Influence of ammonium bromide and picloram in Syngonium micropropagation

VENUGOPAL RAJANBABU¹, MASILAMANI POOMARUTHAI², RAJESH SUBRAMANIAN³, SIVAKUMAR PARAMASIVAM⁴ and SHRIRANGASAMI SILAMBIAH⁵*

Anbil Dharmalingam Agricultural College and Research Institute (Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu), Tiruchirapalli, Tamil Nadu 620 027, India

Received: 14 February 2024; Accepted: 19 December 2024

ABSTRACT

Micropropagation is a promising way to overcome difficulties in plant propagation such as time consumption, maintenance of plant uniformity and disease infection. The increased demand for the ornamental plant, Syngonium can be aptly met by the large scale multiplication through tissue cultures. The present study was carried out during rainy (kharif) season 2020 to winter (rabi) season 2023 at Anbil Dharmalingam Agricultural College and Research Institute, Tiruchirapalli, Tamil Nadu reports optimized protocol for the micropropagation of Syngonium through direct organogenesis and somatic embryogenesis pathways in two important species, Syngonium podophyllum and Syngonium auritum, respectively. Randomized block design (RBD) and single-factor ANOVA was used to analyze the effects of organogenesis and embryogenesis Direct organogenesis was achieved through the formation of axillary buds in Syngonium podophyllum using shoot tip and nodal explants in modified Murashige and Skoog (MS) media with 1 mg/L BAP and 0.1 mg/L NaH₂PO₄. In addition, the presence of 0.1 mg/L ammonium bromide consistently enhanced the proliferation rate up to five subculture cycles of shoot proliferation. Plant regeneration through somatic embryogenesis was achieved in Syngonium auritum using MS medium supplemented with 10 mg/L picloram and 1 mg/L 2,4-D. Embryogenic calli formed in the stem explant was devoid of nodes in Syngonium auritum and could be regenerated into full plants when subcultured in modified MS medium with 2 mg/L NAA and 1 mg/L IAA. The in vitro rooted plantlets were successfully acclimatized in portray containing 1:1 ratio vermicompost and coir pith compost soil medium and later transferred to the larger pots containing a mixture of red earth and vermicompost in 3:1 ratio. Secondary hardening was done by transferring plants to polythene bags and maintained under shade net house for six weeks until it is ready for planting in indoor or outdoor conditions.

Keywords: Embryogenic calli, Micropropagation, Organogenesis, Somatic embryogenesis, Syngonium

Syngonium, also known as arrowhead vine is primarily used for interior decoration and environmental protection (Li et al. 2008, Jang et al. 2010, He et al. 2015, Yang and Deng 2017, Chao et al. 2019). The plants can be grown indoors either by train up in six to eight foot thin stakes or grow in a hanging basket (Alippi et al. 1994, Jouen et al. 2008, Kumar et al. 2014, Yang and Deng 2017). In vitro

¹Anbil Dharmalingam Agricultural College and Research Institute (Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu), Tiruchirapalli, Tamil Nadu; ²Agricultural Engineering College and Research Institute (Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu), Kumulur, Tamil Nadu; ³Horticultural College and Research Institute (Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu), Periyakulam, Tamil Nadu; ⁴Dr M S Swaminathan Agricultural College and Research Institute, (Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu), Eachankottai, Thanjavur, Tamil Nadu; ⁵Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu. *Corresponding author email: shrirangasamisr@tnau.ac.in

micropropagation will be a viable strategy for the large-scale multiplication of Syngonium, and in vitro regeneration of these plants with shoot bud organogenesis and leaf somatic embryogenesis has been reported (Wang et al. 2007, Davies et al. 2017, Hasnain et al. 2022). However, a regionspecific optimized protocol for in vitro regeneration and acclimatization is necessary for subtropical regions (Preece and Sutter 1991, Posposilova et al. 1999, Kozai and Zobayed 2000, Hazarika 2003). Syngonium is a notable example in the ornamental plant propagation through *in vitro* culture, where about 22 new somaclonal variants are selected in the commercial greenhouses (Dogra 2023). There are few in vitro regeneration protocols available in Syngonium through organogenesis (Kalimuthu and Prabakaran 2014). The production of Syngonium through in vitro micropropagation possesses additional advantages, including shortening the production time, producing multiple branched vigorous plantlets and eliminating diseases and pathogens, which cannot be possible through traditional propagation because cuttings can carry and spread diseases (Zuzarte et al. 2024).

Direct somatic embryogenesis in Syngonium has been reported by inoculation of leaf bit and petiole explants in Murashige and Skoog (MS) medium supplemented with N-(2-chloro-4-pyridyl)-N'-phenylurea (CPPU) or N-phenyl-N'-1,2,3-thiadiazol-5-ylurea (TDZ) with either α -naphthalene acetic acid (NAA) or 2,4-dichlorophenoxyacetic acid (2,4-D) (Zhang et al. 2006). The roles of BAP, NAA, TDZ and NaH₂PO₄ supplementation in microshoot initiation, proliferation of microshoots and rooting have been compared (Kalimuthu and Prabakaran 2014). The present investigation reports the increased proliferation of microshoots by ammonium bromide in modified MS medium for Syngonium podophyllum. In addition, Picloram plus 2,4-D-mediated micropropagation by somatic embryogenesis has been demonstrated in ornamental and fruit crops (Chaudhary and Prakash 2019).

MATERIALS AND METHODS

Plant materials: The present study was carried out during rainy (kharif) season 2020 to winter (rabi) season 2023 at Anbil Dharmalingam Agricultural College and Research Institute, Tiruchirapalli, Tamil Nadu. Syngonium podophyllum and Syngonium auritum plants were obtained from Horticulture College and Research Institute for Women of Tamil Nadu Agricultural University. Prior to the excision of explants, the plant samples were washed thoroughly in tap water to remove soil and any debris present over the plant. The stem was separated from the leaves for nodal and shoot tip explants were excised for organogenesis studies. The leaves, petiole and stem segment devoid of nodes were used for embryogenic calli induction. Experiment was carried out with four explants in each treatment with six replicates subjected to RBD analysis. Average number of explants responding to organogenesis is given in Table 1.

Explants collection and sterilization: For nodal or shoot tip culture, the intact node with 0.5 cm stem on both side was excised. The excised explants were pretreated by immersion in 0.1% bavistin solution and kept in a shaker for 60 min. After bavistin pre-treatment, the explants were sterilized in 70% ethanol for 30 sec and washed thrice with sterile distilled water. Ethanol-washed explants were immersed in 20% sodium hypochloride (bleach) for 5 min. followed by washing with sterile distilled water for three times. For embryogenic callus induction experiment, 0.5-1 cm of stem without nodes, petioles and leaf bits were excised and subjected to disinfection. Under laminar air hood chamber the disinfected leaves were cut into one square centimeter pieces, nodes were cut into 0.5 cm pieces and petioles were cut into 0.5-1 cm long pieces in sterile petridishes. These explants were inoculated and cultured in the primary growth room maintained at 25°C temperature and 24 h dark for first three weeks. At the end of three weeks, the 24 h dark was altered to a photoperiod cycle of 16 h light and 8 h dark.

Culture initiation and multiplication: MS and WPM media were prepared by following the composition and protocol as mentioned previously with the addition of agar and necessary elements (Murashige and Skoog 1962,

Table 1 Effect of BAP, NaH₂PO₄ and NH₄Br on organogenesis of Syngonium podophyllum

S. No		dium compo (S medium)	Explantsrespond to organogenesis	
	BAP	$\mathrm{NaH_{2}PO_{4}}$	$\mathrm{NH_4Br}$	(out of 4)
1	1.0	0.0	0.0	0.28 ^a
2	2.0	0.0	0.0	0.28 ^a
3	5.0	0.0	0.0	0.28 a
4	1.0	0.1	0.0	3.42 ^b
5	5 .0	0.1	0.0	0.28 a
6	5 .0	0.0	1.0	0.56 a
7	0.0	0.0	0.0	0.28 a
8	1.0	0.1	1.0	3.51 b
SED				0.3619
CD (0.05)				0.7276

^b has the best treatment groups, and Group ^a are the poorest treatment groups.

McCown and Lloyd 1981). For direct organogenesis, the explants were inoculated in different combinations of MS media with BAP, NaH₂PO₄ and NH₄Br (Table 1). The inoculated explants were maintained in primary growth room under 16 h light and 8 h dark cycle. Subculture was performed once in every three or four weeks in fresh medium. The formation of multiple microshoots and the proliferation rate during each subculture were observed regularly. For somatic embryogenesis, different concentrations of picloram and 2,4-D were added to MS or WPM basal media.

Acclimatization and hardening: After in vitro root formation, the well-developed plants after successful regeneration were gently removed from the in vitro culture bottles for acclimatization and hardening. The roots were gently washed in running tap water to remove the bound nutrient from the agar medium. Then, the plants were planted into the wells of a grow-tray containing 1:1 ratio mixture of vermicompost and coir pith compost soil medium. Initial acclimatization was achieved by growing plants in a growth room at 25°C with regular watering for 2 weeks. Then, the plants were removed from the growth tray and planted into large pots filled with red earth and vermicompost 3:1 ratio. The plants were moved to shade net house and maintained with regular irrigation for 6 weeks. Then, individual plants were planted in polythene bags containing a 2:1:1 ratio of red earth, sand and farmyard manure and maintained with normal agronomic practices for six or more weeks prior to distribution for outdoor or indoor planting.

Statistical analysis: Statistical analysis was carried out in AGRES analysis software (Panse *et al.* 1967). RBD and single-factor ANOVA was used to analyze the effects of organogenesis and embryogenesis. The resulting data were represented as mean ± Standard error (SE). The experiment was carried out in 4–10 replications with 4–10 plants in each replicate.

RESULTS AND DISCUSSION

Direct organogenesis of Syngonium podophyllum is promoted by NaH₂PO₄ and ammonium bromide: In order to regenerate Syngonium by direct organogenesis, disinfected nodal or shoot tip explants were inoculated in modified MS medium with 6-Benzylaminopurine (BAP), NaH₂PO₄ and ammonium bromide (Table 1). Nodal explants were inoculated and cultured in modified MS medium containing 1 mg/L BAP, 0.1 mg/L NaH₂PO₄ and 0.1 mg/L ammonium bromide for 15 weeks with continuous subculture once every three weeks. After 18 weeks, the microshoots were subcultured in modified MS medium devoid of ammonium bromide. Stages of organogenesis at 1 week, 6 weeks, 12 weeks, 15 weeks and 18-24 weeks are displayed in the Fig. 1. The formation of axillary buds and microshoots was observed on a regular basis. At 15-weeks post inoculation microshoots were observed (Fig. 1). Among the media combinations, modified MS medium containing 1 mg/L BAP, 0.1 mg/L NaH2PO4 in the presence or absence of 1.0 mg/L NH₄Br responded well for initial establishment and auxiliary bud formation (Table 1). BAP is most widely used cytokinin for in vitro regeneration of Syngonium podophyllum (Rajeevan et al. 2002, Hassanein 2004, Rajesh et al. 2011). The results of the present study showed that BAP and NaH₂PO₄ in the modified MS medium promote direct organogenesis and it is similar to the previous report in other crops and trees (Zhang et al. 2006, Massot et al. 2000, Raziq et al. 2023). Reports showed that the MS media contains 170 mg/L of KH₂PO₄ as source of phosphorous supply in culture medium, and addition of NaH₂PO₄ may

Fig. 1 Direct organogenesis in Syngonium podophyllum.

provide excess phosphorous supply to explants for effective initial establishment and axillary bud formation (Bonetti *et al.* 2016). In specific, the addition of two fold NaH₂PO₄ increase the *in vitro* culture efficiency in ornamental plants like Dieffenbachia (Elsheikh *et al.* 2013).

Ammonium bromide increases the shoot proliferation rate. In a period of 18-weeks of the initial inoculation, the explants underwent six sub cultures. After six subcultures, the microshoots responded for multiple shoot induction and proliferation. In order to assess the proliferation rate, the microshoots routed through six subculture were inoculated into modified MS medium containing BAP and NaH₂PO₄ in the presence or absence of ammonium bromide. The explants inoculated in MS with 1 mg/L BAP, 0.1 mg/L NaH₂PO₄ and 1.0 mg/L NH₄Br showed a high rate of microshoot proliferation than MS with 1 mg/L BAP and 0.1 mg/L NaH₂PO₄ alone (Table 2). When proliferated microshoots were subsequently separated and subjected to subculture in modified MS media with BAP, NaH2PO4 and NH4Br, a high number of shoot proliferation up to five subculture cycles were observed (Table 2). Possibly the ammonium bromide present in MS medium provides ammoniacal form of nitrogen effectively taken by the plant cells in the early days (Gamborg and Shyluk 1970, Zhang et al. 2019). The excess availability of phosphorous in NaH₂PO₄ and ammoniacal nitrogen in ammonium bromide may increase the proliferation rate in Syngonium. Once a sufficient number of microshoots were produced, the microshoots were transferred into modified MS medium with BAP and NaH₂PO₄ devoid of ammonium bromide for rooting. Root induction occurred in 2-3 weeks, and the in vitro regenerated plantlets were ready for hardening.

Picloram and 2,4-D promote somatic embryogenesis in Syngonium auritum: To study the somatic embryogenesis potential, the explants from Syngonium podophyllum and Syngonium auritum were sterilized and cultured in modified MS or modified WPM media. Among the two species, Syngonium auritum only responded to embryogenic calli formation, and only Syngonium auritum was proceeded further. The explants excised from leaves, petiole and stem segments devoid of nodes were studied for embryogenic calli induction, and shoot explant devoid of node produced embryogenic calli structures after nine weeks (Fig. 2).

Table 2 Shoot proliferation rate in the repeated subculture phase of micropropagation

Treatment	Mean rate of proliferation per explant during five continuous subculture				
	1	2	3	4	5
MS + 1.0 mg/L BAP	1.29 a	1.14 a	1.14 a	1.00 a	1.14 a
$MS + 1.0 \text{ mg/L BAP} + 0.1 \text{ mg/L NaH}_2PO_4$	2.28 b	2.14 ^b	2.29 b	2.14 ^b	1.85 ^b
$\mathrm{MS} + 1.0~\mathrm{mg/L~BAP} + 0.1~\mathrm{mg/L~NaH_2PO_4} + 1.0~\mathrm{mg/L~NH_4Br}$	8.29 ^c	7.71 ^c	7.43 ^c	8.71 ^c	7.14 ^c
SED	0.2608	0.3367	0.3086	0.6389	0.3364
CD (0.05)	0.5480**	0.7074**	0.6484**	1.3422**	0.7074**

c has the best treatment groups

Experiment was carried out with ten explants in each treatment with six replicates subjected to RBD analysis. Average number of explants proliferation is given in table.

Table 3 Effect of Picloram and 2,4-D on somatic embryogenesis of *Syngonium auritum*

Media o	Embryogenic		
Medium	Picloram	2,4-D	callus*
MS	0.5	0.0	0.00±0.00
MS	5.0	0.0	0.43 ± 0.43
MS	5.0	0.5	1.14 ± 0.74
MS	5.0	1.0	2.00 ± 1.31
WPM	0.5	0.0	0.00 ± 0.00
WPM	5.0	0.0	0.57 ± 0.57
WPM	0.5	1.0	0.42 ± 0.43
WPM	5.0	1.0	1.71±1.26
WPM	10	1.0	2.42±1.66
MS	10	1.0	7.71±0.78**
SED			1.2278
CD (0.05)			2.4560

^{*}Mean values ±SEmof 7 replicates

Experiment was carried out with ten explants in each treatment with seven replicates and subjected to RBD analysis. Average number of explants proliferation is given in table.

Modified MS with 10 mg/L picloram and 1 mg/L 2,4-D showed the highest embryogenic calli induction (Table 3). The embryogenic calli produced by S. auritum were divided in to 10 pieces of visually equal size, and subcultured in half strength MS medium with 2 mg/L kinetin and 1 mg/L IAA for plant regeneration. Three weeks after subculture, the formation of plantlets from the somatic embryo was observed (Fig. 3). To know the possible of number of clones developed from embryogenic calli, the number of regenerated plants was counted, and it was observed that each excised portion of the explant produced an average of 9.07 plants. Complete recovery of somatic embryogenesis regenerated plants was noticed during acclimatization and hardening. Somatic embryo formation from petiole explants with TDZ and CPPU compounds has been reported previously (Zhang et al. 2006, Qian and Richard 2006). In the present study it was found that the stem explants devoid of nodes produced embryogenic calli in Syngonium auritum (Table 3). Additionally, stem explants

possess advantages in easy handling during disinfection process compared to tender explants such as leaves. Also the induction of embryogenic calli was increased in the presence of picloram and 2,4-D (Table 3). The presence of 2,4-D increase the cell division, proliferation and leads to formation of embryogenic calli cells (Raghavan 2004). The combination of 2,4-D and stress in the induction of somatic embryogenesis has been documented in ornamental plants (Cueva et al. 2015). Picloram possibly triggers stress to the explant, and this will trigger the embryogenic calli process. Notably Picloram used in this study has been reported for promoting somatic embryogenesis in several crop plants (Takamori et al. 2015, Gantait and Mahanta 2021, Hassan et al. 2021, Khatri and Joshee 2024). The combination of 2,4-D and Picloram have been reported to enhance somatic embryogenesis in Papaya (Chaudhary and Prakash 2019). In addition, the chemicals 2,4-D and Picloram are cost effective when compared to chemicals such as TDZ. The regeneration potential of one fractionated piece can produce nearly nine plants, and remaining nine pieces can produce similar number of plants, a total of ninety plants can be regenerated from the embryogenic calli obtained from single explant (Supplementary Table 1).

This investigation unveils an efficient and reproducible protocol for the micropropagation of *Syngonium* through direct organogenesis and somatic embryogenesis. It is found that BAP, NaH₂PO₄ and NH₄Br are the ideal components to be included in the modified MS nutrient medium to enhance organogenesis and picloram and 2,4-D are the essential components to trigger somatic embryogenesis. Microshoot

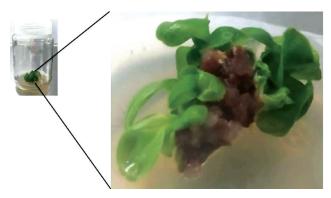


Fig. 3 Regeneration of Syngonium from somatic embryo.

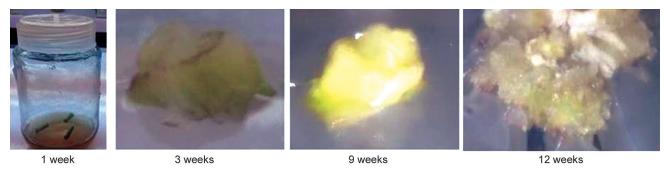


Fig. 2 The stages of somatic embryogenesis at 1 week, 3 weeks, 9 weeks and 12 weeks.

induction in the proliferation medium takes approximately eighteen weeks, and after that the microshoots capable of proliferate into 6–8 microshoots in each subculture. Rooting of elongated shoots takes approximately 2–4 weeks and the final acclimatization procedure will take four weeks. Considering the time and duration of subculture and following the optimized protocol demonstrated in this report, approximately 30000 plantlets can be envisaged from a single explant by organogenesis in a year.

ACKNOWLEDGEMENT

This work is supported by Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India under the university research project no. CPMB/TRY/PBT/2019/001.

REFERENCES

- Alippi A M, Ronco L and Alippi H E. 1994. Bacterial leaf blight affecting *Syngonium podophyllum* in Argentina. *Revista Argentina de Microbiología* **26**(3): 133–38.
- Bonetti K A, Quoirin M, Quisen R C and Lima S C. 2016. *In vitro* germination of zygotic embryos of hybrid BRS Manicore (*E. guineensis X E. oleifera*). *Anais da Academia Brasileira de Ciencias* **88**(3): 1841–50.
- Chao Z, Yin H S, De X D, Guang Y L, Yue T C, Nan H, Hui Z, Zhong R D, Feng L, Jing S and Yong D W. 2019. *Aspergillus niger* changes the chemical form of uranium to decrease its biotoxicity, restricts its movement in plant and increase the growth of *Syngonium podophyllum*. *Chemosphere* 224: 316–23
- Chaudhary K and Prakash J. 2019. Effect of 2,4-D and Picloram on Somatic Embryogenesis in *Carica papaya* var. P-7–9. *Plant Tissue Cult Biotechnology* **29**(1): 25–32.
- Cueva A A Y, Guachizaca I and Cella R. 2015. Combination of 2,4-D and stress improves indirect somatic embryogenesis in *Cattleya maxima* Lindl. *Plant Biosystems* **149**(2): 235–41.
- Davies F T, Geneve R L, Kester D E and Hartmann H T. 2017. *Hartmann and Kester's Plant Propagation: Principles and Practices.* pp. 1004. Pearson Education, Inc., New York.
- Dogra S. 2023. Plant tissue culture industry in India: Trends and scope. *International Journal of Advanced Biochemistry Research* 7(1): 28–33.
- Elsheikh A M, Daffalla D H and Khalfala M M. 2013. *In vitro* Micropropagation of the Ornamental Plant Dieffenbachia: A review. *Universal Journal of Plant Science* 1(3): 91–99.
- Gamborg O L and Shyluk J P. 1970. The culture of plant cells with ammonium salts as the sole nitrogen source. *Plant Physiology* **45**(5): 598–600.
- Gantait S and Mahanta M. 2021. Picloram-induced enhanced callusmediated regeneration, acclimatization and genetic clonality assessment of gerbera. *Journal of Genetic Engineering and Biotechnology* **19**(1): 175.
- Hasnain A, Naqvi S A H, Ayesha S I, Khalid F, Ellahi M, Iqbal S, Hassan M Z, Abbas A, Adamski R, Markowska D, Baazeem A, Mustafa G, Moustafa M, Hasan M E and Abdelhamid M M A. 2022. Plants in vitro propagation with its applications in food, pharmaceuticals and cosmetic industries; current scenario and future approaches. Frontiers in Plant Science 13: 1009395.
- Hassan M M, Allam M A, Shams E, Din I M, Malhat M H and Taha R A. 2021. High-frequency direct somatic embryogenesis and plantlet regeneration from date palm immature inflorescences using picloram. *Journal of Genetic Engineering and*

- Biotechnology 19(1): 33.
- Hassanein A M. 2004. A study on factors affecting propagation of shade plant-Syngonium podophyllum. Journal of Applied Horticulture 6(2): 30–34.
- Hazarika B N. 2003. Acclimatization of tissue-cultured plants. *Current Science* **85**(12): 1704–12.
- He J D, Wang Y D, Hu N D, Ding J, Sun Q, Deng W, LiC W and Xu F. 2015. An artificially constructed Syngonium podophyllum-Aspergillus niger combinate system for removal of uranium from wastewater. Environmental Science and Pollution Research 22(23): 18918–26.
- Jang H S, Lee S G, Moon J H and Pak C H. 2010. Growth of *Syngonium podophyllum* in drainless containers fitted with drainage layers. *Korean Journal of Horticultural Science and Technology* **28**(2): 192–99.
- Jouen E, Robene S I, Gagnevin L, Pruvost O and Benimadhu S. 2008. First Report in Mauritius of Bacterial Leaf Blight of *Syngonium* Caused by *Xanthomonas campestris* pv. syngonii. *Plant Disease* **92**(6): 980.
- Kalimuthu K and Prabakaran R. 2014. *In vitro* Micropropagation of *Syngonium podophyllum*. *International Journal of Pure and Applied Bioscience* **2**(4): 6.
- Khatri P and Joshee N. 2024. Effect of picloram and desiccation on the somatic embryogenesis of *Lycium barbarum* L. *Plants* 13(2): 151.
- Kozai T and Zobayed S M A. 2000. Acclimatization. *The Encyclopedia of Cell Technology*. pp. 12. John Wiley & Sons Inc. S. R. E New York, USA,.
- Kumar S, Kumar R, Dwivedi A and Pandey A K. 2014. *In vitro* antioxidant, antibacterial, and cytotoxic activity and in vivo effect of *Syngonium podophyllum* and *Eichhornia crassipes* leaf extracts on isoniazid induced oxidative stress and hepatic markers. *BioMed Research International* 459452.
- Li Q, Chen J and Li Y. 2008. Heavy metal leaching from coal fly ash amended container substrates during *Syngonium* production. *Journal of Environmental Science and Health* Part B **43**(2): 179–186.
- Massot B, Milesi S, Gontier E, Bourgaud F and Guckert A. 2000. Optimized culture conditions for the production of furanocoumarins by micropropagated shoots of *Ruta graveolens*. *Plant Cell, Tissue and Organ Culture* **62**: 11–19.
- McCown B H and Lloyd G. 1981. Woody Plant Medium (WPM)
 A mineral nutrient formulation for microculture of woody
 plant species. *HortScience* 16: 1.
- Murashige T and Skoog L. 1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures. *Physiologia Plantarum* **15:** 24.
- Panse V G, Sukhatme P V and Shaw F J F. 1967. *Statistical methods for agricultural workers*. pp. 361. Indian Council of Agricultural Research, New Delhi, India.
- Posposilova J, Tichal, KadlecekP, Haisel D and Plzakova S. 1999. Acclimatization of micropropagated plants to *ex vitro* conditions. *Biologia Plantarum* **42**(4): 481–97.
- Preece J E and Sutter E G. 1991. Acclimatization of micropropagated plants to the greenhouse and field. *Micropropagation*. pp. 71–93. Debergh P C and Zimmerman R H (Eds). Springer, Dordrecht.
- Qian Z J C and Richard J H. 2006. Regeneration of Syngonium podophyllum 'Variegatum' through direct somatic embryogenesis. Plant Cell, Tissue and Organ Culture 84: 7.
- Raghavan V. 2004. Role of 2,4-dichlorophenoxyacetic acid (2,4-D) in somatic embryogenesis on cultured zygotic embryos of Arabidopsis: Cell expansion, cell cycling, and morphogenesis

- during continuous exposure of embryos to 2,4-D. *American Journal of Botany* **91**(11): 1743–56.
- Rajesh A M, Yathindra H A, Reddy P V K, Sathyanarayana B N, Harshavardhan M and Kantharaj Y. 2011. *In vitro* regeneration and *ex vitro* studies in *Syngonium* (*Syngonium podophyllum*). *Journal of Ecobiology* **29**(2): 103.
- Rajeevan P K, Sheeja K, Rangan V V and Murali T P. 2002. Direct organogenesis in *Syngonium podophyllum*. Floriculture research trend in India. (*In*) *Proceeding of the national symposium on Indian floriculture in the new millennium*, Lal-Bagh, Bangalore, Indian Society of Ornamental Horticulture. February 25–27, pp. 353–54.
- Raziq M, Kazmi S K, Nasib A, Soomro F and Khan S. 2023. Effect of NaH₂PO₄ on differentiation of *in vitro* propagated bird nest fern (*Asplenium nidus* L.). *Pakistan Journal of Botany* **55**(3): 965–72.
- Takamori L M, Machado N N B, Vieira L G E and Ribas A F. 2015. Optimization of somatic embryogenesis and in vitro plant regeneration of *Urochloa* species using picloram. *In* vitro Cellular and Developmental Biology-Plant 51: 554–63.

- Wang X, Li Y, Nie Q, Li J, Chen J and Henny R J. 2007. *In vitro* culture of *Epipremnum aureum*, *Syngonium podophyllum*, and *Lonicera macranthodes*, three important medicinal plants. (*In*) *Proceeding of the International Symposium on Medicinal and Nutraceutical Plants* **756**: 155.
- Yang X and Deng W. 2017. Morphological and structural characterization of the attachment system in aerial roots of *Syngonium podophyllum. Planta* **245**(3): 507–21.
- Zhang K, Wu Y and Hang H. 2019. Differential contributions of NO₃⁽⁻⁾/NH₄⁽⁺⁾ to nitrogen use in response to a variable inorganic nitrogen supply in plantlets of two Brassicaceae species *in vitro*. *Plant Methods* **15**: 86.
- Zhang Q, Chen J J and Henny R J. 2006. Regeneration of *Syngonium podophyllum* 'Variegatum' through direct somatic embryogenesis. *Plant Cell Tissue and Organ Culture* **84**(2): 181–88.
- Zuzarte M, Salgueiro L and Canhoto J. 2024. Plant Tissue Culture: Industrial Relevance and Future Directions. *Advances in Biochemical Engineering/Biotechnology*. doi: 10.1007/10 2024 254.