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ABSTRACT

The intricate nature of agricultural price data possesses a formidable challenge in the modeling process, necessitating
the careful selection and fine-tuning of methodologies. Deep learning emerges as a potent tool for enhancing the
predictive accuracy and understanding the complexities of agricultural prices. The effectiveness of deep learning
methodologies in handling the complex patterns of agricultural price datasets was demonstrated using monthly potato
(Solanum tuberosum L.) price data collected from the National Horticultural Board across four distinct markets.
The study was carried out during 2023 aimed to compare the performance of deep learning models, including
Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM) and
Gated Recurrent Unit (GRU) with feed forward Artificial Neural Networks (ANN) using the error metrics such as Root
Mean Square Error (RMSE), Mean Absolute Percentage Error (MAPE) and Mean Absolute Error (MAE). The GRU
model performed best for the Chandigarh (16.26% MAPE) and Delhi (6.09% MAPE) markets where LSTM model
showed superior performance in the Dehradun market (17.81% MAPE) and CNN for Shimla market (12.53% MAPE).
The error percentage of deep learning models were remarkably low when compared to the machine learning model.

Keywords: Deep learning, Error metrics, Gated recurrent unit, Long short-term memory, Price
volatility

Agricultural price data are inherently complex with their
dynamic and multifaceted patterns. This complexity poses
challenges for traditional modeling methods. The temporal
dynamics of these prices are influenced by distinct seasonal
patterns and lags (Shankar er al. 2023b). Additionally,
spatial variability introduces significant disparities across
different regions due to its variations in demand-supply
dynamics (Garai et al. 2023). External influences such as
climate conditions, government policies, and supply chain
disruptions further contribute to the intricate nature of
agricultural prices. Sparsity and noise present in the data
make it incomplete and inconsistent, hindering the efficacy of
traditional statistical models. Non-linear relationships among
variables, coupled with the influence of dynamic economic
factors, add layers of complexity to the analysis (Zhao 2021).
In the face of these challenges, the application of deep
learning techniques becomes imperative. In recent years, the
incorporation of deep learning techniques has revolutionized
various sectors, particularly in agriculture (Coulibaly et
al. 2022). The agricultural sector has traditionally relied
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on statistical models and conventional machine learning
techniques for price prediction and analysis (Purohit et al.
2021). However, deep learning, a subset of machine learning,
has emerged as a dominant force, surpassing its predecessors
in handling the intricacies of agricultural price fluctuations.
The unparalleled capability of deep learning models to
automatically learn and extract intricate patterns from vast
datasets makes them particularly suited for the dynamic and
complex nature of agricultural markets. The supremacy of
deep learning over traditional machine learning techniques
in agricultural price analysis lies in its adaptability and
ability to handle high-dimensional data. The robustness
of deep learning models ensures improved accuracy and
reliability, crucial for making informed decisions in the
volatile agricultural market (Wazirali et al. 2023).

Potato (Solanum tuberosum L.), being a staple food
in India, experience price volatility influenced by various
factors such as climate conditions, demand-supply dynamics,
transportation costs, and regional economic variations.
The demand for potatoes in India is driven not only by
their widespread availability but also by their affordability,
making them an integral part of the daily diet for a large
segment of the population. The conventional models
struggle to capture the shades of these multifaceted price
data, especially potato (Badal et al. 2022). Many studies
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have reported the application of deep learning models like
Recurrent Neural Networks (RNN), Convolutional Neural
Networks (CNN), Long Short-Term Memory (LSTM),
Gated Recurrent Units (GRU) in price, especially in
agricultural sectors (Cahuantzi et al. 2023, Seabe et al.
2023, Wu et al. 2023, Wang et al. 2023). Several authors
have highlighted the significance and applications of deep
learning models in agriculture (Guo et al. 2020, Bal and
Kayaalp 2021). These models are also extensively utilized
in crop modeling using weather variables (Mohan and Patil
2018). The study was aimed to compare the performance of
different deep learning models with base Artificial Neural
Networks (ANN) and examining the nature of volatility in
potato prices in markets situated in different topographies.
The overall findings aimed to enhance the understanding of
volatility in the potato price across the markets, providing a
valuable insight for farmers and policymakers to facilitate
more informed decision-making.

MATERIALS AND METHODS

The application of stochastic and machine learning
techniques in time series analysis encounters various
constraints. One primary constraint for conventional model
likely ARIMA models is the assumption of stationarity.
Achieving stationarity often demands data transformations,
and the presence of trends or seasonality can pose challenges
to accurate modeling. Similarly, the linear nature of ARIMA
models may limit their ability to capture intricate non-linear
relationships within the data. On the other hand, machine
learning techniques, while more flexible in handling non-
linearity may fails sometimes because of the complex
nature of the data. All these models may face difficulties
when dealing with time series data that exhibits abrupt
changes, non-constant variance, or complex, non-linear
patterns (Gowthaman et al. 2023). Understanding these
constraints is crucial for selecting appropriate models and
pre-processing steps, ultimately influencing the reliability
of predictions in time series analysis. The study was carried
out in 2023 which utilized data obtained from the National
Horticultural Board, focusing on the monthly wholesale
prices of potatoes (%/q) across prominent northern Indian
markets, including Chandigarh, Delhi, Dehradun, and
Shimla. The data set covered the period from January 2008
to December 2022, encompassing 180 observations for each
market. To assess forecasting performance, the dataset was
splitted into training and testing series at the ratio of 90:10.
The analysis employed in the study were achieved using
python and R software.

Artificial neural networks (ANN): Neural networks
are powerful machine learning technique that is highly
known for its efficacy in handling non-linear data. The
fundamental structure of an ANN involves the layers of
interconnected nodes, with the input layer, hidden layers,
and output layer (Paul ef al. 2022) (Supplementary Fig. 1).
The decision on the number of nodes in input and hidden
layer involves experimentation and iterative refinement
to find the optimal architecture. The hidden layers play a
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pivotal role in capturing complex relationships through the
application of weights and biases to the input data (Garai
et al. 2023). Although ANN is a foundational model, it
has several limitations, including a tendency to overfit,
especially when working with small or noisy datasets,
which can compromise its ability to generalize effectively
to unseen data. Additionally, it struggles with capturing
complex temporal dependencies or long-term patterns in
sequential data, making it less suitable in some cases. The
basic ANN model is given by:

P
Y = g[z:’:():l:i f(zj202 int—j)] YVert

Where y, ., is the observation at time t+1; f and g are
the activation functions at hidden and output layer; p is the
number of input nodes; q is the number of hidden nodes; Bij
is the weight attached to the connection between its input
nodes and the i hidden node; a, is the weight attached to
the connection from an i" hidden node to the output nodes;
Y,y is the jt input (lag) of the model.

Convolutional neural networks (CNN): Convolutional
Neural Networks are special type of neural networks
that are highly used for image classification and pattern
recognition (Supplementary Fig. 2). They are also capable
for efficiently capturing the temporal dependencies within
sequential data (He ef al. 2023). The essential components
of CNN are input layer, convolutional layer, pooling layer,
and an output layer. These layers serve a dual purpose i.e.
enabling dimensionality reduction and extracting crucial
features from the data. In case of time series data, the
neurons in the fully connected layers, allow the network to
extract high-level temporal features and understand global
dependencies across the time steps.

O, = tanh (x, x k,+ b))

Where O,, Convolved output value; x,, Input vector; k,,
Weights of the convolution kernel and b,, Bias.

Recurrent neural networks (RNN): Recurrent neural
networks are specialized class of neural networks that are
well-suited for tasks such as natural language processing,
speech recognition, and time series analysis i.e. handling
the sequential types of data (Gu ez al. 2022) (Supplementary
Fig. 3). The fundamental architecture of an RNN consists
of three main layers, an input layer to receive the sequential
input; a hidden layer to capture information from previous
inputs through a dynamically updated hidden state; and an
output layer that produces the final output based on the
information in the hidden state (Kumari ez al. 2023). The
recurrent connections within the hidden layer allow the
network to retain the memory based on the current input
and the previous hidden state which make them unique from
ANN. However, traditional RNNs face challenges such as
the vanishing gradient problem, which limits their ability to
capture long-term dependencies (Gowthaman et al. 2023).
Let x, is the input, b, is the bias, h, and h _, are the hidden
node of current and previous cell, respectively. W, Wp, Wy
were the weights of the input, previous hidden layer and
current hidden layer, respectively. There the hidden and
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output state is given by:
h, = tanh (W, x x, + Wp xh  +b)
O, = tanh (Wy X h + by)

Long short-term memory networks (LSTM): Long short-
term memory network is an extension of recurrent neural
network that was developed to address the limitations of
long-range dependencies and vanishing gradient. LSTMs
are known for their sophisticated memory cell structure that
allows them to capture and store information (Zaheer et al.
2023) (Supplementary Fig. 4). The architecture facilitates
the flow of information, allowing LSTMs to selectively
remember or forget specific information at each time step.
This is achieved through the use of three interacting gates-
the forget gate (f), input gate (i), and output gate (O,).
In the forget gate, the information from the current state
(x,) and the previous hidden state (h, ;) is combined. This
combined information with a certain weight passes through
the activation function (o) (Ray et al. 2023). It results in
forget gate, where the unnecessary data is removed.

fi= 0 [Wee (b, x) + by

The cell memory i.e. long-term memory (C)) in the
input gate layer, is updated with the help of the input gate
and update value i.e., a new candidate value (Ct). The input
gate filters the information updated using the candidate value
which is free from unnecessary information and is updated
with significant information (Paul ef al. 2023).

=0 [W;x (h;,x) +b;]
C, = tanh [W_ x (h_, , x) +b_]
Co=1f,x Cyy +igx G

In the output gate, the short-term memory (h,) is formed
based on the long-term memory and output gate. It provides
the input that is filtered from long term memory.

0,= 6 [W, % (b1 x) b, ]
h, = O, x tanh (C)

Gated recurrent unit (GRU): Gated recurrent unit is
a variant of recurrent neural networks that are designed
to overcome certain limitations of traditional RNNs,
particularly the vanishing gradient problem (Zhang et al.
2023) (Supplementary Fig. 5). Input layer, reset gates, update
gates, candidate hidden state, and the output layer are the
part GRU architecture. The input layer receives sequential
data where the reset and update gates control the flow of
information in the network. The reset gate (r,) determines the
extent to which the previous hidden state should be forgotten,
while the update gate (z,) determines how much of the new
information should be incorporated. The candidate hidden
state (ﬁt) represents the new information that is added to
the hidden state (h,). These components work together to
update the hidden state, which retains memory of previous
inputs and captures temporal dependencies. Let x, be the
input; h and h,_, are the hidden state of current and previous
cell. W, and W, are the weights of the reset and update gate.
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z,=o [W, % (ht—l’ xt)]
r,=o [W, x (h_, x)]
ﬁt: tanh [W , (rt X ht_l, Xt)]
ht = (- Zt) x ht—1+ Zy* ﬁl

Model selection: In the process of choosing the most
effective time series model for a given dataset, different error
metrics are used which compare the predicted values to the
actual values (Shankar ez al. 2023a). Root Mean Square

Error (RMSE), Mean Absolute Percentage Error (MAPE),
and Mean Absolute Error (MAE) are used in this study.

—~2
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t
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Let Y, is the actual values; Y is the fitted value and n
is the number of observations.

RESULTS AND DISCUSSION

The results of summary statistics (Table 1) showed that
the average price of potatoes was highest in Shimla market
(1162.24 %/q) and lowest in Chandigarh market (907.52 %/q).
An exploration of the statistical characteristics of the data
reveals a positive skewness, implying that the distribution
of prices is skewed towards higher values. This departure
from a symmetrical distribution is further substantiated by
the results of the Shapiro-Wilk test, confirming the non-
normal distribution of the price data. The Cuddy Dell Valle
index which measures the data instability indicate a high
level of instability in the price series. Particularly, the price
series in Dehradun exhibited pronounced instability when
compared to rest of the markets. These results were in par
with the results of the coefficient of variation, emphasizing
the considerable variability and unpredictability in the
pricing trends. Fig. 1 showed the time series plot of the
price series of potato at different markets. The price series
were found to be non-linear in nature moving in similar
patterns across the years. The density plot and strip plot of
the price series, as shown in Fig. 2, confirm that the data
deviates from normality and contains more outliers. The BDS
(Brock-Dechert-Scheinkman) test is used to assess the non-
linearity and chaotic behaviour in time-series data. Table 2
presents the BDS test results using embedding dimensions 2
and 3, representing the number of past observations used to
reconstruct the state space, across different threshold values
(eps[1], eps[2], eps[3], and eps[4]). The results confirm the
presence of non-linearity in all price series. Similar kinds
of report on potato prices were already reported in prior
studies (Kumar et al. 2023, Mishra et al. 2023a, Mishra
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Table 1 Descriptive statistics of potato price across different Table 2 Results of non-linearity BDS test

markets Locations Statistics Embedding dimension

Statistics Chandigarh Delhi Dehradun Shimla 2 3

Mean (2/q) 907.52  1113.60 1029.37 1162.24 Chandigarh  eps[1] 50.69 66.26

Median (2/q) 78650 97050 822.00 1133.50 eps(2] 31.02 32.99

Mode (2/q) 600.00  646.00 251.00 1407.00 epsl3] 18.63 18.34

. eps[4] 15.05 14.22

Maximum (2/q) 3472.00  3040.00 4010.00 3258.00 Dehradun eps[1] 66.74 93.96

Minimum (/q) 194.00  278.00 231.00 338.00 eps[2] 42.00 45.63

Standard deviation 491.87 57455 656.65 496.67 eps[3] 2721 26.34
(/q) eps[4] 21.06 19.53

Standard error (3/q) 36.66  42.82 4894  37.02 Delhi eps[1] 33.06 42.29

Kurtosis 451 0.05 4.16 223 eps(2] 23.82 24.95

Skewness 1.52 072 171 1.02 epsE& Zii gig

. . eps . .

Shapiro-Wilk test 0.90 0.94 0.86 0.94 Shimla eps[1] 5750 751
(p-value)

Coefficient of 54.20 5159  63.79  42.73 eps(2] 2894 30.54
octlicient o : : : : eps[3] 20.77 20.32
Variation

eps[4] 16.73 15.81

Cuddy Della Valle 4544 4681 5550 3931

*All the above values have p values less than 0.01, confirming

Index the significance of the results. eps, Epsilon.

4000/ Fo=Chandigarh et al. 2023b, Shankar et al. 2023b).
—o—Delhi These multifaceted data necessitate
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approaches to address the limitations
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% 20001 recognized for its efficacy in handling
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Fig. 2 Descriptive plots on price data.
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a trial-and-error approach i.e. systematically applying
different values for hyperparameters and evaluating their
impact on the model's performance to find the most suitable
configuration for the given dataset (Paul et al. 2023). The
study utilized the different lags in which 12 lags were
considered to be best fitting the model as the data were
monthly in nature. A Feed Forward Neural Network was
applied with the network size varying between 1 to 15 using
a sigmoid activation function. This configuration enables
the ANN to capture the temporal dependencies within the
dataset. The CNN model was implemented with parameters
including epochs ranging from 50 to 100, kernel sizes of 3,
5,7,9, and 12, filters ranging from 16 to 64, RMSprop (Root
Mean Square Propagation) optimizer, and ReLU (Rectified
Linear Unit) activation function. RNN, LSTM, and GRU
models were also fitted to the data, configured with units
ranging from 10 to 50 and batch sizes of 1 to 5. The models
were trained for 50 to 100 epochs using the RMSprop
optimizer and ReLU activation function (Supplementary
Table 1). This comprehensive modeling strategy aims to
extract intricate patterns and dependencies, providing a
nuanced understanding of the underlying dynamics within
the dataset.

The results of the model performance were given in
the Table 3. The model which returns minimum error will
be considered as the best fitted model for the data. RMSE,

Table 3 Model performance

Locations ~ Models RMSE MAPE (%) MAE
Chandigarh ANN 535.79 38.42 419.73
CNN 277.96 20.2 246.44
RNN 258.98 18.72 225.68
LST™M 250.52 16.32 189.13
GRU 229.97 16.26 184.76
Dehradun  ANN 332.86 31.96 283.97
CNN 229.17 19.18 184.74
RNN 269.64 25.28 230.45
LSTM 238.47 17.81 158.36
GRU 249.03 19.12 175.26
Delhi ANN 540.34 36.51 487.83
CNN 135.95 9.9 113.92
RNN 121.35 8.32 101.66
LST™M 95.62 6.91 81.46
GRU 87.95 6.09 67.89
Shimla ANN 306.99 21.52 275.15
CNN 192.39 12.53 148.71
RNN 227.61 14.79 198.08
LSTM 207.62 13.56 160.93
GRU 208.8 14.04 166.39
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MAPE and MAE were the error metric used to select the
best performing model. The results showed that the GRU
was found as the best fitted model for Chandigarh and
Delhi markets with RMSE, MAPE, MAE value of 229.97,
16.26, 184.76 and 8795,6.09, 67.89 respectively. LSTM
came out as best fitted model for the Dehradun market
with RMSE of 238.47. MAPE of 17.81% and MAE of
158.36. For Shimla market, CNN came out as best fitted
model with low error rate, i.e. RMSE of 192.39, MAPE
of 12.53% and MAE of 148.71%. Although CNNs are
primarily used in image processing, their ability to capture
local patterns through convolutional layers makes them
effective for time-series data as well. In price forecasting,
CNNs can detect short-term dependencies, trends, and
volatility. This capability allows them to perform well in
applications beyond traditional image tasks. Thus, deep
learning models demonstrate their efficiency by handling
data more effectively than traditional baseline models. The
main key advantages are the ability to automatically extract
complex patterns from raw data which eliminate the need
for extensive manual feature engineering. Additionally, they
can capture both short- and long-term dependencies and
handle large, high-dimensional datasets robustly, delivering
accurate prediction even in volatile market conditions. These
findings are supported by several studies that highlight the
significance of deep learning in capturing complex patterns
and improving predictive accuracy (Manogna and Mishra
2021). Jaiswal et al. (2022) showed the efficiency of deep
LSTM in agricultural price forecasting. Nayak et al. (2024)
also confirmed the superior performance of deep learning
models over machine learning models using data from TOP
crops. Paul ef al. (2023) showcased the effectiveness of
deep learning models compared to machine learning and
conventional models in handling agricultural price datasets.
Fig. 3 showed the graph with actual values and fitted values
of all the models for price series of all the markets.

The study undertakes a comprehensive exploration into
the utilization and effectiveness of various deep learning
models for the agricultural datasets, using the price series
of potatoes as a primary focus. The preliminary examination
through basic statistics and visual plots conclusively
establishes that the dataset deviates from normality, exhibits
non-linearity, and displays a high degree of instability. In
response to these intricate data characteristics, the study
employs a diverse set of deep learning models, including
ANN, CNN, RNN, LSTM and GRU. These sophisticated
models are chosen for their innate ability to capture temporal
dependencies and glean insights from historical pricing
data, thereby enhancing the precision of predictions related
to future price trends. The performance of these models
was evaluated using metrics such as RMSE, MAPE and
MAE. The GRU model was found superior in fitting for
the Chandigarh and Delhi markets with MAPE value of
16.26% and 6.09%, respectively. LSTM model excels in
Dehradun market with lowest MAPE value of 17.81%. CNN
model, highly known for its efficiency in handling in image
data, turns out to be the best fit for Shimla market with
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MAPE value of 12.53%. The study underscores the overall
superiority of deep learning techniques over traditional
machine learning methods (ANN) in handling agricultural
datasets. However, the choice of the most suitable model
is contingent upon the unique characteristics of the dataset
under consideration. The study can be further extended by
exploring advanced deep learning and hybrid deep learning
models to enhance the accuracy of the predictions.
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