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Enhancing the performance of chilli (Capsicum annuum) through
twin role of plant growth promotion and disease suppression
via Bacillus subtilis-based bioformulation
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ABSTRACT

Considering the majority of studies confined in vitro evaluation of microbial bioagents against diseases, a study
was carried out during 2018-21 at Assam Agricultural University, Jorhat, Assam, (in vivo and field studies) to assess
bio-efficacy of B. subtilis (strain LB22)-based liquid bioformulation against bacterial wilt (Ralstonia solanacearum)
and anthracnose (Colletotrichum gloeosporioides) diseases of chilli (Capsicum annuum L.). In vivo efficacy of B.
subtilis formulation (inclusive treatment involving seed treatment, seedling dip, soil treatment and foliar spray)
showed significant suppressiveness against both the diseases coupled with enhanced growth and yield attributes.
Subsequently, the field evaluation of Bacillus subtilis formulation comparing standard chemicals also edged over
the latter by 15.45% in terms of yield gains in 2-years of study. A significant reduction was found in disease severity
during field evaluation of Bacillus subtilis formulation on account of induced resistance via upregulated synthesis
of plant defense-enzymes (Polyphenol oxidase, peroxidase, phenylalanine ammonia-lyase, and p-1,3-glucanase) by
2.3—11.0 folds with their peaks mostly expressed within 24—72 h. These results put forward a conceptual framework
for delivery mechanism of a microbial bioagent in a formulation mode, having the potential to be effective against
a number of other diseases as well.
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Chilli (Capsicum annuum L.), belonging to family
Solanaceae and genus Capsicum, grown in an area of 21.2
thousand ha with a production and productivity of 20.1
thousand tonnes and 0.948 tonnes/ha, respectively. It is
considered a widely popular spice worldwide for its hot and
pungent flavour due to abundance of phenolic compounds
like capsaicin (8-methyl-N-vanillyl-6-nonenamide),
depending upon genotypes (Yang et al. 2021, Bal et al.
2022).The crop is attacked by a number of diseases; of
them, bacterial wilt (Ralstonia solanacearum) and chilli
anthracnose (Colletotrichum sp.) are known to incur
maximum yield losses up to 50% (Saxena et al. 2016,
Rahman ef al. 2023). To date, systemic chemical pesticides
are used as a quick remedy to control these diseases, but
their long-term use is frequently associated with unstable
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crop responses coupled with development of resistance in
the pathogens (Bora and Bora 2020, Choudhary et al. 2022).
Microbial bioagents as an alternative approach have attracted
the attention of many researchers in recent years due to their
environmentally friendly solutions minimizing the undue
reliance on chemical-based interventions (Srivastava et al.
2022, Suma et al. 2023).

Bacillus subtilis, is a ubiquitous bacterium known for
its ability to produce an array of bioactive metabolites,
growth hormone IAA, and siderophores, in addition to
nutrient solubilization (Bora and Bora 2021) and resistance
to antibiotic, rifampicin (Prihatiningsih et al. 2019,
Miljakovic et al. 2020). Antagonistic effects of B. subtilis
against various diseases of crops like wheat, sugarbeet,
sweet potato, etc. are widely reported (Xie ef al. 2021,
Wang et al. 2021). In chillies, B. subtilis was observed
as an effective biocontrol agent against Aspergillus flavus
coupled with prolonged shelf life (Yuan et al. 2023) and
Colletotrichum gleoesporioides OGC1 and Colletotrichum
capsici causing anthracnose rot (Ashwini and Srividya 2014,
Kumar et al. 2021). However, amidst these successes, the
commercial success of a biocontrol agent lies in developing
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a formulation capable of displaying consistent field responses
(Saikia et al. 2021). In this background, we employed a
carefully designed approach involving a bioformulation
carrying Bacillus subtilis LB22 in a nutrient-rich medium
followed by pot/field response evaluation of chilli plants
using different inoculation techniques against two major
diseases (bacterial wilt and anthracnose rot) in relation
to growth and yield performance of chilli, so known for
maximum diversity in northeast India.

MATERIALS AND METHODS

Pot experiment setup: Liquid bioformulation of B.
subtilis LB22 (NCBI Accession no. ON386193 and NBAIM
Accession no. as NAIMCC-TB-3886) was collected from
authors’ Biocontrol Laboratory, Department of Plant
Pathology, Assam Agricultural University, Jorhat, Assam.
The PGPR strain LB22 showing in vitro biocontrol potential
(Saikia et al. 2023) was screened for its growth promotion
ability and bio-efficacy through in silico experiments on
chilli plants.

A systematic pot experiment was set-up under
greenhouse conditions (23-32°C, relative humidity of
65-75% and photoperiod of 6.9-7.5 h) at Assam Agricultural
University, Jorhat, Assam for two consecutive seasons
(October 2018—February 2019 and March 2019—-July 2019)
on chilli cultivar Pusa Jwala to evaluate in vivo PGP-efficacy
and bioefficacy of B. subtilis-based liquid bioformulation
(AAU-Bioguard) against diseases of chilli. The soil (sandy
loam) was sterilized for 1 h in an autoclave for 3 days
(121°C, 15 PSI pressure). While, the pots (30 cm x 25 cm
x 25 cm) after washing were sterilized with ethyl alcohol
(70% for 2 min) followed by UV- treatment in a laminar
airflow for 30 min for 3 days. The experiment consisted of
7 treatments, viz. T,, Control (only pathogen inoculation);
T,, Seed treatment (ST) at 1%; T,, ST + seedling dip
treatment (SD) at 1%; T,, ST + SD + soil application (SA)
at 30-DAP at 1%; and Ts, ST + SD + SA at 30-DAP +
Foliar application (FA) at 60-DAP with 5 replications in
completely randomized design.

Seed treatment for 2 h was done in surface sterilized
chilli seeds with uniform size and shape. A 10 ml of
bioformulation was mixed with 2% carboxymethylcellulose
(100 ml) solution, later the slurry was used for treatment.
After treatment, the seeds were air dried for 1 h at room
temperature (25°C) to enable bacterial colonization. Treated
seeds were sown in pre-sterilized pots. Subsequently, seedling
root dip treatment was given to 30-days-old seedlings rinsed
with deionized water for 10- min followed by dipping the
roots for 1 h in the formulation before transplanting; while
1% solution was used for both soil application as well as a
foliar application. Bacterial wilt pathogen R. solanacearum
(GenBank Accession No.: 0Q743450) and Anthracnose
pathogen C. gleosporiodes (GenBank Accession No:
OM202512) were collected from the Culture Bank of
the Department of Plant Pathology, Assam Agricultural
University, Jorhat, Assam. R solanacearum was inoculated
by root inoculation technique (Winstead and Kelman 1952)
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with a suspension of bacterial inocula adjusted to 1 x
103cfu/mL and, suspension of C. gleosporioides conidia
was inoculated (1 x 10° conidia/ml) into wounded leaves
of chilli plants by pin-prick method (Jena et al. 2021).

Assessment of growth promotion and disease incidence:
Yield and growth attributing characters, viz. number of
leaves, fresh shoot weight (g), fresh root weight (g), shoot
dry weight (g), root dry weight (g), plant height (cm) and
yield (t/ha) were recorded. Bacterial wilt in chilli was
recorded as per cent Wilt Incidence (PWI). Fruit rot was
assayed as Per cent Disease Index (PDI) (Mckinney 1923),
where fruit rot disease rating scale proposed by Chester
(1959) was followed.

Field experiment setup: The treatments which were
found to be best in pot experiments were selected for
onward field evaluation. The three treatments selected
for the experiment comprising T, (Absolute control); T,
(LB22); and T, (Chemical treatment) were evaluated in
anthracnose-wilt sick plot for two consecutive seasons
(October, 2019-March, 2020 and October 2020-March,
2021) using single-factor randomized block design. The
LB22-based formulation (T,) was applied as ST + SD +
SA at 30-DAP and foliar spray at 60-DAP. Under T, two
chemicals applied consisted of Mancozeb 75% wp and
Streptomycine (Streptomycin Sulphate 90% =+ Tetracycline
Hydrochloride 10%).The first spraying of Mancozeb (@2.5
g/L of water) was done 30-DAP followed by two sprays
at 20 days intervals. Streptomycine was applied as soil
drenching @100 ppm at 15 days after transplanting. Each
treatment contained five replications and each replication
contained 16 number of plants. The performance of the
treatments was recorded in terms of disease incidence and
plant growth promotion.

Studies on bioagent-induced host defense: One gram
leaf samples from each replicate was collected after the
aapplication of bioformulation and chemical treatment (30
DAP), homogenized with 2 ml of 0.1 M sodium citrate
buffer (pH 5.0) at 48°C and centrifuged for 20 min at 10,000
rpm. The supernatant crude enzyme extract was used for
assaying B-1,3-glucanase (Pan et al. 1991) activity. Enzyme
extracted in 0.1 M sodium phosphate buffer (pH 7.0) was
used for the estimation of peroxidase (PO) (Smith and
Hammerschmidt 1988), polyphenol oxidase (PPO) (Mayer
et al. 1965) and phenylalanine ammonia-lyase (PAL) (Ross
and Sederoff 1992).

RESULTS AND DISCUSSION

Crop growth response and diseases suppression: In the
pot experiment, all the plant growth-promoting parameters
(plant height, shoot dry weight, root dry weight and
number of leaves/plant) were observed significantly higher
in LB22- treated plants compared to control (Table 1).
These observations supported the growth promotion
ability of tested microbial antagonist. An improvement in
overall growth response of host plant was associated with
subsequently significant reduction in incidence of wilt and
anthracnose diseases. Treatment T as a complete package
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of inoculation method comprising ST+RD+SA+FA of
LB22-based formulation showed the lowest bacterial wilt
incidence (16.15%) and PDI (15.21%) of fruit rot followed
by T, and T;, respectively, in decreasing order (Table 1).
Further, the best treatment of LB22 formulation when
applied under field conditions exhibited a consequential
effect of disease suppression and plant growth promotion
(Table 2), and collectively led to an increase in chilli yield
by 57.36% over untreated control (T,) with lowest wilt
and fruit rot incidence (Table 2). According to Jinal ef al.
(2020), plants treated with B. subtilis (SSR2I) strain reduced
the bacterial wilt incidences by 29% and subsequently
raised the root length by 48.37% and shoot length by
34.42% compared to control plants treated with only R.
solanacearum. The previous findings of Ramzan et al.
(2016) reported significant in vivo response of B. subtilis in
improving the plant growth in mungbean plants compared
to untreated control. Bacillus spp. possess multiple PGP
traits expressed through P-solubilization, IAA-production
and siderophore production in addition to exhibiting in vitro
significant growth inhibition against the phytopathogenic
fungi, Colletotrichum capsicias (Natarajan et al. 2012).
The bioconcontrol potential of Bacillus spp. have been
reported to be direct antibiosis through synthesis of different
antimicrobial metabolites, enzymes, volatiles NRPs besides
its aggressive colonization mediated through quorum sensing
(Feng et al. 2020).

Response on triggering defense enzymes: A bioagent
communicates with plant functioning via regulation of plant
defense pathways and activating defense enzymes. The
changes in dynamics of defense-related enzymes revealed
significantly higher enzymatic activities (P=0.05) associated

Table 1 Effect of application of Bacillus subtilis (LB22) on plant
growth and disease incidence parameters in chilli grown
in pot experiment (Pooled data of two seasons)

Biometric response Disease incidence

Treatment Plant Shoot Root Noof PWI PDI of
height  dry dry  leaves fruit
(cm) weight weight rot
(g) (g)
T, 104.00 13.16 540 194.61 89.50 57.00
(68.55)
T, 116.20 18.66  7.48 22333 36.20 51.68
(32.65)
T, 121.33 2143 8.00 24036 28.98 42.33
(24.62)
T, 126.62 2536 850 240.66 945 23.66
(18.02)
T 129.66 28.00 8.80 288.31 8.10 15.21
(16.15)
C D 1241 4.10 0.80 29.82 5.82 8.77
(P=0.05)
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with response of B. subtilis LB22 and chemical-treated
plants compared to untreated control. The PAL activity
of leaves was recorded significantly higher up to 48 h
following bioagent treatment (2.9 folds higher as compared
to control) with subsequent onward downturn (Fig. 1a).
While, enzymes like PO and PPO-levels inflated steadily
and reached their highest activities within 72 h following
inoculation treatment. Maximal significant PO- activity
was recorded with T,, 5.1-folds higher than untreated
naturally infected plants as control (Fig. 1b). The highest
levels of PPO was achieved at 72 h of application in T,,
which later declined at 96 h, indicating 2.3-folds higher
over control and T, as well (Fig. 1c). B. subtilis treated
plants showed 11-folds higher levels of B-1,3-glucanase
in leaves at 72 h after application over control (Fig. 1d).
These observations support the distinctive involvement of
host plant defense while interacting with B. subtilis through
increased production of defense-related proteins, thereby,
challenging the bacterial wilt and anthracnose pathogens,
in addition to their known direct antagonism. According to
previous studies (Jinal et al. 2020) Bacillus sp. strain M10
and SSR21 along with their putative catalase protein (KatA)
act as an effective biocontrol agent to shield chilli plants
from C. capsici via different defense enzymes in form of
PAL, PO and PPO. These Bacillus-induced defense enzymes
(Kashyap et al. 2021) are reported for their additional
biopriming effect on chilli seeds as an innate immunity
against Ralstonia solanacearum, the bacterial wilt causing
pathogen. Earlier, Jayapala e al. (2019) observed an increase
in concentration of defense-related enzymes that correlated
significantly as a consequential response of reduction in
incidence of anthracnose disease due to upregulation of
defense-related enzymes coupled with accumulation of
phenolic compounds. Bioagent induced defense widely
characterized by deposition of callose—induced thickening of
cell wall as important biological barrier (Hyder ez al. 2020,
Srivastava et al. 2022), accumulation of phenolic compounds
in addition to improved secretion of antioxidant enzymes as

Table 2 Field efficacy of Bacillus subtilis LB22 on plant growth
promotion and suppression in diseases of chilli (Pooled
data of two seasons)

Treatment Dry Dry  Yield PWI PDI
root wt shoot (g/ha) (BW) (Anthracnose)
(g wt(®

T, 1.32 15.00 35.01 59.19 35.34
(51.55)

T, 295 2743 79.12 16.21 14.87
(22.95)

T, 2.92 26.54 7291 17.03 20.10
(23.98)

CD 10.01  8.41 6.87

(P=0.05) 056  2.27

Treatment details are given under Materials and Methods.
Data in parenthesis indicate transformed arc sine values.
PWI, per cent wilt incidence; PDI, per cent disease incidence.

Treatment details are given under Materials and Methods.
Data in parenthesis indicate transformed arc sine values.
PWI, per cent wilt incidence; PDI, per cent disease incidence.
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Fig. 1 Changes in defense enzymes activity in chilli plants in response to different treatments.

superoxide dismutases, increased phosphate solubilization,
increased secretion of gibberellic acids (Ferrusquia-Jimenez
et al. 2022, Bora et al. 2022) and pathogenesis related
proteins known as chitinase, PR-1 /PR-2 coupled with hike
in plant defense enzymes (Gowtham et al. 2018) as a part
of host defense response.

Hence, our study, demonstrated that Bacillus subtilis
strain LB22-based liquid bioformulation serves a dual role
as growth promoter and bioprotectant against bacterial wilt
and anthracnose of chilli, by inducing a strong immune
response against infection of both the pathogens. However,
such diverse mode of action through direct antagonism,
immuno-triggering and growth enhancement need inclusive
study on the signaling pathways. It will be interesting to
decode the dichotomy of signaling molecules towards
plant growth promotion and disease resistance towards
plant response to microbial antagonist spatially as well as
temporally. Such studies put forth a possibility of developing
microbial bioagents-mediated chilli production system in a
complete organic framework, with more technical knowhow
on mass multiplication protocol, shelf life and standard
operating procedures for various methods of inoculation of
bioagents. Such a production system would be way forward
towards developing a climate neutral production system
keeping the ecological balance intact.
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