric and non-parametric 

Table 3	 Population statistics based on ISSR using AMOVA

Source of 
variations

Degree of 
freedom

SS MS Est. 
Var.

Percentage 
(%) 

Variance
Among pops 1 28.373 28.373 1.893 17%
Within Pops 20 182.036 9.102 9.102 83%
  Total 21 210.409  10.995 100%
  Stats PhiPT 0.172

P (rand 
>= data)

0.001

SS, Sum of squares; MS, Mean of squares; Est Var, Estimated 
variance.

Table 2	 Comparison of the identified population for Inferred 
ancestry, expected heterozygosity, fixation index (Fst), 
and allelic divergence using STRUCTURE and GenAlex

Features Populations
Population types Q1 Q2
No. of Individuals (N) 8 14
Inferred ancestory 0.402 0.417
Expected heterozygosity 0.417 0.312
Mean Fst (Fixation Index) 0.0081 0.2904
Allele frequency divergence among 
populations

0.04

Number of different allele (Na) 1.770 1.672
Number of effective allele (Ne) 1.543 1.415
Shannon Information Index (I) 0.460 0.373
Diversity (H) 0.313 0.248
Unbiased diversity (Hu) 0.357 0.267
Percentage of polymorphism (PP) 80.33% 70.49%
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analyses were following the STRUCTURE output. Diversity 
analysis and population structure using highly polymorphic 
codominant markers such as SSR and SNPs in various 
studies reported similar population structures for rice in 
the Asian region (Luong et al. 2021).

Assessment of phenotypic variation and genetic 
diversity in wild rice using molecular markers was the prime 
objective of the present study, aimed at identifying the ideal 
genotype with excellent yield contributing traits. ANOVA of 
wild rice accessions showed a significant variation between 
them for different morphological traits (Supplementary 
Table 4 and Supplementary Table 5). Principal component 
biplot analysis (PCBA) was done to identify the phenotypic 
traits with higher variance, the correlation of phenotypic 
variance, and their relationship with wild rice accession 
(Fig. 3A and B). The amount of variance was measured in 

terms of eigenvalue. The first three principal components 
with eigenvalues greater than 1 were taken, which had 
phenotypic variance with a cumulative percentage of 82.25% 
(Supplementary Fig. 4 and Supplementary Table 6) (Kaiser 
1961). An eigenvalue greater than 1 with a phenotypic 
variance of more than 65% was reported for germplasm 
characterization for agronomically important traits in rice 
(Burman et al. 2021). The PCBA showed that PC1 was 
highly contributed by PN, TN, BY, and SY whereas PC2 
was contributed by PH, DTF, and PL (Fig. 3A). The present 
study showed that PN, TN, and BY were major contributing 
traits for discriminating between wild rice accessions. TN 
and PN were highly correlated traits for yield contribution. 
SY was found to be highly correlated with BY, PN, TN, 
PL, and PH (Mvuyekure et al. 2018). The relationship of 
agronomically important traits with germplasm accessions 

was also analyzed with biplot 
analysis (Fig. 3B). 

PCBA revealed that 
germplasm access ions 
NKSWR 372, NKSWR 457, 
NKSWR 126, and NKSWR 
145 might be used as donors 
for seed yield in crop 
improvement programmes 
(Mvuyekure et al. 2018). 
Seed yield in NKSWR 372 
was contributed by higher 
TN, PN, and lower PH (Fig. 
3B), whereas seed yield in 
NKSWR 457 was contributed 
by high PL. Seed yield in 
NKSWR 245 was contributed 
by PL, PN, and TN (Fig. 3B). 
Early flowering was observed 
in NKSWR 402, NKSWR 
158, NKSWR 168, NKSWR 
247, and NKSWR 171. Thus, 
these genotypes may be used 
as the donor for developing 
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Fig. 2	 Clustering of twenty-two wild rice accessions using polymorphic ISSR markers.
	 A) Hierarchical clustering based on genetic similarity, B) Non-hierarchical based clustering; The cluster plot based on the 

optimal number of K, the mean clustering method.

Fig. 3	 PCA analysis for yield contributing variables and presentation of the quality and the 
contribution of variables to PC1 and PC2 using biplot analysis. A) Biplot analysis for the 
visualization of agronomically important trait for their correlations and quality contribution 
to phenotypic variation as PC1 and PC2; B) PCA Biplot analysis for the different trait and 
genotype for PC1 and PC2. (PN, Panicle number; TN, Tiller number; PL, Panicle length; 
SY, Seed yield per plant; BY, Biological yield per plant; PH, Plant height; DTF, Days to 
fifty percent flowering). 1, NKSWR214; 2, NKSWR177; 3, NKSWR453; 4, NKSWR402; 
5, NKSWR310; 6, NKSWR243; 7, NKSWR190; 8, NKSWR162; 9, NKSWR223; 10, 
NKSWR117; 11, NKSWR171; 12, NKSWR457; 13, NKSWR372; 14, NKSWR136; 15, 
NKSWR158; 16, NKSWR110; 17, NKSWR207; 18, NKSWR119; 19, NKSWR168; 20, 
NKSWR247; 21, NKSWR245 and 22, NKSWR126. 
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indicum L.) germplasm collection using ISSR markers. Journal 
of Crop Improvement 26: 540–57. 
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and Usha Kiran (Eds). Springer Nature, Singapore.
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acid in regulating the expression of EcMyb gene for drought 
stress tolerance in Eleusine coracana. Journal of Environment 
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The Indian Journal of Agricultural Sciences 91(3): 426–29. 
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evolving technology. The Indian Journal of Agricultural 
Sciences 91(9): 10–15.
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S N. 2021. Genetic structure and geographical differentiation 
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Plants 10: 2094. 
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A decade of multi-regional genetic analysis (2014–2024). 

short-duration rice varieties.
From the present investigation, we can conclude that 

ISSR markers provide an optimum polymorphism for 
diversity analysis. With 15 markers only, 53 polymorphic 
loci were identified, which indicated that these are cheaper 
and multilocus, and it emphasizes their role in unbiased 
comparison of germplasm for diversity analysis. Two 
sub-populations were observed based on parametric and 
nonparametric approaches that may be useful for marker-trait 
association studies. PCBA identified NKSWR 372, NKSWR 
457, NKSWR 126, and NKSWR 145 as potential donors 
for yield in various crop improvement programmes of rice.
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