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ABSTRACT

Economic outputs are an attractive prospect in any field and hence agriculture also relies heavily on economic
stability. The costs associated with cotton farming are increasing and profitability is taking a hit in cotton cultivation.
Timely and accurate forecast of the price helps the farmers switch between the alternative nearby markets to sale
their produce and getting good prices. Present study was carried out during 2022 to 2023 in Haryana to provide some
insights into the possible future prices of cotton (Gossypium spp.) with the help of data collected from AGMARKNET
and various major cotton markets (Adampur, Sirsa and Fatehabad) of Haryana. The Autoregressive Integrated Moving
Average (ARIMA) models have been employed in order to forecast the prices of cotton crops for the years 202223
to 2027-28. Through a meticulous exploration of various combinations of lagged moving average and autoregressive
components, the ARIMA (1,1,1) model was selected as the most suitable for the price forecasting in these districts. The
results of this analysis demonstrate that the coefficient of determination (R?) for the forecasted cotton crop prices in
comparison to the real-time prices falls within acceptable ranges. This finding underscores the efficacy of the ARIMA
(1,1,1) model as a reliable tool for generating short-term price estimates. This model offers valuable insights and
predictive accuracy, aiding decision-makers and stakeholders in the cotton industry of Adampur, Sirsa and Fatehabad
markets to make informed choices and plan effectively for the coming years. Cotton prices vary according to the
season and the region, hence a valuable insight on future price assumptions will help the agriculture community.

Keywords: Autocorrelation, Coefficient of determination, Differencing, Partial autocorrelation
function, Price forecast

Cotton (Gossypium spp.) stands as a pivotal cash crop
within the realm of major commercial crops cultivated in
both India and the state of Haryana. This fibrous commodity,
widely acclaimed as 'White Gold,' assumes a commanding
position within the domain of cash crops in India. On a
global scale, India proudly occupies the 3" rank in cotton
production, trailing only behind China and the United
States. India's cotton cultivation spans approximately 25%
of the world's acreage dedicated to this crop; however,
its contribution to global cotton production stands at a
comparatively modest 14%. In 2021-22 the area, production
and productivity of cotton in India was 123.71 lakh ha,
311.17 lakh bales and 428 kg/ha, respectively. Whereas
in 2022-23 area, production and productivity have seen
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a rise to 130.61 lakh ha, 343.47 lakh bales and 447 kg/ha
(COCPC 2023).

Today, cotton is a vital cash crop, particularly in
developing countries, impacting both local and national
economies (Gudeta and Egziabher 2019). India, with its
agriculture-driven economy, leads the world in cotton
cultivation, providing essential raw materials for the cotton
textile industry. As we know agriculture is impacted the
most because of the climatic variability, crop production and
stock levels at various production and consumption centres
fluctuate. This variability impacts pricing policies and trade
opportunities for various agricultural commodities. Hence,
reliable market predictions, including both short-term and
long-term price forecasts for agricultural commodities are
essential for the development of the farming community
and time series forecasting models can provide important
insight in this matter.

The ARIMA model, also known as the Box-Jenkins
model, is widely employed for forecasting time series data.
As the several studies have employed the ARIMA model
for price forecasting. Verma et al. (2016) applied ARIMA
modelling to forecast coriander prices in Rajasthan and
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determined that the ARIMA (0, 1, 1) model was the most
appropriate. Darekar and Reddy (2017) used ARIMA for
wheat price forecasting and found that the ARIMA (0, 1,
1) (0, 1, 1) model was the best fit. Since agriculture is the
main source of income for majority of the people in the state
and cotton being a major cash crop, this article forecasts
prices in key cotton markets of Haryana. Although price
forecasting carries inherent risks due to unpredictable factors
that can invalidate forecasts, forecasting is crucial for making
timely decisions in an uncertain future (Jadhav et al. 2017).
Therefore, a study was carried out to forecast cotton prices
in major Haryana markets utilizing the ARIMA model.

MATERIALS AND METHODS

Present study was carried out during 2022-23 in
Haryana. Time series data spanning 17 years, from
September 2005-May 2022, were collected from the
AGMARKNET website various major cotton markets
(Adampur, Sirsa and Fatehabad) of Haryana. The primary
analytical tool employed in this study was the Autoregressive
Integrated Moving Average (ARIMA) model. ARIMA
models, initially popularized by Box and Jenkins (1976), are
utilized to analyse and predict time series data. Time series
data comprises a collection of values that exhibit variation
over time, where the intervals between observations may
vary. Nonetheless, the range of these intervals should remain
consistent throughout the observed period. In empirical
time series analysis, it is generally assumed that the time
series is stationary. A stochastic process, representing the
collection of a variable over time, can be either stationary or
non-stationary. An autoregressive model entails regressing
the dependent variable on one or more lagged periods of
itself. When only one lagged period is included, it constitutes
a first-order autoregressive stochastic process, denoted as
AR(1). Extending to include p lagged periods results in a pth-
order autoregressive process, denoted as AR(p). Stationarity
can manifest in various forms, with weak stationarity (or
second-order stationarity) being commonly employed in
empirical analyses. A stochastic process is considered weakly
stationary if it maintains a constant mean and variance,
with the covariance being time-invariant, indicating that
statistical properties do not fluctuate over time. A white
noise process is a special case of a stationary stochastic
process, characterized by a mean of zero, constant variance,
and serially uncorrelated observations. In forecasting time
series data, it is assumed that the underlying time series
is stationary. Under this assumption, various forecasting
models can be constructed, including moving average
processes, autoregressive processes, autoregressive and
moving average processes, and autoregressive integrated
moving average processes (Gujarati and Porter 2008).

The study was divided into four main stages, viz.
(1) Identification stage: The stationary nature of the time
series data was initially assessed, revealing non-stationarity;
To make the non-stationary data stationary, first-order
differencing was applied; Candidate ARIMA models were
developed based on the differenced data; Initial values for
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non-seasonal parameters "p" and "q" were determined by
examining significant spikes in autocorrelation and partial
autocorrelation functions; One or more tentative ARIMA
models were selected to adequately represent the data;
Precise parameter estimates for the chosen model(s) were
obtained using least squares estimation; (2) Estimation stage:
ARIMA models were used to estimate the results of the data;
Accuracy of model was checked using diagnostic statistics;
(3) Diagnostic checking: AIC (Akaike Information Criteria)
score that is low; The Schwarz Bayesian Criteria (SBC)
were occasionally taken into account; The accuracy of the
model was evaluated using the Mean Absolute Percent Error
(MAPE); As an accuracy statistic, the Root Mean Squared
Error (RMSE) was used; To evaluate the model's precision,
the coefficient of determination (R?) was calculated; and (4)
Forecasting stage: Using the chosen ARIMA model, future
values of the time series were predicted.

Statistical analysis: The statistical tools like SPSS and
R were used for the analysis and model creation. Numerous
scenarios requiring time series analysis and dynamic systems
have successfully used ARIMA models. Notably, Gwilym
Jenkins and George Box invented the detailed study of
ARIMA models in 1968. Since then, the terms "ARIMA
processes" and "time series analysis and forecasting" have
come to mean the same thing.

RESULTS AND DISCUSSION

The initial phase of this study involves the identification
of suitable ARIMA model orders, denoted as p and q, for the
purpose of modelling time series data. This determination is
based on the rigorous analysis of ACFs and PACFs of the
stationary data series. Specifically, the ACFs offer insights
into the temporal correlations between data points and their
respective lags while the PACFs are utilized to discern direct
relationships between observations at varying lags, while
mitigating the influence of shorter lags.

The investigation of ACF plots yielded a discernible
pattern of gradual decline, indicative of non-stationarity
within the data. In response, a first-order differencing (d=1)
operation was applied to all data series under consideration
to establish stationarity, an essential prerequisite for the
accurate application of time series models. Moreover,
the examination of PACF plots revealed a conspicuous
peak at lag one, suggesting the potential presence of an
autoregressive (AR) component of order one.

Following these preliminary steps, tentative ARIMA
models were formulated and fitted to the data. These
included ARIMA (1,1,1), ARIMA (0,1,1) and ARIMA
(1,1,0) models. Based on a thorough examination of the
temporal aspects of the data, these model formulations
sought to predict district-level cotton yield for the markets
of Adampur, Sirsa, and Fatehabad. As a result, it can
help in making well-informed choices. Autocorrelations
and Partial autocorrelation of cotton price for Adampur,
Sirsa and Fatehabad markets are presented in Fig.1 and 2.
Identification entails figuring out the correct p and q values
for the AR and MA polynomials as well as their suitable
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Fig. 1 Auto correlation of cotton prices for (A) Adampur; (B) Sirsa; (C) Fatehabad market.

ACEF, Autocorrelation of function.

orders. The stationary series' autocorrelation and partial
autocorrelation functions (ACFs and PACFs) were used
to calculate the ordering. According to Fig. 1 charting of
the acfs for all the districts under consideration, ACFs
declines suggest non-stationarity. Order one differences were
sufficient to produce an adequate stationary series for each
market. The series may have one order of AR component, as
seen in Fig. 2, because the PACFs revealed the presence of
one substantial spike at lag one. The first differencing of the
original data series converted the non-stationary data series
of all the districts into stationary series (Jadhav ef al. 2017).
Parameter estimation: We took into account three
alternative ARIMA models: ARIMA (1,1,1), ARIMA (0,1,1),
and ARIMA (1,1,0) throughout the identification phase of
our investigation. In order to produce estimates that the sum
of squared residuals, we performed parameter estimation
using a non-linear least squares (NLS) method, reflecting
our desire for more accurate forecasts with smaller error
variance. It's worth noting that linear least squares can only
be employed to estimate pure AR models, while all other
models require the use of non-linear least squares.
Among the various NLS methods available, Marquardt's
compromise algorithm (1963), is commonly used to estimate

ARIMA models. This algorithm initially selects preliminary
parameter estimates and then iteratively refines them to
minimize the sum of squared residuals. Our criteria for
selecting the appropriate ARIMA model included Log
Likelihood, Akaike's Information Criterion (AIC, 1969),
Schwarz's Bayesian Criterion (SBC, 1978), as well as
residual variance.

Based on our analysis and parameter estimation, we
have determined that the ARIMA models ARIMA (1,1,1),
ARIMA (0,1,1), and ARIMA (1,1,0) all have significant
parameters (Table 1). However, after assessing the models
using criteria such as R2, MAPE, MAE, and BIC, ARIMA
(1,1,1) model was chosen for Adampur, Sirsa, and Fatehabad
districts due to its superior performance in terms of these
metrics. Similar results and methodology was used by
Kathayat and Dixit (2021).

Diagnostic checking: The model verification process
aimed to assess the residuals of the chosen ARIMA models
for any systematic patterns that could be eliminated to
enhance model accuracy. To accomplish this, we computed
approximate t-values for the autocorrelation coefficients
of the residuals, employing Bartlett's approximation to
estimate the standard error of these autocorrelations. In
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Table 1 Criteria for choosing ARIMA models in major markets

of Haryana

District Model Model fit statistic(s)
R2 MAPE MAE BIC
Adampur  ARIMA(1,1,1) 0.66 12.71 669.83 14.65
ARIMA(0,1,1) 0.62 1297 670.87 14.53
ARIMA( 1,1,0) 0.61 13.54 694.55 14.54
Sirsa ARIMA(1,1,1) 0.70  11.20 599.60 14.39
ARIMA(0,1,1) 0.66 11.10 589.69 14.22
ARIMA( 1,1,0) 0.65 11.38 590.92 14.26
Fatehabad ARIMA( 1,1,1) 0.74 1031 51091 13.89
ARIMA(0,1,1) 0.74 1141 55898 13.67
ARIMA( 1,1,0) 0.68 11.63 568.69 13.86

ARIMA, Autoregressive integrated moving average model; R2,
Coefficient of determination; MAPE, Mean absolute percent error;
MAE, Mean absolute error; BIC, Bayesian information criterion.

graphical representation it was discovered that none of the
residual autocorrelation functions (ACFs) in any of the
districts exhibited statistically significant departures from
zero at a reasonable significance level. Additionally, the
residuals appeared to approximate a normal distribution,
further supporting the absence of systematic patterns in the
residuals (Darekar and Reddy 2017).

During the parameter estimation stage, we experimented
with various lags for both the moving average and
autoregressive processes. Ultimately, the ARIMA models
(0,1,1) and (1,1,0) were chosen. However, during the
diagnostic checking stage, we found that the ARIMA (0,1,1)
model was the most suitable fit based on non-significant
Ljung-Box Q statistics (1978), indicating that the residuals
resembled white noise. This model was selected to estimate
cotton prices in the Adampur, Sirsa, and Fatehabad districts
(Table 2).

For a more detailed description of the ARIMA
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(1,1,1) model fitted to these districts, the following can be
elaborated:

The ARIMA (1,1,1) model incorporates three
components: The three components are, differencing (d=1),
autoregressive (AR) order of 1, and moving average (MA)
order of 1. The differencing (d=1) suggests that we applied
a first-order differencing operation to the time series data
to achieve stationarity. The autoregressive component
(AR=1) indicates that the current value of the time series
is regressed on its previous value, with a lag of 1 time
period. The moving average component (MA=1) implies
that the current value of the time series is influenced by the
previous error term, also with a lag of 1 time period. This
combination of differencing, autoregressive, and moving
average components captures the underlying patterns in
the data, making it a suitable model for forecasting cotton
prices in the Adampur, Sirsa, and Fatehabad districts (Biswal
and Sahoo 2020).

Regenerate

(1-B) Yt=(1-61B) at

Yt-BYt= at- 1B at

Yt=Yt-1-61at-1+at........ (1)

The appropriate forecast equation is equation 1. The
observed-to-predicted value plot (Fig. 3) demonstrated
that all fitted models accurately capture the underlying
mechanism.

The ARIMA (1,1,1) model was employed to analyze
cotton price data spanning from the periods of 2005-06
to 2021-22, and to make forecasts for the subsequent
periods from 2022-23 to 2027-28 (Table 3). A comparative
evaluation was conducted between ARIMA-based yield
estimates and estimates provided by the Department of
Agriculture (DOA) in terms of key statistical metrics,
namely, R2, MAPE, MAE, and BIC. The results clearly
favoured the utilization of ARIMA models for obtaining
short-term forecast estimates.

It can be inferred from the examination of the cotton
yield time series data that the Box-Jenkins approach

Table 2 Parameter estimates for cotton price models in major markets of Haryana

District Model Estimate Std. Std. Error t-value P-value
Adampur ARIMA(1,1,1) AR 0.535 0.865 0.618 0.547
MA 1.000 269.33 0.004 0.997
ARIMA(0,1,1) MA 0.286 0.558 0.512 0.617
ARIMA( 1,1,0) AR -0.613 0.487 -0.334 0.743
Sirsa ARIMA(1,1,1) AR 0.419 0.710 0.589 0.566
MA 0.999 56.101 0.018 0.986
ARIMA(0,1,1) MA 0.505 0.401 1.261 0.228
ARIMA( 1,1,0) AR -0.192 0.465 -0.414 0.685
Fatehabad ARIMA(1,1,1) AR 0.282 0.514 0.549 0.592
MA 1.000 234.164 0.004 0.997
ARIMA(0,1,1) MA 1.000 165.397 0.006 0.995
ARIMA( 1,1,0) AR -0.349 0.338 -1.033 0.319

ARIMA, Autoregressive integrated moving average model.
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Fig. 3 Comparison of actual and predicted cotton prices using
ARIMA models in major markets of Haryana.
UCL, Upper confidence limit; LCL, Lower confidence limit.

produced forecast numbers that were remarkably accurate.
These forecasted yields closely aligned with the actual
observed yields. It is important to emphasize, however, that
certain aspects of the modelling process, such as the selection
of the order of differencing and the determination of auto-
regressive and moving average components, exhibit high
sensitivity and can significantly impact the model outcomes.
Therefore, a meticulous approach is imperative when
identifying and generating these parameters for analysis, as
incorrect choices may lead to misleading conclusions for
decision-makers. Nonetheless, it is recommended that this
technique be primarily employed for short-term forecasting
purposes.

With the help from price forecasting study Adampur and
Sirsa market showed seeing almost similar price increase
pattern, whereas Fatehabad market on other hand showed
a different price pattern with slight increase (Table 3).
These findings will help in attaining better cropping pattern
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Table 3 Cotton price forecast for markets of Haryana using the
best-fitting ARIMA models

Year Adampur (R/q) Sirsa (X/q) Fatehabad (/q)
2022-23 10751.16 9961.37 6866.70
202324 11272.89 10435.45 7147.19
2024-25 11794.61 10909.53 7427.68
2025-26 12316.34 11383.61 7708.16
202627 12838.071 11857.69 7988.65
2027-28 13359.79 12331.77 8269.14

strategies for the farmers and also will give a hint about the
future prices that can be there in the markets. Kumar and
Baishya (2020) reported that prices of potato will increase
Madhya Pradesh, Tripura and Punjab market.

Time series analysis and forecasting is an active research
area over the last few decades. The accuracy of time series
forecasting is fundamental to many decision processes
and hence the research for improving the effectiveness of
forecasting models has never stopped. In this paper, we
propose to take an approach to time series forecasting. The
linear ARIMA model is used, aiming to capture different
forms of relationship in the time series data. Time series is
an important dimension to forecast in which past values of
the variables are considered in order to develop a model.
The model is then used to apply time series data into future.
The existing approach is only used when lesser information
is available on the data generating process or when there is
no satisfactory explanatory model that relates the prediction
variable to other explanatory variables. A lot of effort has
been applied over the past several time to develop and
improve time series forecasting models. The complex
problems that have both linear and nonlinear correlation
structures, the combination method can be an effective
way to improve forecasting performance. The empirical
results with three real data sets clearly suggest that the
hybrid model is able to outperform each component model
used in isolation.

The Indian economy has transitioned towards a free
market system, wherein commodity prices are primarily
determined by market forces driven by demand and supply
dynamics. Commercial crop prices are now vulnerable to
changes in both domestic supply and demand as well as
changes in global supply and demand as a result of this
change. In the aftermath of liberalization, price fluctuations
in crops like cotton have become more pronounced, creating
uncertainty for farmers regarding the profitability of their
cultivation.

In this context, the importance of forecasting future
prices, specifically harvest month prices, cannot be
overstated. Providing farmers with such forecasts empowers
them to make informed decisions when choosing which
crops to cultivate. This proactive approach can significantly
impact their choices and ultimately benefit their agricultural
endeavours. To achieve this, the paper employs an ARIMA
(Auto Regressive Integrated Moving Average) model, which
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leverages historical monthly cotton prices from major
cotton-producing states to make predictions as stated by
Box and Jenkins (1976).

It is crucial to acknowledge that, like any forecasting
method, the ARIMA model does not guarantee perfect
forecasts. Nevertheless, it has proven to be a valuable
tool in forecasting future prices. The model operates as
an extrapolation technique, relying solely on historical
time series data of the variable under consideration. The
forecasted prices generated by the ARIMA model reveal
an upward trend in cotton prices in the coming years,
accompanied by an anticipated increase in demand for this
crop Borkar (2022).

As a result, this forecasting information can guide
decisions regarding the expansion of cotton production areas
and the timing of sales in suitable markets. It is crucial to
keep in mind, that this projection is based on estimates
from the model and past data. Due to unforeseen economic,
environmental, or other circumstances, actual market prices
may differ from the values predicted. Therefore, while this
forecasting approach is valuable, it should be used as a
tool for informed decision-making rather than an absolute
predictor of future market prices. These findings are in
accordance with Pardhi ef al. (2018).
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