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Morpho-molecular diversity analysis of indigenous rice (Oryza sativa)
germplasm
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ABSTRACT

Wild relatives of crops serve as the reservoir of kingpin genes related to various agronomic traits that play a
significant role in crop improvement for sustainable agriculture. However, bequeathing these genes from wild rice
has often been compromised due to climate change and anthropogenic activities posing serious threats to their natural
habitats, leading to erosion of diversity. The experiment was carried out during 2021-2023 at Dr. Rajendra Prasad
Central Agricultural University, Samastipur, Bihar aimed to study the utility of ISSR markers for genetic diversity
analysis, population stratification, and identification of suitable donors for using in breeding programme for yield
and climate resilience in rice (Oryza sativa L.). The results suggested that ISSR markers are highly informative for
diversity analysis in rice. These markers showed a high level of polymorphism (85.40%) with high Polymorphic
Information Content, Marker Index, and Resolving Power. ISSR markers; UBC807, UBC812, and UBC841 were
identified as highly informative markers for rice. Two subpopulations were identified based on parametric and non-
parametric approaches for population characterization, having the potential to be used in marker-trait association studies.
Germplasms NKSWR 372, NKSWR 457, NKSWR 126, and NKSWR 245 exhibited superior agronomic performance
comparatively. These elite genotypes may be utilized as potential donor for various rice improvement programmes.
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The geographical diversity of India has contributed
to intricate crop evolution and adaptation in response to
progressively changing climatic conditions. Wild rice (Oryza
spp.) growing across all the fifteen agro-climatic zones
of the country serves as gold mines for genes regulating
agronomically important traits and wider adaptability against
biotic and abiotic stresses (Kumari et al. 2017, Kumari
and Singh 2018). However, there is very limited literature
available on the genetic background of these local wild rice.
The collection, multiplication, and conservation of wild rice
accessions from different agro-climatic zones is inevitable
work for the nation to combat the future inescapable demand
of the growing population under climate change regimes.
Oryza rufipogon and Oryza nivara are the two progenitors of
Indian cultivated rice (Samal et al. 2018). However, recent
studies consider them as O. rufipogon Griff. Species complex
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(ORSC) (Kim et al. 2016). More than 300 accessions of
Oryza rufipogon and 700 accessions of Oryza nivara are
being conserved at the National Gene Bank. The NIPB, New
Delhi, has also initiated efforts to collect various accessions
of ancient rice from different agro-climatic zones (Tripathy
etal. 2018). The characterization of this collected germplasm
identified three subgroups based on pSINEs, SSR, and SNP
markers (Singh ef al. 2018, Kumari e al. 2021a). However,
these marker systems are codominant, highly polymorphic,
and locus-specific, but they need extensive input and cost
for the development of locus-specific information in a
particular species. Thus, a low-cost marker system needs to
be developed that is highly polymorphic for a species and
provides multi-locus comparison irrespective of their genetic
background. Similar systems have been developed for the
SSR named hypervariable SSR (HvSSR) markers for rice
that can compare more than 700 rice accessions with only
33 SSR markers (Singh et al. 2016). The advantage of ISSR
markers over SSR is that a single ISSR primer binds to a
number of loci, and genetic polymorphism in the genome of
unknown species may be observed at a much lower cost. The
ISSR method was proven especially useful in the Poaceae
family for the analysis of nearly isogenic lines (Akagi et
al. 1996) and in the differentiation of rice varieties (Parsons
et al. 1997). Multi-locus binding also ensures an unbiased
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comparison of the genome. Thus, the identification of a
set of ISSR primers with high polymorphism percentage
and information content will reduce the cost and provide
an ideal system for genetic diversity analysis. The present
study was conducted with the intention to examine the role
of ISSR primers for diversity analysis in rice and identify the
informative ISSR primers, in addition to the identification
of genotypes with higher agronomic performance based on
principal component biplot analysis.

MATERIALS AND METHODS

Materials: The experiment was carried out during
2021-2023 at Dr. Rajendra Prasad Central Agricultural
University, Samastipur, Bihar. A total of 22 diverse wild
rice accessions were collected from NIPB, New Delhi
(Supplementary Table 1), and 15 ISSR primers were used
for the present study (Table 1).

Estimation of morphological variations: The accessions
were grown in the field during rainy (kharif) season 2022,
in a randomized block design (RBD) with two replications.
Standard agronomic practices were performed to raise the
crop. Agronomically important traits; plant height (PH),
tiller number (TN), days to 50% flowering (DTF), panicle
number (PN), panicle length (PL), seed yield/plant (SY), and
biological yield/plant (BY) were recorded from ten plants/
plot in each replication and mean data were used for the
analysis (Supplementary Table 2). The variation among the
genotypes for the mentioned agro-morphological trait was
estimated through analysis of variance (ANOVA). Principal
component analysis was done using phenotypic data, and
their contribution to the phenotypic variance was estimated
using various packages of R programme.

Estimation of genetic diversity

Genomic DNA isolations: The young leaves (0.1 g) of
ten different plants of each wild rice accession were collected,
and DNA was isolated using a modified CTAB-DNA isolation
method (Doyle and Doyle 1987). The quality and quantity
of isolated DNA were assessed through 0.8% agarose gel
electrophoresis and a nanodrop spectrophotometer. An equal
amount of DNA from each leaf was bulked.

ISSR genotyping: The isolated DNA from the sample
was diluted and used for PCR analysis using master mix
1X concentration of buffer with 0.5 uM concentration of
ISSR primers, and the PCR reactions were performed.
The reproducible and consistent bands were only used for
analysis. Genotyping data were scored as presence (1) and
absence (0) of the band for each primer binding site that
is regarded as a locus. The annealing temperatures were
standardized to meet the number of bands up to 10 loci
for each ISSR primer. The Resolution power (Rp) (Gilbert
et al. 1999), Marker Index (MI) (Prevost and Wilkinson
1999), and Polymorphic Information Content (PIC) (De
Rick et al. 2001) were calculated for each primer.

Analysis of population structure: Both the
phenotyping and genotyping data were used for analysis
of the population structure of the procured accessions.
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Each primer binding site was considered as a locus,
and data were scored as presence (1) and absence (0).
STRUCTURE software with 10000 burn-in and 100000
MCMC replication with assumed K value; 2—10 and 5
iterations for each number of K value were used for
determination of population structure (Pritchard et al.
2001).

The optimum number of clusters was estimated
through both hierarchical and non-hierarchical
approaches using polymorphic ISSR markers data with
R-program-based packages. In the hierarchical approach,
Unweighted-Pair Group Method Arithmetic Average
(UPGMA) clustering was done with calculated Jaccard’s
similarity coefficient using NTSYSpc (Rohlf 2000). The
Non-hierarchical K-mean clustering algorithm was used
to identify the optimum number of clusters with the sum of
square function of the Elbow method (Syakur et al. 2018).
Principal component analysis was done for estimating
the contribution and correlation among quantitative
variables and individuals using R stat packages. The
result of PCA was observed as biplot analysis for the
individuals and variables.

Estimation of genetic variability: The number of
subpopulations was identified by STRUCTURE analysis
with the optimum K value. The STRUCTURE output
with Q1 and Q2 inferred ancestry of each individual
was used for the estimation of genetic diversity analysis
(Supplementary Table 3). Genetic diversity was estimated
between subpopulations Q1 and Q2 for the gene
frequency, analysis of molecular variance (AMOVA),
and Principal coordinate analysis (PCoA) using GenAlex
software (Pagnotta 2018).

RESULTS AND DISCUSSION

The crop genetic diversity is the demand of plant
researchers for identification of novel donors with wider
adaptability and high yield potential, having novel genes and
alleles that can be utilized with biotechnological approaches
(Kumari et al. 2021b, Kumar et al. 2022, Kothari et al.
2024). The widening of the genetic base is the need for
breeding climate-resilient cultivars (Rahman et al. 2017,
Wang et al. 2018). The present study was conducted with
22 wild rice accessions of seven different states belonging
to six different agro-climatic zones of India (Supplementary
Table 1). The choice of a molecular marker is highly crucial
to identify the level of polymorphism among them and to
discriminate between two genotypes. A dominant marker
is the preferred choice for diversity analysis (Nelson and
Anderson 2013). It does not require sequence information
to design and provide unbiased comparisons of multiple
loci of the genome. Among dominant markers, ISSR is
most preferable (El-Bakatoushi er al. 2018). It has been
used for diversity analysis, germplasm characterization,
and population identification in various species due to
their multilocus and multiallelic characteristics (Tu Anh et
al. 2018). A total of 15 ISSR primers based on previous
reports were chosen for the present analysis. The PIC, MI,
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Table 1 Polymorphic information of studied markers among wild rice accessions
S.no  ISSR PRIMERS 5'-3" Sequence Tm (°C) MW (bp) B PB PP PIC MI Rp
1 PRIMER 1 (CTRG 43 250-1000 5 4 80 0.20 0.80 1.27
2 PRIMER 2 (CT)BA 43 350-1000 3 3 100 0.34 1.01 1.55
3 PRIMER 3 (AC)8G 45 350-1000 4 3 75 0.29 0.87 2.09
4 PRIMER 4 (TC)BA 43 600-1000 3 2 66.6 0.30 0.60 1.45
5 ISSR13 (GACA)4 43 350-750 4 3 75 0.31 0.93 1.91
6 UBC807 (AG)8T 43 300-900 6 6 100 0.37 2.20 3.18
7 UBC808 (AG)8C 45 300-700 4 3 75 0.20 0.60 1.00
8 UBCS810 (GAT 45 350-1000 4 4 100 0.37 1.48 2.36
9 UBCS812 (GA)BA 43 500-1000 4 4 100 0.44 1.76 2.73
10 UBC818 (CA)8G 43 500-600 2 1 50 0.23 0.23 0.73
11 UBC841 (GA)BCTC 48 400-1000 4 4 100 0.46 1.85 3.09
12 UBC842 (GA)BCTG 43 350-900 5 5 100 0.27 1.33 1.91
13 UBC848 (CA)BAAGG 51 350-500 3 3 100 0.14 0.42 0.45
14 UBC857 (AC)8CTG 51 250-1250 5 4 80 0.33 1.33 2.36
15 UBC866 (CTO)6 52 250-1000 5 4 80 0.37 1.48 3.09
Average 4 3.5 85.4 0.3 1.12 1.94
Total 61 53

MW, Molecular weight; TB, Total band; PB, Polymorphic band; PP, Polymorphic percentage; PIC, Polymorphic information content;

MI, Marker index, Rp, Resolving power.

and Rp parameters were calculated to identify the most
informative ISSR primer for diversity analysis in rice. It was
observed that all the chosen sets of markers had PIC value
>0.1 with average PIC value >0.3 (Table 1). It indicated
that they were highly polymorphic as per the PIC value for
dominant markers (Serrote ef al. 2020). UBC807, UBCS812,
and UBC841 were highly informative ISSR primers for rice
based on PIC value with high MI and Rp of markers (Table 1)
(Serrote et al. 2020). The earlier reports identified UBC810
(Terzopoulos and Bebeli 2008) and UBC848 (Salazar-
laureles et al. 2015) ISSR markers for fababean. UBC890
(Kumar et al. 2012), UBC879 (Gautam et al. 2016), and
UBCS818 (Nath ef al. 2017) as highly

informative ISSR markers for sesame,

wheat, 84.8% polymorphism was reported for ISSR (Abou-
Dief et al. 2013). Similarly, in rice, 71% polymorphism
was reported for African rice (Eltaher ef al. 2018), while
82.96% for rice from south-eastern countries (Moonsap
et al. 2019). A significantly higher level of polymorphism
percentage, 85.4% was observed for the present rice
germplasm collected from six different agro-climatic zones
of India with the present set of ISSR markers as compared
to the earlier reports.

The identification of a number of subpopulations among
the accessions studied was the prerequisite for understanding
the genetic diversity and ancestry relationship among

chickpea, and green gram, respectively. |
For rice, UBC807 has been reported 100
as a highly informative marker for 0.80
diversity analysis in southeastern and 0.60
South African countries (Moonsap et 0.40
al. 2019). UBC841 has been reported 0.0
as a highly informative ISSR marker ’

for diversity analysis in Indian rice 0.00
(Dharmaraj et al. 2018). UBC812 has 13
been reported for medicinal shrubs as
a highly informative marker (Alansi
et al. 2016). The average polymorphic
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percentage for pulses was reported in
the range of 65% (Black gram), 68%
(chickpea) to 79% (green gram) for
ISSR markers (Pakseresht et al. 2013,
Das et al. 2014, Nath et al. 2017). In

the distribution of wild rice accessions among two populations; Q1 and Q2.
1, NKSWR214; 2, NKSWR177; 3, NKSWR453; 4, NKSWR402; 5, NKSWR310;
6, NKSWR243; 7, NKSWR190; 8, NKSWR162; 9, NKSWR223; 10, NKSWR117;
11, NKSWR171; 12, NKSWR457; 13, NKSWR372; 14, NKSWR136;
15, NKSWR158; 16, NKSWR110; 17, NKSWR207; 18, NKSWR119;
19, NKSWR168; 20, NKSWR247; 21, NKSWR245 and 22, NKSWR126.
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Table 2 Comparison of the identified population for Inferred
ancestry, expected heterozygosity, fixation index (Fst),
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Table 3 Population statistics based on ISSR using AMOVA

and allelic divergence using STRUCTURE and GenAlex S‘“?rc_e of Degree of S8 MS Est. Percentage
variations freedom Var. (%)

Features Populations Variance
Population types Q1 Q2 Among pops 1 28.373 28373 1.893 17%
No. of Individuals (N) 8 14 Within Pops 20 182.036 9.102 9.102 83%
Inferred ancestory 0.402 0.417 Total 21 210.409 10.995 100%
Expected heterozygosity 0.417 0.312 Stats PhiPT 0.172
Mean Fst (Fixation Index) 0.0081 0.2904 P (rand 0.001
Allele frequency divergence among 0.04 >= data)
populations SS, Sum of squares; MS, Mean of squares; Est Var, Estimated
Number of different allele (Na) 1.770 1.672 variance.
Number of effective allele (Ne) 1.543 1.415
Shannon Information Index (1) 0.460 0.373 2002, Luong et al. 2021). The type of subgroup was also
Diversity (H) 0313 0.248 analyzed with a non-parametric test using hierarchical (Fig.
Unbiased diversity (Hu) 0357 0267 2A) and non—hierjarchical clustering methods (Fig. 2B and
Percentage of polymorphism (PP) 033%  70.49% Supplementary Fig. 2). However, two groups were found

them and their subsequent implication for marker-trait
association studies (Eltaher et al. 2018). Both parametric and
nonparametric test was performed to identify the number of
subpopulations among them (Alhusain and Hafez 2018). A
Bayesian model-based STRUCTURE analysis with optimum
K value indicated the presence of two subpopulations (Fig.
1 and Supplementary Fig. 1).

The inferred cluster gave the estimate of the membership
coefficient of individuals among a given population, called
inferred ancestry, estimated using allelic divergence. The
mean value of the inferred cluster of two subpopulations
around the center showed the perfect partition of individual
accession between populations. The Fst value gave the
estimate of the fixation index for alternate alleles in the given
populations. It was higher for population Q2, which indicated
its high fixation rate. The genetic diversity of Q1 population
was higher than Q2 as per the estimate of polymorphic
percentage loci, different alleles, effective alleles, Shannon
diversity index, and gene diversity (Table 2).

The statistical significance of variance between
populations inferred by STRUCTURE analysis was
estimated with the partition of molecular variance between
populations and within populations. A high variation was
observed within a population (83%) as compared to between
populations (Table 3).

The significance of variation was estimated with PhiPT
value [analogue of fixation index (FST)] that measures
population differentiation due to genetic structure (Capo-
Chichi et al. 2023). The PhiPT value ranged from 0 (no
genetic differentiation) to 1 (total genetic differentiation),
which was used to estimate the extent to which populations
differ in terms of genetic makeup, especially for the
dominant markers where information of heterozygous loci
is lacking (Mokuolu et al. 2024). The PhiPT value was
0.172 (>0.15) with p<0.001 indicating large significant
differentiation among populations in rice (Frankham et al.

following STRUCTURE output in hierarchical clustering;
AMOVA, PhiPT analysis, and cluster analysis. But non-
hierarchical clustering grouped them into four groups that
were similar to the findings of principal coordinate analysis
(Supplementary Fig. 3) (Syakur ef al. 2018). Hierarchical
and non-hierarchical clustering are the methods of grouping
the rice accessions for the study of genetic variation and
the development of improved breeding strategies (Sinaga et
al. 2025). Hierarchical clustering involves an unsupervised
model to create clusters in a pre-defined order using top-
down and bottom-up approaches to group similar clusters
together in a hierarchical manner and develop a tree-like
structure (Chhabra and Mohapatra 2022, Yu and Hou 2022).
However, non-hierarchical clustering does not follow and
develop a tree-like structure; instead, it uses the K-means
clustering method, where clusters are formed based on
grouping the accession by breaking and merging the clusters.
The present study identified two clusters for hierarchical and
four for non-hierarchical approaches. The clusters number
showed discrepancy in output by both the approaches but
closed examination of clustering by Elbow method and
PCoA showed that the population Q1 was tri-partite by
non-hierarchal clustering methods; Elbow method-based
K-mean clustering (Fig. 2B and Supplementary Fig. 2) and
PCoA (Supplementary Fig. 3). Here, the highest and lowest
values with the average value are used to develop a centroid
value and then the distance from the centroid value is used
to partition between clusters made in such a way that non-
overlapping groups have no hierarchical relationship among
them (Oti et al. 2021, Ay et al. 2023). The non-hierarchical
clustering has been used to study the different cultivated
and wild rice accessions of O. rufipogon and O. nivara for
their genetic variability (Panda ef al. 2021, Mutembei and
Nyongesa 2024, Singh et al. 2024).

The closed examination of clustering by the Elbow
method and PCoA showed that the population Q1 was tri-
partite by non-hierarchical clustering methods and PCoA.
This indicated that both the parametric and non-parametric
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Clustering of twenty-two wild rice accessions using polymorphic ISSR markers.

A) Hierarchical clustering based on genetic similarity, B) Non-hierarchical based clustering; The cluster plot based on the

optimal number of K, the mean clustering method.

analyses were following the STRUCTURE output. Diversity
analysis and population structure using highly polymorphic
codominant markers such as SSR and SNPs in various
studies reported similar population structures for rice in
the Asian region (Luong ef al. 2021).

Assessment of phenotypic variation and genetic
diversity in wild rice using molecular markers was the prime
objective of the present study, aimed at identifying the ideal
genotype with excellent yield contributing traits. ANOVA of
wild rice accessions showed a significant variation between
them for different morphological traits (Supplementary
Table 4 and Supplementary Table 5). Principal component
biplot analysis (PCBA) was done to identify the phenotypic
traits with higher variance, the correlation of phenotypic
variance, and their relationship with wild rice accession
(Fig. 3A and B). The amount of variance was measured in

terms of eigenvalue. The first three principal components
with eigenvalues greater than 1 were taken, which had
phenotypic variance with a cumulative percentage of 82.25%
(Supplementary Fig. 4 and Supplementary Table 6) (Kaiser
1961). An eigenvalue greater than 1 with a phenotypic
variance of more than 65% was reported for germplasm
characterization for agronomically important traits in rice
(Burman et al. 2021). The PCBA showed that PC1 was
highly contributed by PN, TN, BY, and SY whereas PC2
was contributed by PH, DTF, and PL (Fig. 3A). The present
study showed that PN, TN, and BY were major contributing
traits for discriminating between wild rice accessions. TN
and PN were highly correlated traits for yield contribution.
SY was found to be highly correlated with BY, PN, TN,
PL, and PH (Mvuyekure et al. 2018). The relationship of
agronomically important traits with germplasm accessions

was also analyzed with biplot
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analysis (Fig. 3B).

PCBA revealed that
germplasm accessions
NKSWR 372, NKSWR 457,
NKSWR 126, and NKSWR
145 might be used as donors
for seed yield in crop
improvement programmes
(Mvuyekure et al. 2018).
Seed yield in NKSWR 372
was contributed by higher
TN, PN, and lower PH (Fig.

Fig. 3 PCA analysis for yield contributing variables and presentation of the quality and the
contribution of variables to PC1 and PC2 using biplot analysis. A) Biplot analysis for the
visualization of agronomically important trait for their correlations and quality contribution
to phenotypic variation as PC1 and PC2; B) PCA Biplot analysis for the different trait and
genotype for PC1 and PC2. (PN, Panicle number; TN, Tiller number; PL, Panicle length;
SY, Seed yield per plant; BY, Biological yield per plant; PH, Plant height; DTF, Days to
fifty percent flowering). 1, NKSWR214; 2, NKSWR177; 3, NKSWR453; 4, NKSWR402;
5, NKSWR310; 6, NKSWR243; 7, NKSWR190; 8, NKSWR162; 9, NKSWR223; 10,
NKSWRI117; 11, NKSWR171; 12, NKSWR457; 13, NKSWR372; 14, NKSWR136; 15,
NKSWRI158; 16, NKSWR110; 17, NKSWR207; 18, NKSWR119; 19, NKSWR168; 20,

NKSWR247; 21, NKSWR245 and 22, NKSWR126.

3B), whereas seed yield in
NKSWR 457 was contributed
by high PL. Seed yield in
NKSWR 245 was contributed
by PL, PN, and TN (Fig. 3B).
Early flowering was observed
in NKSWR 402, NKSWR
158, NKSWR 168, NKSWR
247, and NKSWR 171. Thus,
these genotypes may be used
as the donor for developing



August 2025]

short-duration rice varieties.

From the present investigation, we can conclude that
ISSR markers provide an optimum polymorphism for
diversity analysis. With 15 markers only, 53 polymorphic
loci were identified, which indicated that these are cheaper
and multilocus, and it emphasizes their role in unbiased
comparison of germplasm for diversity analysis. Two
sub-populations were observed based on parametric and
nonparametric approaches that may be useful for marker-trait
association studies. PCBA identified NKSWR 372, NKSWR
457, NKSWR 126, and NKSWR 145 as potential donors
for yield in various crop improvement programmes of rice.
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