Assessment of fungal and bacterial bioagents against *Bipolaris sorokiniana* inciting spot blotch on barley (*Hordeum vulgare*)

POULAMI BASAK¹, MALKHAN SINGH GURJAR¹*, NATASHA KASHYAP¹, TEJ PRATAP JITENDRA KUMAR¹, MUKESH KUMAR YADAV¹, DINESH SINGH¹, SHAILENDRA JHA¹ and MAHENDER SINGH SAHARAN¹

ICAR-Indian Agricultural Research Institute, New Delhi 110 012, India

Received: 25 September 2023; Accepted: 06 December 2023

ABSTRACT

In India, spot blotch disease caused by Bipolaris sorokiniana is one of the major constraints in barley (Hordeum vulgare L.) production. The present study was carried out during 2022-23 at ICAR-Indian Agriculture Research Institute, New Delhi to identify promising biocontrol agents, which can act as eco-friendly alternatives to chemicals against Bipolaris sorokiniana inciting spot blotch on barley (Hordeum vulgare L.). In this study, 18 isolates of Trichoderma asperellum, 15 isolates of Trichoderma harzianum and 5 bacterial species were tested against B. sorokiniana under in vitro and in planta conditions. In the dual culture assays, Trichoderma asperellum 8686 and Trichoderma asperellum 8687 showed significantly highest per cent disease inhibition of 71.73% and 71.37% respectively. Among bacterial strains, Pseudomonas fluorescens and Bacillus amyloliquefaciens showed significantly good per cent disease inhibition of 64.09% and 57.09% respectively. B. subtilis and Pantoea spp. did not show any pathogen inhibition. In addition, the superior bioagents were also screened out. In the studies on in planta assays, Bacillus amyloliquefaciens (per cent disease control-55.19%) was found most effective for seed treatment against B. sorokiniana. Post-inoculation with biocontrol agents revealed that Bacillus amyloliquefaciens was at par with Trichoderma asperellum and Pseudomonas fluorescens against B. sorokiniana. Additionally, a combination of seed treatment, pre and post-inoculation treatment of biocontrol agents revealed that Bacillus amyloliquefaciens and Trichoderma asperellum 8686 were at par with Trichoderma harzianum (Pusa Th3) against B. sorokiniana. Overall, Bacillus amyloliquefaciens was more effective and consistent to manage spot blotch disease.

Keywords: Bacterial antagonist, Barley, Biocontrol, Bipolaris sorokiniana, Spot blotch, Trichoderma spp.

Barley (Hordeum vulgare L.) is an important cereal crop belonging to Gramineae family. It is the 4th largest cereal crop grown worldwide after wheat, maize, and rice. The crop exhibits high tolerance to adverse conditions such as drought, salinity and alkaline soil. However, the cultivation of barley is challenged by several diseases like leaf rust, stripe disease, spot blotch and smut diseases. Among these, spot blotch caused by Bipolaris sorokiniana is pronounced as the most important fungal disease of barley (Valjavec-Gratian and Steffenson 1997, Arabi and Jawhar 2004). This disease is one of the foremost problems in South Asian regions and in Indian context it causes significant loss in the states of Uttar Pradesh, Bihar, West Bengal, Orissa, and Assam (Chaurasia et al. 2000, Kumar et al. 2007, Chand et al. 2008, Vaish et al. 2011). Yield loss of 25-45% has been reported in barley due to spot blotch pathogen, which

¹ICAR-Indian Agricultural Research Institute, New Delhi. *Corresponding author email: malkhan_iari@yahoo.com

can further increase under conducive environments (Iftikhar et al. 2009). This highlights the need for control measures to combat the losses caused by the pathogen. Spot blotch can be most effectively managed through integrated pest management (Mehta and Igarashi 1985, Dubin and Duveiller 2000). Triazole group of fungicides like tebuconazole, epoxiconazole and propiconazole are known to effectively control this pathogen (Acharya et al. 2011, Yadav et al. 2015). However, the use of these chemicals has adverse impact on the environment by effecting non-target organisms and contaminating the soil (Li et al. 2015). Therefore, the harmful effect of these chemicals on the environment emphasizes the need of alternative management practices. Biocontrol agents include beneficial microorganisms, which inhibits the plant pathogens and enhances plant immunity (Nakkeeran et al. 2018, Yang et al. 2019). They acts as environmentally safe and economically feasible option to manage the plant diseases. Until now, very limited number of biocontrol agents have been identified against spot blotch of barley, which necessitates more comprehensive studies. Keeping this in view, the present study was carried out to find out the promising biocontrol agents against *Bipolaris* sorokiniana inciting spot blotch of barley both *in vitro* and *in planta* assays.

MATERIALS AND METHODS

Biocontrol agents used for dual culture assays: The study was carried out during 2022-2023 at ICAR-Indian Agriculture Research Institute, New Delhi. All the fungal isolates used in the study were procured from Indian type culture collection (ITCC), ICAR-Indian Agricultural Research Institute, New Delhi. The fungal isolates included 15 Trichoderma harzianum isolates, (ITCC No-8617, 8016, 8103, 8361, 8681, 8621, 7349, 7357, 7338, 6914, 7838, 7230, 7077, 6276, 8366) and 18 Trichoderma asperellum isolates (ITCC no-8549, 8619, 8369, 8541, 8547, 8518, 7903, 8516, 8607, 8687, 8686, 8614, 7041, 6585, 7828, 8272, 6413, 7885). Five bacterial isolates, viz. P. fluorescens, P. chlororaphis, B. amyloliquefaciens, B. subtilis and Pantoea spp. were procured from Plant Bacteriology Laboratory, ICAR-Indian Agriculture Research Institute, New Delhi. Highly virulent isolate of Bipolaris sorokiniana (BS-2) isolated from infected barley leaves obtained from Pusa, Bihar region was used in our study. To study the inhibition of B. sorokiniana with different strains of Trichoderma dual culture method was used (Fokkema 1973). Several strains of Trichoderma were grown in petri plates containing PDA media and incubated at 25°C for 6 days. B. sorokiniana was grown in petri plates containing PDA medium for 7 days. Mycelial discs of 5 mm diameter were taken from the margins of Trichoderma colony of 6-day old culture and placed 15 mm away from the periphery on fresh PDA plates. Similarly, mycelial discs of 5 mm diameter were taken from the margins of B. sorokiniana (BS) colony of 7-days old culture and placed 15 mm away from the periphery on the same plate. Control plates contained only the mycelial disc (5 mm diameter) of pathogen placed in centre of the plates. These plates were then sealed with parafilm and kept at 25°C for 10 days. Three replications were maintained for each strain of Trichoderma evaluated.

For evaluating bacterial strains against B. sorokiniana the procedures given by Ganesan and Gnanamanickam (1987) were followed. The bacterial strains were grown in petri plates containing nutrient agar media and kept at 28°C for 2 days. The pathogen B. sorokiniana was grown in petri plates containing PDA medium for 7 days. Mycelial discs of 5 mm diameter were taken from the margins of B. sorokiniana colony of 7-days old culture and placed at the centre of fresh petri plates containing PDA media. Bacterial strains of 48 h old culture were streaked in straight lines on both sides 30 mm away from the periphery on the same PDA plates. Control plates contained only the mycelial disc (5 mm diameter) of pathogen placed at the centre of the petri plate. These plates were then sealed with parafilm and kept at 25°C for 10 days. Three replications were maintained for each bacterial strain evaluated. The per cent inhibition of the pathogen was calculated after 10 days for both treatment and control plates. The per cent inhibition

was calculated as Vincent (1947):

$$PI = [C-T/C] \times 100$$

where PI, Per cent inhibition on the growth of pathogen; C, Radial growth of pathogen (mm) in control; T, Radial growth of pathogen (mm) in treatment.

In planta assay using selected biocontrol agents: In planta assay was conducted to find out promising bioagents against B. sorokiniana at, ICAR-Indian Agricultural Research Institute, New Delhi (2022-23). Four different assays namely seed treatment, pre-inoculation treatment with biocontrol agents, post-inoculation treatment with biocontrol agents and combination of all treatments were conducted under net house conditions. Highly susceptible barley genotype, viz. EC0578292 was taken for this experiment. Mass culturing of the potential Trichoderma strains was done on autoclaved sorghum grains followed by preparation of spore suspension and adjusting the concentration to 10^8 conidia/ml. For potential bacterial bioagents talc-based formulations were used @10 g/kg of seed for seed treatment and 15 g/L of water for foliar treatments, which were procured from, Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi. Pusa Th3 (T. harzianum) was kept as positive control which was used @3 ml/kg of seed for seed treatment and 3 ml/L of water for foliar treatments.

For seed treatment, the barley seeds were soaked with the biocontrol agents and for control, seeds were soaked in sterile distilled water for 1 h. Thereafter, 4-inch pots containing sterilized soil were mixed with mass culture of B. sorokiniana on sorghum seeds @10 g/kg of soil. A total of 8-10 treated barley seeds were sown per pot and were maintained under the net house conditions. After 30 days, the per cent disease index (PDI) was measured (Fetch and Steffenson 1999). Apart from, plant height was also taken. For pre inoculation treatment, 30-days old barley plants grown in 4-inch pots containing sterilized soil were sprayed with spore suspension of Trichoderma and bacterial biocontrol agents using the hand atomizer. The control plants were sprayed with sterile distilled water. After 24 h, the plants were spray inoculated with B. sorokiniana spore suspension @10⁴ conidia/ml and kept in moisture chamber with dark conditions for initial 24 h. After 10 days of pathogen inoculation, diseases scoring was observed, and per cent disease index (PDI) was calculated. For post inoculation treatment, 30-days old barley plants grown in 4-inch pots containing sterilized soil were sprayed with spore suspension of B. sorokiniana @10⁴ conidia/ml and kept in moisture chamber with dark conditions for initial 24 h. After 24 h, the plants were treated with spore suspension of Trichoderma and bacterial biocontrol agents using the hand atomizer. The control plants were sprayed with sterile distilled water. After 10 days of pathogen inoculation, disease scoring of plants was recorded and per cent disease index (PDI) was calculated.

The combination of all treatments (seed treatment, pre and post inoculation treatment with biocontrol agents)

Table 1 Bio efficacy of *Trichoderma* species and bacterial strains against *B. sorokiniana in vitro* conditions in barley

Treatment Radial Per cent				
Treatment	growth (mm)	inhibition (%)		
T _{1,} Trichoderma asperellum 8549	7.88 ^{bcdef}	55.19 ^{defg}		
T ₂ , Trichoderma asperellum 8619	6.88 ^{cdefghi}	60.82 ^{abcdef}		
T ₃ , Trichoderma asperellum 8369	8.43 ^{bcde}	52.24 ^{efg}		
T _{4.} Trichoderma asperellum 8541	8.37 ^{bcde}	52.46 ^{efg}		
T ₅ , Trichoderma asperellum 8547	6.43 ^{defghi}	63.50 ^{abcdef}		
T ₆ , Trichoderma asperellum 8518	7.78 ^{bcdef}	56.16 ^{cdefg}		
T _{7,} Trichoderma asperellum 7903	6.22 ^{efghi}	64.76abcde		
T _{8,} Trichoderma asperellum 8516	6.33 ^{defghi}	64.09abcde		
T _{9,} Trichoderma asperellum 8607	8.17 ^{bcde}	53.72 ^{efg}		
T _{10,} Trichoderma asperellum 8687	5.05 ^{hi}	71.37 ^a		
T _{11,} Trichoderma asperellum 8686	4.98^{i}	71.73 ^a		
T _{12,} Trichoderma asperellum 8614	6.50 ^{defghi}	63.13 ^{abcdef}		
T _{13,} Trichoderma asperellum 7041	6.55 ^{cdefghi}	62.76^{abcdef}		
T _{14,} Trichoderma asperellum 6585	7.05 ^{cdefghi}	59.93abcdefg		
T _{15,} Trichoderma asperellum 7828	8.57 ^{bcd}	51.53 ^{efg}		
T _{16,} Trichoderma asperellum 8272	9.38 ^b	46.44 ^g		
T _{17,} Trichoderma asperellum 6413	6.95 ^{cdefghi}	60.75^{abcdef}		
T _{18,} Trichoderma asperellum 7885	5.25 ^{hi}	70.24 ^{ab}		
T _{19,} Trichoderma harzianum 8617	6.78 ^{cdefghi}	61.50 ^{abcdef}		
T _{20,} Trichoderma harzianum 8016	8.12 ^{bcde}	54.29 ^{defg}		
T _{21,} Trichoderma harzianum 8103	7.83 ^{bcdef}	55.91 ^{defg}		
T _{22,} Trichoderma harzianum 8361	5.68^{fghi}	67.75 ^{abcd}		
T _{23,} Trichoderma harzianum 8681	7.07 ^{cdefghi}	$59.86^{abcdefg}$		
T _{24,} Trichoderma harzianum 8621	5.33 ^{ghi}	69.71 ^{abc}		
T _{25,} Trichoderma harzianum 7349	7.28 ^{bcdefgh}	$58.76^{abcdefg}$		
T _{26,} Trichoderma harzianum 7357	7.73 ^{bcdef}	56.21 ^{cdefg}		
T _{27,} Trichoderma harzianum 7338	7.22 ^{bcdefghi}	59.12 ^{abcdefg}		
T _{28,} Trichoderma harzianum 6914	7.67 ^{bcdef}	56.53 ^{cdefg}		
T _{29,} Trichoderma harzianum 7838	8.38 ^{bcde}	52.48 ^{efg}		
T _{30,} Trichoderma harzianum 7230	7.55 ^{bcdefg}	57.31^{bcdefg}		
T _{31,} Trichoderma harzianum 7077	6.90 ^{cdefghi}	60.89abcdef		
T _{32,} Trichoderma harzianum 6276	5.33ghi	69.73abc		
T _{33,} Trichoderma harzianum 8366	7.72 ^{bcdef}	56.18 ^{cdefg}		
T _{34,} Pseudomonas chlororaphis	8.83 ^{bc}	49.86^{fg}		
T _{35,} Bacillus amyloliquefaciens	7.55 ^{bcdefg}	57.09 ^{bcdefg}		
T _{36,} Pseudomonas fluorescens	6.33 ^{defghi}	64.09abcde		
T _{37,} Control (BS)	17.67 ^a	0^{h}		
CD (P=0.05)	1.859	11.042		
SE (m)	0.658	3.91		

consisted of growing of treated barley seeds in autoclaved soil containing mass inoculum of *B. sorokiniana*. At 30-days old barley plants, pre-inoculation of biocontrol agents was performed. First pre-inoculation with biocontrol agents was done then after 24 h, *B. sorokiniana* was inoculated. After 24 h pathogen inoculation, post-inoculation of biocontrol agents was conducted. Spot blotch disease scoring was performed and per cent disease index was calculated. For all the conducted assays, three replications were maintained.

The laboratory and pot experiments were performed in completely randomized design and three replications were maintained for each *in vitro* and *in planta* treatments. All the data were statistically analysed based on standard procedure given by Panse and Sukhatme (1967). The critical difference (5% level of significance) and standard error was obtained for the experiments conducted. The Duncan's multiple-range test (DMRT) was used to find significance level. The statistical analysis was performed on the OPSTAT web server.

RESULTS AND DISCUSSION

In vitro studies of biocontrol agents: Among Trichoderma spp., the highest per cent inhibition was showed by Trichoderma asperellum $8686 (T_{11})$ with 71.73% followed by Trichoderma asperellum 8687 (T₁₀) with 71.37%, which were found statistically similar to inhibit B. sorokiniana. The next best result was shown by Trichoderma asperellum 7885 (T₁₈) with per cent inhibition of 70.24%. Among the five bacterial strains, Bacillus subtilis and Pantoea spp. did not show bio efficacy against B. sorokiniana. Pseudomonas fluorescens (T36) and Bacillus amyloliquefaciens (T35) showed 64.09% and 57.09% inhibition of B. sorokiniana respectively (Table 1 and Fig. 1). Earlier reports revealed Trichoderma viride as the most effective biocontrol agent in inhibiting Bipolaris sorokiniana amongst other strains of Trichoderma under in vitro inhibition studies (Singh et al. 2018). Similarly, *Trichoderma* spp. was previously identified as a promising biological solution to manage foliar blight disease incited by B. sorokiniana (Singh et al. 2019, Kaur et al. 2021). T. asperellum was also found effective against various phytopathogens using in vitro studies (Rai and Singh 2023, Sehim et al. 2023). Pseudomonas spp. and Bacillus spp. were also found effective against B. sorokiniana infecting wheat (Minaeva et al. 2018, Harba et al. 2020, Kang et al. 2023). The culture filtrate of B. amyloliquefaciens was highly effective in vitro against Bipolaris sorokiniana infecting wheat and other phytopathogens (Yi et al. 2021).

In planta studies of biocontrol agents: The fungal (Trichoderma asperellum 8686, Trichoderma asperellum 8687) and bacterial (Pseudomonas fluorescens, Bacillus amyloliquefaciens) biocontrol strains that showed good bioefficacy in vitro were subjected to in planta studies. In seed treatment, the highest per cent disease control of 55.19% was shown significantly in Bacillus amyloliquefaciens (T₃) followed by Trichoderma asperellum 8686 (T₁) which showed per cent disease control of 41.43%. The highest plant height of 18 cm was observed in Bacillus

Fig. 1 Dual culture assay using various strains of Trichoderma and biocontrol bacteria against B. sorokiniana of barley.

amyloliquefaciens treatment (T₃) followed by Trichoderma asperellum 8686 (T_1) and Pseudomonas fluorescens (T_A) treatments both of which showed plant height of 15 cm (Table 2). In pre-inoculation treatment with biocontrol agents, the Trichoderma harzianum Pusa Th3 (T₅) gave highest per cent disease control (58.36%) followed by Trichoderma asperellum 8686 (50.12%) (T₁) (Table 2). In post-inoculation treatment with biocontrol agents, the Bacillus amyloliquefaciens (T₃) gave highest per cent disease control (45.31%) which was found to be statistically at par with Trichoderma asperellum 8686 (T_1) and Pseudomonas fluorescens (T₄) (Table 2). In the combined treatment with biocontrol agents, Trichoderma harzianum Pusa Th3 (T₅) and Trichoderma asperellum 8686 (T₁) were found statistically at par in percent disease control. Bacillus amyloliquefaciens (T₃) showed 45.58% per cent disease control (Table 2).

Overall, Bacillus amyloliquefaciens (T3) treatment showed significantly consistent and better results in all four assays to manage spot blotch of barley followed by Trichoderma asperellum 8686 (T1) treatment (Fig. 2). Bacillus amyloliquefaciens also showed plant growth promoting activity. In earlier studies, Bacillus amyloliquefaciens was reported as an effective biocontrol agent against several plant pathogens (Kruichkova 2017, Yadav et al. 2023). PGPR like activity has also been reported in Bacillus amyloliquefaciens (Kim et al. 2017, Yi et al. 2021, Luo et al. 2022). The present investigation highlights that Trichoderma asperellum 8686 and Trichoderma asperellum 8687 showed significantly maximum inhibition of B. sorokiniana in vitro. Bacillus amyloliquefaciens showed nearly consistent results for the management of spot blotch of barley. In addition, plant growth promoting activities of B. amyloliquefaciens will be explored.

SE(m)

Treatment	Average per cent disease index (%)	Average per cent disease control (%)	Average plant height (cm)
T _{1,} Trichoderma asperellum 8686	58.57 ^d	41.43 ^b	15.00 ^b
Γ ₂ Trichoderma asperellum 8687	65.74 ^c	34.26 ^c	14.33 b
T _{3.} Bacillus amyloliquefaciens	44.81e	55.19 ^a	18.00 ^a
T _{4.} Pseudomonas fluorescens	66.66 ^c	33.34 ^c	15.00 b
T _{5.} Trichoderma harzianum (Pusa Th3)	87.37 ^b	12.63 ^d	13.33 b
Γ _{6.} Control	100^{a}	0^{e}	13.33 ^b
CD (<i>P</i> =0.05)	5.751	5.751	2.203
SE(m)	1.846	1.846	0.707
Effect of pre-inoculation spray with biocontrol agents ago	ainst spot blotch of barley		
Treatment	Average per cent disease index (%)	Average per cent disease control (%)	
T _{1,} Trichoderma asperellum 8686	49.88 ^c	50.12 ^b	
T _{2,} Trichoderma asperellum 8687	52.93 ^{bc}	47.07 ^{bc}	
Γ _{3,} Bacillus amyloliquefaciens	52.83 ^{bc}	47.17 ^{bc}	
Γ _{4,} Pseudomonas fluorescens	56.33 ^b	43.67°	
Γ _{5,} Trichoderma harzianum (Pusa Th3)	41.64 ^d	58.36 ^a	
Γ _{6,} Control	100 ^a	0_{q}	
CD (<i>P</i> =0.05)	5.576	5.576	
SE(m)	1.79	1.79	
Effect of post-inoculation spray with biocontrol agents ag	gainst spot blotch of barley		
Treatment	Average per cent disease index (%)	Average per cent disease control (%)	
$\Gamma_{1,}$ Trichoderma asperellum 8686	58.86 ^{bc}	41.14 ^{ab}	
T _{2,} Trichoderma asperellum 8687	63.71 ^b	36.29 ^b	
T _{3,} Bacillus amyloliquefaciens	54.69 ^c	45.31 ^a	
T _{4,} Pseudomonas fluorescens	58.63 ^{bc}	41.37 ^{ab}	
T _{5,} Trichoderma harzianum (Pusa Th3)	66.56 ^b	33.44 ^b	
Γ _{6,} Control	100 ^a	0_{c}	
CD (<i>P</i> =0.05)	7.644	7.644	
SE(m)	2.454	2.454	
Effect of seed treatment, pre inoculation, and post inocula	ation spray of biocontrol ager	nts against spot blotch o	f barley
Freatment	Average per cent disease index (%)	Average per cent disease control (%)	
T _{1,} Trichoderma asperellum 8686	50.06 ^c	49.94 ^a	
T _{2,} Trichoderma asperellum 8687	64.54 ^b	35.46 ^b	
T _{3,} Bacillus amyloliquefaciens	54.42°	45.58 ^a	
T _{4,} Pseudomonas fluorescens	65.62 ^b	34.38 ^b	
T _{5,} Trichoderma harzianum (Pusa Th3)	47.84 ^c	52.16 ^a	
T _{6,} Control	100 ^a	0_{c}	
CD (<i>P</i> =0.05)	7.31	7.31	

2.346

2.346

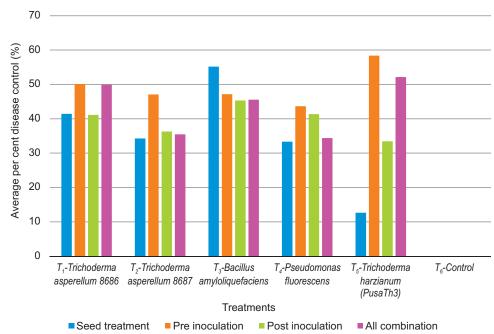


Fig. 2 Effect of seed treatment, pre inoculation spray, post inoculation spray and all combination of treatments of biocontrol agents against spot blotch of barley.

ACKNOWLEDGMENTS

Author is grateful to ICAR-Indian Agricultural Research Institute, New Delhi for providing fellowship. The research work was supported by the ICAR-Consortium Research Projects on Genomics-Pathogenomics (ICAR-G/CRP-Genomics/2015-2720).

REFERENCES

Acharya K, Dutta A and Pradhan P. 2011. *Bipolaris sorokiniana* (Sacc.) Shoem.: The most destructive wheat fungal pathogen in the warmer areas. *Australian Journal of Crop Science* 5: 1064–71.

Arabi M I E and Jawhar M. 2004. Identification of *Cochliobolus sativus* (spot blotch) isolates expressing differential virulence on barley genotypes in Syria. *Journal of Phytopathology* **152**: 461–64.

Chand R, Sen D, Prasad K D, Singh A K, Bashyal B M, Prasad L C and Joshi A K. 2008. Screening for disease resistance in barley cultivars against *Bipolaris sorokiniana* using callus culture method. *Indian Journal of Experimental Biology* **46**(4): 249–53.

Chaurasia S, Chand R and Joshi A K. 2000. Relative dominance of *Alternaria triticina* Pras. et Prab. and *Bipolaris sorokiniana* (Sacc.) Shoemaker, in different growth stages of wheat (*T. aestivum* L.). *Journal of Plant Disease Protection* **107**: 176–81.

Dubin H J and Duveiller E. 2000. *Helminthosporium* leaf blights of wheat: Integrated control and prospects for the future. (*In*) *Proceedings of International Conference on Integrated Plant Disease Management for Sustainable Agriculture*, New Delhi, 10–15 November 1997. pp. 575–79.

Fetch T G and Steffenson B J. 1999. Rating scales for assessing infection responses of barley infected with *Cochliobolus sativus*. *Plant Disease* **83**: 213–17.

Fokkema N J. 1973. The role of saprophytic fungi in antagonism against *Drechslera sorokiniana* (*Helminthosporium sativum*) on agar plates and on rye leaves with pollen. *Physiological Plant Pathology* **3**(2): 195–205.

Ganesan P and Gnanamanickam S S. 1987. Biological control of *Sclerotium rolfsii* sace. in peanut by inoculation with *Pseudomonas fluorescens*. *Soil Biology and Biochemistry* **19**(1): 35–38.

Harba M, Jawhar M and Arabi M I E. 2020. *In vitro* antagonistic activity of diverse *Bacillus* species against common root rot (*Cochliobolus sativus*) of barley. *Acta Phytopathologica Et Entomologica Hungarica* 55(1): 35–42.

Iftikhar S, Shahzad A, Munir A, Sultan A and Iftikhar A. 2009. Hosts of *Bipolaris sorokiniana*, the major pathogen of spot blotch of wheat in Pakistan. *Pakistan Journal of Botany* **41**(3): 1433–36.

Kang K, Niu Z, Zhang W, Wei S, Lv Y and Hu Y. 2023.

Antagonistic strain *Bacillus halotolerans* Jk-25 mediates the biocontrol of wheat common root rot caused by *Bipolaris sorokiniana*. *Plants* **12**(4): 828.

Kaur A, Sharma V and Sharma S. 2021. Management of spot blotch of barley: An eco-friendly approach. *Australasian Plant Pathology* 50: 389–401.

Kim M J, Radhakrishnan R, Kang S M, You Y H, Jeong E J, Kim J G and Lee I J. 2017. Plant growth promoting effect of *Bacillus amyloliquefaciens* H-2-5 on crop plants and influence on physiological changes in soybean under soil salinity. *Physiology and Molecular Biology of Plants* **23**(3): 571–80.

Kriuchkova L. 2017. Biological control of leaf disease of barley with *Bacillus* strain. *Biologija* 63(3): 289–95.

Kumar D, Chand R, Prasad L C and Joshi A K. 2007. A new technique for monoconidial culture of the most aggressive isolate in a given population of *Bipolaris sorokiniana*, cause of foliar spot blotch in wheat and barley. *World Journal of Microbiology and Biotechnology* 23(11): 1647–51.

Li Y, Dong F, Liu X, Xu J, Han Y and Zheng Y. 2015. Chemosphere Enantioselectivity in tebuconazole and myclobutanil non-target toxicity and degradation in soils. *Chemosphere* **122**: 145–53.

Luo L, Zhao C, Wang E T, Raza A and Yin C. 2022. *Bacillus amyloliquefaciens* as an excellent agent for biofertilizer and biocontrol in agriculture: An overview for its mechanisms. *Microbiological Research* **259**: 127016.

Mehta Y R and Igarashi S. 1985. Chemical control measures for major diseases of wheat with special attention to spot blotch. Wheats for more tropical environments. (*In*) A Proceedings of the International Symposium, International Maize and Wheat Improvement Center (CIMMYT), Mexico, September 24–28, pp. 196–203.

Minaeva O M, Akimova E E and Tereshchenko N N. 2018. Effect of *Pseudomonas* bacteria on peroxidase activity in wheat plants when infected with *Bipolaris sorokiniana*. *Russian Journal* of *Plant Physiology* **65**: 717–25.

Nakkeeran S, Vinodkumar S, Priyanka R and Renukadevi P. 2018. Mode of action of *Trichoderma* spp. in biological control

- of plant diseases. *Biocontrol of Soil Borne Pathogens and Nematodes*, pp. 81–85.
- Panse V G and Sukhatme P V. 1967. Statistical Methods for Agricultural Workers. ICAR, New Delhi.
- Rai D and Singh N. 2023. Efficacy of *Trichoderma asperellum* against different pathogens of medicinal plants. *Indian Journal of Experimental Biology* **61**: 303–10.
- Sehim A E, Hewedy O A, Altammar K A, Alhumaidi M S and Abd Elghaffar R Y. 2023. *Trichoderma asperellum* empowers tomato plants and suppresses *Fusarium oxysporum* through priming responses. *Frontiers in Microbiology* **14**: 1140378.
- Singh D, Pande S K, Kavita, Yadav J K and Kumar S. 2018. Bio efficacy of *Trichoderma* spp. against *Bipolaris sorokiniana* causing spot blotch disease of wheat and barley. *International Journal of Current Microbiology and Applied Sciences* 7(3): 2322–327.
- Singh U B, Malviya D, Singh S, Kumar M, Sahu P K, Singh H V, Kumar S, Roy M, Imran, M Rai J P, Sharma A K and Saxena A K. 2019. *Trichoderma harzianum* and methyl jasmonateinduced resistance to *Bipolaris sorokiniana* through enhanced phenylpropanoid activities in bread wheat (*Triticum aestivum* L.). *Frontiers in Microbiology* 10: 1697.
- Vaish S S, Ahmed S B and Prakash K. 2011. First documentation on status of barley diseases from the high altitude cold arid

- Trans-Himalayan Ladakh region of India. *Crop Protection* **30**(9): 1129–137.
- Valjavec-Gratian M and Steffenson B J. 1997. Pathotypes of Cochliobolus sativus on barley in Nort Dakota. Plant Disease 81(11): 1275–278.
- Vincent J M. 1947. Distortion of fungal hyphae in the presence of certain inhibitors. *Nature* 159(4051): 850.
- Yadav B, Singh R and Kumar A. 2015. Management of spot blotch of wheat using fungicides, bio-agents and botanicals. *African Journal of Agricultural Research* **10**(25): 2494–500.
- Yadav D K, Devappa V, Kashyap A S, Kumar N, Rana V S, Sunita K and Singh D. 2023. Boosting the biocontrol efficacy of *Bacillus amyloliquefaciens* DSBA-11 through physical and chemical mutagens to control bacterial wilt disease of tomato caused by *Ralstonia solanacearum*. *Microorganisms* 11(7): 1790.
- Yang L N, Pan Z C, Zhu W, Wu E J, He D C, Yuan X, Qin Y Y, Wang Y, Chen R S and Thrall P H. 2019. Enhanced agricultural sustainability through within-species diversification. *Nature Sustainability* 2: 46–52.
- Yi Y, Shan Y, Liu S, Yang Y, Liu Y, Yin Y, Hou Z, Luan P and Li R. 2021. Antagonistic strain *Bacillus amyloliquefaciens* XZ34-1 for controlling *Bipolaris sorokiniana* and promoting growth in wheat. *Pathogens* 10(11): 1526.