Evaluation and character association study for tuber yield, biochemical and antioxidant properties of sweet potato (*Ipomoea batatas*)

H D TALANG¹, A K JHA², M B DEVI¹*, G T MAWLONG¹, KAMNI P BIAM¹, J MAWLEIN¹, H RYMBAI¹, V K VERMA¹, B LYNGDOH¹ and S HAZARIKA¹

ICAR-Research Complex for North-Eastern Hill Region, Umiam, Meghalaya 793 103, India

Received: 31 May 2024; Accepted: 21 August 2024

ABSTRACT

A study was carried out during 2022 and 2023 at ICAR-Research Complex for North-Eastern Hill Region, Umiam, Meghalaya to evaluate the yield, biochemical and antioxidant properties of 49 accessions of sweet potato [*Ipomoea batatas* (L.) Lam.] in mid hill condition of north-eastern region. The experiment was laid out in randomized block design (RBD) with 3 replications. Results indicate that Mynthlu Orange exhibited the highest tuber weight, length, diameter and yield. In terms of biochemical parameters, Meghalaya Local recorded the highest dry matter content; Col-6 recorded the highest starch content; and X-24 had the highest total sugar content. Among antioxidants, X-24 showed the highest total phenolic content, highest FRAP assay value and anthocyanin with lowest IC50 value which signified that X-24 had the highest antioxidant activity. Correlation study revealed significant positive correlation of tuber yield with tuber weight, diameter and total anthocyanin. Based on the mean performance, accessions Mynthlu Orange, X-24 and Col-6 were found promising for yield, biochemical and antioxidant parameters.

Keywords: Accessions, Antioxidant, Biochemical, Sweet potato, Yield

Sweet potato [*Ipomoea batatas* L. (Lam.)], rank as the sixth most significant food crop globally, following rice, wheat, potatoes, maize, and cassava (CIP 2020). They hold immense appeal for resource-constrained farmers due to their remarkable productivity despite minimal input requirements, resilience to adverse climates, and ability to thrive in low-fertility soils (Sivakumar 2003). Notably, they boast a rich nutritional profile, being abundant in carbohydrates, vitamins (A, B, and C), minerals (calcium, phosphorus, iron, and potassium), dietary fiber, energy and natural antioxidants (Tegeye *et al.* 2019, Paliwal *et al.* 2020). Particularly, orange, yellow-fleshed and purple-fleshed sweet potatoes are noted for their significant concentrations of phenolic acids, carotenoids and anthocyanins (Grace *et al.* 2014, Wang *et al.* 2016).

The north-eastern region contributes approximately 4.02% to the country's total production, yielding 64.27 thousand tonnes from an area covering 11.7 thousand hectares (Anonymous 2023). The tribal communities in the region have been cultivating and consuming sweet potato for generations, serving as a vital source of food and nutritional

¹ICAR Research Complex for NEH Region, Umiam, Meghalaya; ²ICAR-Directorate of Knowledge Management in Agriculture, Krishi Anusandhan Bhawan-I, Pusa, New Delhi. *Corresponding author email: bilashini1712@gmail.com

security. The region boasts a diverse range of sweet potato varieties, including those with yellow, white, orange, and purple flesh (Talang *et al.* 2023). However, despite the crop's significant importance in the region, comprehensive research on yield, biochemical attributes, and antioxidant properties of the local sweet potato accessions remain scarce. In light of this, we carried out a study on 49 sweet potato accessions collected from various parts of the region, focusing on yield, biochemical as well as antioxidant properties in mid hill condition of north-eastern region.

MATERIALS AND METHODS

A study was carried out during 2022 and 2023 at ICAR Research Complex for NEH Region, Umiam, Meghalaya. Forty-nine (49) sweet potato accessions (Supplementary Table 1) were examined for yield, biochemical, and antioxidant properties. Planting was done in August 2022 and harvested in second week of December 2022. Recommended cultivation practices as outlined by Verma *et al.* (2023), were followed to ensure optimal growth and yield. Fully matured tubers were used for analysis of biochemical and antioxidant properties. The experiment was laid out in randomized block design (RBD) with 3 replications. Each plot measured 6 m × 2.4 m, with spacing of 60 cm × 45 cm.

Yield parameters: Parameters such as weight of tuber, length, diameter and yield were recorded by taking the average of 100 tubers, following standard procedures.

Dry matter content: Dry matter content of the samples was determined by oven-drying 100 g of freshly sliced tubers at 60°C, till a constant weight was attained and calculated as:

Dry matter (%) = (Dry weight/Fresh weight) \times 100

Starch: Starch was estimated as described by Hedge and Hofreiter (1962).

Total sugar: This test was estimated according to DuBois *et al.* (1956).

Reducing sugar: This test was estimated as per the procedure described by Miller (1959).

Non-reducing sugar: It was estimated by subtracting reducing sugar from total sugar.

Ferric reducing antioxidant power (FRAP) Assay: The antioxidant capacity was determined as described by Benzie and Strain (1999).

DPPH radical scavenging assay: Free radical scavenging ability of the extracts was tested as described by Shen *et al.* (2010) and calculated as:

Scavenging activity (%) = ${(Abs control-Abs sample)}/{Abs control} \times 100$

 IC_{50} was determined by using the scavenging activity to create a standard curve for each standard and sample from the linear equation y = ax+b.

$$IC_{50} = 50-b/a$$

Total phenolic content: The total phenolic content was determined as described by Keskin-Sasic *et al.* (2012).

Anthocyanin: Anthocyanin was estimated as described by Srivastava and Kumar (2002).

Total anthocyanin (mg/100 g) = (Total OD/100 g)/98.2

Statistical analysis: The data were statistically analysed using SPSS software, version 14.0.

RESULTS AND DISCUSSION

Yield parameters: Significant variations were noted among different accessions for all the traits studied with Mynthlu Orange exhibited highest tuber weight, tuber length, tuber diameter and tuber yield (Table 1). Mary et al. (2022) also reported variations in yield parameters of sweet potato which they stated could be attributed to the genetic composition of the genotype. Yooyongwech et al. (2014) stated that variations in yield are inherent to cultivars since they are genetically determined traits. Similarly, Hayati et al. (2020) linked environmental and soil conditions, the source of propagation material, and the inherent characteristics of cultivars as major factors contributing to the observed variation in tuber yield.

Biochemical parameters: Significant variability was observed among different accessions of sweet potato in terms of biochemical parameters. Meghalaya Local exhibited the highest dry matter content, which was comparable to Shalinda-3, while the lowest dry matter content was found in Sree Bhadra and ST-14 (Table 2). Col-6 recorded the highest starch content, whereas Arunachal-1 showed the

lowest. Maximum total sugar was recorded in X-24 which is however on par with Mynthlu Orange, reducing sugar in Sohmynting-1 and non-reducing sugar in S-5. These variations in quality parameters may be attributed to inherent differences among the accessions (Pavithra *et al.* 2023). Moreover, it is less likely that environmental effects influenced most of the quality parameters, as all accessions were cultivated under similar climate and soil conditions with uniform cultivation practices. Similar observations were reported by Yildirim *et al.* (2011) and Verma *et al.* (2023).

Antioxidant activity: Significant variations were noted among different accessions of sweet potato in terms of their antioxidant activity, as evaluated through the FRAP assay and the DPPH radical scavenging assay. X-24 (orange flesh) had the highest FRAP value and lowest IC50 value as compared to the other accessions (Fig. 1). This indicated that X-24 had the highest antioxidant activity. Tang *et al.* (2015) reported FRAP values of 70.18 ± 0.47 mmol FeSO4E/g with orange flesh sweet potato while white flesh sweet potato recorded a FRAP value of 61.86 ± 1.26 mmol FeSO4E/g. Additionally, sweet potato demonstrated outstanding antioxidant activities surpassing those of other leafy vegetables, as reported by Truong *et al.* (2007), Gunathilake and Ranaweera (2016) and Comert *et al.* (2020).

Total phenolic content: Fig. 1 illustrates significant variations in total phenolic content among different sweet potato accessions, with X-24 recorded highest value. Similar findings were reported by Roy *et al.* (2012), who observed variation in phenolic content among sweet potato accessions. Shan *et al.* (2005) suggested that factors such as the plant part tested, maturity period, presence of diseases and pests, climate, location, soil fertility, and temperature could contribute to this significant variation in phenolic content. Moreover, the presence of different phenolic compounds in plant extracts may contribute to the variation in total phenolic content (Rajurkar and Hande 2011).

Total anthocyanin: X-24 recorded maximum anthocyanin content and Mizo-2 the minimum (Fig. 1). These variations in total anthocyanin content may be attributed to differences in flesh colour among the accessions. Rahman *et al.* (2023) reported that the anthocyanin content of sweet potato depends on the colour intensity of the tuber with purple colour sweet potato tubers exhibited the highest anthocyanin followed by orange, white and yellow colour. Similarly, Kim *et al.* (2011) and Chen *et al.* (2018) reported that orange-fleshed sweet potatoes contain higher total anthocyanin content followed by white and yellow colour tubers.

Correlation analysis: Results revealed that weight of tuber had the highest positive and significant correlation with tuber yield ($r^2 = 0.716$) and diameter of tuber ($r^2 = 0.656$) at P < 0.01 (Table 3). Similar finding was reported by Islam et al. (2002) in potatoes. Felenji et al. (2011) stated that cultivars with more tuber weight have higher yield. Length of tuber had significant positive correlation with dry matter ($r^2 = 0.345$) and reducing sugar ($r^2 = 0.303$) at P < 0.05 but significant negative correlation with non-reducing sugar ($r^2 = -0.369$) at P < 0.01. Diameter of tuber had the highest

Table 1 Yield parameters of sweet potato accessions

Genotype	Weight of tuber (g)	Length (mm)	Width (mm)	Yield (t/ha)
Shalinda-3	158.50±2.12 ^{fgh}	166.58±3.12 ^{abc}	35.31±2.15hijklm	17.84±0.19 ^{pq}
Nongrim Nongladaw	117.33±7.51klmnop	179.16±0.87a	22.39±1.46 ^{no}	20.50±0.22lm
Col-6	91.67±7.64 ^{qrst}	149.20±5.19cdefghijk	26.29±2.70mno	16.30±0.13rs
Meghalaya Local	94.67±5.03° pqrs	176.88 ± 6.05^{ab}	34.83 ± 2.07^{hijklm}	13.15±0.13 ^{uv}
TSP 12-6	173.67±4.16 ^{cdef}	112.34±6.95qrstu	59.98±1.81ab	24.84 ± 0.06^{fg}
Lumsohpieng Orange	250.63±3.87a	127.57±4.56lmnopqrs	49.69±2.69 ^{bcde}	25.67±0.71ef
Sohmynting-1	119.33±5.51klmn	153.29±3.40 ^{cdefghi}	31.73 ± 2.32^{jklmn}	18.75±0.26 ^{nop}
Shalinda-2	$169.91 \pm 4.62^{\text{defg}}$	132.54 ± 3.24^{jklmnop}	44.38±3.77 ^{cdefghi}	23.09 ± 0.33^{hij}
Shalinda-1	171.33±6.35 ^{cdefg}	146.98±3.41 ^{defghijkl}	53.31±3.75abc	14.76 ± 0.10^{t}
Shilliang Myntang	145.00±4.62hi	$157.07 \pm 0.81^{bcdefgh}$	26.23±3.02mno	22.25 ± 0.25^{ij}
Sel-7	119.73±6.51 ^{jklmn}	167.81±7.62abc	30.11 ± 2.12^{klmn}	11.75±0.08 ^w
Mizo-5	96.12±1.12 ^{nopqrs}	$141.11 \pm 7.18^{fghijklm}$	25.80±2.91mno	14.20 ± 0.02^{tu}
Mawtneng-1	128.57 ± 3.02^{ijkl}	138.04±4.93ghijklmno	26.24±5.20mno	23.79 ± 0.28 ^{gh}
HDT-2	189.84±12.77 ^{bcde}	96.40±5.89uv	49.89±4.15 ^{bcde}	26.45±0.49de
Bhoi-1	84.64±2.83qrst	153.15±6.18 ^{cdefghi}	43.77±4.97 ^{cdefghij}	18.75±0.22 ^{nop}
Mizo-1	79.33±5.13 ^{rst}	137.37±5.83hijklmno	26.42±3.87mno	16.16±0.12 ^{rs}
Mawtneng-3	117.67±7.02 ^{klmno}	160.80±3.99abcdef	30.88 ± 2.22^{klmn}	19.59±0.19mn
Col-1	97.33±4.62mnopqrs	132.12±6.36 ^{jklmnopq}	29.13±2.78klmno	16.16 ± 0.26^{rs}
Sel-2	92.75±1.31qrst	109.88±5.14stu	25.90±0.78mno	14.55 ± 0.02^{t}
S-3	193.00±7.55bcde	161.34±5.75abcde	39.94±4.13efghijkl	27.50±0.36 ^{cd}
Arunachal-1	104.67±8.08lmnopq	157.38±5.37 ^{bcdefg}	36.30±3.83hijklm	15.25±0.15st
Bhoi-3	132.67 ± 6.81^{ijk}	111.88±5.84 ^{rstu}	37.29±4.82 ^{fghijklm}	22.25±0.31 ^{ij}
S-2	97.89±1.87mnopqrs	150.18±4.55cdefghij	26.87±3.94mno	20.50 ± 0.22^{lm}
S-5	143.33±7.64hij	138.46±7.64ghijklmn	38.01±3.60efghijklm	18.75±0.18 ^{nop}
Mawtneng-2	69.71 ± 5.03^{t}	146.03±8.06 ^{defghijklm}	26.16±2.77mno	14.20±0.17 ^{tu}
S-6	93.62±5.78pqrst	155.45±1.40 ^{cdefghi}	29.14±1.99klmno	17.00±0.03 ^{qr}
Mizo-2	98.16±3.19mnopqrs	131.48±2.41 ^{jklmnopqr}	30.16 ± 3.83^{klmn}	22.25±0.25 ^{ij}
Gauri	74.68 ± 1.11^{st}	137.20±5.00hijklmno	31.70 ± 3.72^{jklmn}	18.96±0.27 ^{nop}
Col-2	92.16±0.99qrst	115.93±10.58pqrstu	17.51±1.63°	12.66 ± 0.07^{vw}
Sohmynting-2	94.86±5.88° pqrs	136.10±5.24 ^{ijklmno}	26.64±3.70mno	18.75±0.19 ^{nop}
Mawtneng-4	91.86±7.18qrst	149.89±5.00 ^{cdefghij}	26.18±2.91mno	19.08±0.62no
Sel-4	96.07 ± 0.88^{nopqrs}	104.56±4.79tu	36.38 ± 3.9 ghijklm	14.76 ± 0.20^t
Kokrajhar Red	194.33±6.03bc	146.20±8.18 ^{defghijklm}	35.44±4.59hijklm	30.09 ± 0.08^{b}
Lumsohpieng Red	193.49±6.06 ^{bcd}	143.19±3.43efghijklm	41.22 ± 5.26^{cdefghijk}	22.60 ± 0.26^{ij}
Lumdiengan	98.32±0.72mnopqrs	142.29±2.69efghijklm	32.16 ± 2.60^{ijklmn}	18.05 ± 0.24^{opq}
Mawthei	99.20±1.82mnopqr	118.52±5.08 ^{opqrst}	49.95±2.68bcde	21.00 ± 0.88^{kl}
Mynthlu Orange	266.67±14.43a	180.43 ± 1.76^{a}	63.35±2.89a	34.95±0.57a
X-24	148.33±2.89ghi	179.46±1.05a	44.51±3.25 ^{cdefgh}	24.75±0.61 ^{fg}
Sree Bhadra	107.13 ± 0.88^{lmnopq}	82.51±1.25 ^v	37.19 ± 1.89^{fghijklm}	21.00 ± 0.30^{kl}
ST-14	104.20±5.29mnopq	129.87±4.01klmnopqr	48.79±5.95bcdef	22.04 ± 0.05^{jk}
Umroi-1	97.74±2.54mnopqrs	126.52±5.01mnopqrs	27.86±3.24lmno	22.25 ± 0.25^{ij}
Umroi-2	169.33±5.13 ^{efg}	127.94±3.79lmnopqrs	40.71 ± 2.87^{defghijk}	23.79 ± 0.41 ^{gh}
FGSP 12-12	158.89±6.59 ^{fgh}	120.50±8.27nopqrst	36.02±5.29hijklm	24.00 ± 0.36^{gh}
TSP 12-4	194.33±6.03 ^{bc}	158.41±7.25 ^{bcdef}	52.85±7.84 ^{abcd}	23.30±0.56hi
TSP 12-5	120.67±7.51 ^{jklm}	142.88±4.22efghijklm	29.36±5.21klmno	27.50±0.07 ^{cd}
TSP 12-7	189.67±10.02 ^{bcde}	128.00±6.31lmnopqrs	39.97±2.26 ^{efghijkl}	17.84±0.16 ^{pq}
TSP 12-9	190.00±13.23bcde	163.63±13.79abcd	34.75±3.04hijklm	25.88±0.24ef
TSP 12-11	200.00 ± 25.00^{b}	119.71±9.66nopqrst	48.62 ± 3.17^{bcdefg}	28.00±0.71°
TSP 12-12	208.33 ± 7.40^{b}	129.58±9.46klmnopqrs	32.62±3.86hijklmn	24.50±0.51g

Table 2 Biochemical parameters of sweet potato accessions

Genotype	Dry matter (%)	Total starch (%)	Total sugar (%)	Reducing sugar (%)	Non-reducing sugar (%)
Shalinda-3	37.23 ± 0.19^a	22.53 ± 0.06^{ef}	5.85 ± 0.01 ^{gh}	1.57±0.03hijk	4.28 ± 0.04^{fgh}
Nongrim Nongladaw	37.00 ± 0.12^{ab}	19.04 ± 0.37^{klm}	5.86 ± 0.02^{fgh}	1.78 ± 0.07^{def}	4.08 ± 0.06^{jklm}
Col-6	32.99 ± 0.56^{fghijk}	25.71 ± 0.09^{a}	5.69 ± 0.02^{lm}	1.74 ± 0.07^{efg}	3.95 ± 0.06 lmnopq
Meghalaya Local	37.49 ± 0.03^{a}	19.17 ± 0.04^{klm}	5.18 ± 0.03^{u}	1.80 ± 0.06^{cde}	3.38 ± 0.07^{y}
TSP 12-6	$30.45{\pm}0.34^{lmnopq}$	17.59±0.57 ^{pq}	5.45 ± 0.01^{qr}	1.59±0.03hijk	3.86 ± 0.04 pqrst
Lumsohpieng Orange	36.47 ± 0.90^{abc}	22.78 ± 0.03^{def}	5.77 ± 0.01^{j}	1.14 ± 0.02^{qrst}	4.63 ± 0.02^{bc}
Sohmynting-1	31.67 ± 0.60^{ijkl}	15.20±0.15 ^{vw}	5.78 ± 0.00^{ij}	2.39±0.03a	3.39 ± 0.03^{y}
Shalinda-2	35.62±0.44abcde	23.69±0.12bc	5.10±0.00°	1.51 ± 0.03^{ijkl}	3.59 ± 0.03^{wx}
Shalinda-1	31.98 ± 0.47^{hijkl}	22.46 ± 0.45^{efg}	4.64 ± 0.01^{z}	1.16±0.03qrs	3.48 ± 0.03^{xy}
Shilliang Myntang	37.12±1.12 ^a	22.05 ± 0.02^{fghi}	5.90 ± 0.02^{de}	1.28±0.03 ^{opq}	4.62 ± 0.05^{bc}
Sel-7	36.76 ± 0.02^{ab}	15.23±0.03 ^{vw}	5.55±0.00p	1.28±0.03 ^{opq}	4.27 ± 0.03^{fgh}
Mizo-5	28.71±0.36°pqr	16.59±0.05rst	5.43 ± 0.02^{r}	1.59±0.03hijk	3.84 ± 0.04 qrst
Mawtneng-1	28.47±0.93qr	21.39 ± 0.24^{ij}	5.62±0.01no	1.59±0.07hijk	$4.03{\pm}0.06^{klmn}$
HDT-2	30.99±0.95klmn	15.44±0.03 ^{uvw}	5.90±0.01 ^{def}	1.26±0.03 ^{pq}	4.64 ± 0.03^{ab}
Bhoi-1	32.46±1.05ghijkl	15.36±0.18 ^{vw}	5.85±0.03gh	1.45±0.03 ^{klmn}	4.40±0.02 ^{def}
Mizo-1	35.85±0.46abcde	17.73±0.55°pq	6.03±0.01 ^b	2.25±0.01a	3.78±0.02stu
Mawtneng-3	33.51±0.53 ^{fghi}	23.48±0.31 ^{cd}	5.06±0.01 ^w	1.65±0.03 ^{fghi}	3.41 ± 0.04^{y}
Col-1	29.03±0.76 ^{nopqr}	25.18±0.08 ^a	5.68±0.00 ^m	1.45±0.03 ^{klmn}	4.23±0.03ghi
Sel-2	33.24±0.57 ^{fghij}	17.39±0.06 ^{pq}	5.78 ± 0.01^{ij}	1.16±0.03 ^{qrs}	4.62±0.04 ^{bc}
S-3	35.83±0.68 ^{abcde}	16.24±0.21st	5.68±0.02 ^m	1.59±0.03 ^{hijk}	4.09 ± 0.02^{jkl}
Arunachal-1	30.70±0.88 ^{lmno}	14.96±0.01 ^w	5.73±0.03 ^{kl}	1.37±0.07 ^{mnop}	4.36±0.04 ^{defg}
Bhoi-3	$33.91 \pm 0.25^{\text{efgh}}$	16.21±0.09st	5.65±0.01 ^{mn}	1.59±0.03 ^{hijk}	$4.06\pm0.04^{\text{jklm}}$
S-2	35.79±0.33 ^{abcde}	15.45±0.08 ^{uvw}	5.31±0.01 ^t	1.41±0.03 ^{lmno}	3.90±0.04 ^{nopqrs}
S-5	36.28±1.11 ^{abc}	17.04±0.09 ^{qr}	$5.91\pm0.02^{\text{cde}}$	1.14±0.03 ^{qrst}	4.77±0.04 ^a
Mawtneng-2	32.51±0.36ghijkl	16.14±0.14 ^{stu}	5.48±0.01 ^q	1.41±0.03 ¹	$4.07\pm0.04^{\text{jklm}}$
S-6	34.15±0.93 ^{defg}	15.38±0.02 ^{vw}	5.61±0.01°	1.51 ± 0.03^{ijkl}	4.10 ± 0.04^{ijk}
Mizo-2	33.18±0.93 ^{fghij}	15.41±0.14 ^{uvw}	5.78 ± 0.02^{ij}	1.51 ± 0.03^{ijkl}	4.27±0.04 ^{fgh}
Gauri	29.29±0.32 ^{mnopqr}	19.10±0.06 ^{klm}	5.93±0.02 ^{cd}	1.63±0.03 ^{chij}	4.30±0.04 ^{efgh}
Col-2	30.60±0.01 ^{lmnop}	22.61±0.13 ^{ef}	5.82±0.01 ^{hi}	1.35±0.04 ^{nop}	4.47±0.03 ^d
Sohmynting-2	33.34±0.06 ^{fghi}	16.34±0.04 ^{rst}	5.59±0.02°p	1.57±0.03 ^{hijk}	$4.02\pm0.02^{\text{klmn}}$
Mawtneng-4	28.57±0.59 ^{pqr}	19.10±0.10 ^{klm}	5.79 ± 0.01^{ij}	1.35±0.04 ^{nop}	$4.44\pm0.03^{\text{de}}$
Sel-4	29.00±0.02 ^{nopqr}	24.41±0.07 ^b	$5.76\pm0.01^{\circ}$ 5.76 ± 0.02^{jk}	1.26±0.03 ^{pq}	4.50 ± 0.04^{cd}
	28.98±0.11 ^{nopqr}	$24.41 \pm 0.07^{\circ}$ $21.48 \pm 0.04^{\text{hi}}$	4.81 ± 0.01^{y}	1.05±0.02 st	3.76±0.03 ^{tuv}
Kokrajhar Red	33.88±0.59 ^{efgh}	22.95±0.01 ^{cde}	4.96±0.01 ^x	1.00±0.02 ^t	3.95±0.01 ^{lmnopq}
Lumsohpieng Red	32.03±0.47 ^{hijkl}	$22.93\pm0.01^{\text{cde}}$ $22.94\pm0.03^{\text{cde}}$		1.76±0.08 ^{efg}	
Lumdiengan		18.75±0.05 ^{lmn}	5.38±0.01 ^s 5.87±0.01 ^{efg}	1.20±0.03 ^{qr}	3.62±0.07 ^{vw} 4.67±0.04 ^{ab}
Mawthei	27.53±0.45 ^{rs} 34.48±0.62 ^{cdefg}	21.76±0.64ghi			
Mynthlu Orange			6.01 ± 0.01^{b}	2.32±0.04 ^a	3.69±0.03 ^{uvw}
X-24	25.88±0.55st	18.01±0.11 ^{nop}	6.12 ± 0.00^{a}	2.28±0.03a	3.84±0.03 ^{qrst}
Sree Bhadra	24.63 ± 0.06^{t}	15.84±0.16 ^{tuv}	5.95±0.01°	1.94±0.07 ^{bc}	4.01±0.06 ^{klmno}
ST-14	24.63±0.44 ^t	16.62±0.07 ^{rs}	6.01 ± 0.01^{b}	2.02±0.02 ^b	3.99±0.02 ^{klmnop}
Umroi-1	34.93±0.57 ^{bcdef}	18.59±0.20 ^{mn}	5.02±0.01 ^w	1.08±0.03 ^{rst}	3.94±0.04 ^{mnopqr}
Umroi-2	36.08±0.86 ^{abcd}	16.62±0.05 ^{rs}	5.31±0.02 ^t	1.20±0.03 ^{qr}	4.11±0.04 ^{ijk}
FGSP 12-12	34.65±1.11 ^{cdef}	20.64 ± 0.07^{j}	5.46±0.01 ^{qr}	1.65±0.08 ^{fgh}	3.81±0.08 ^{rstu}
TSP 12-4	28.52±0.41 ^{pqr}	18.44±0.06 ^{mno}	5.78±0.03 ^j	1.90±0.03 ^{bcd}	3.88±0.06° opqrst
TSP 12-5	31.45±0.32 ^{ijkl}	19.72±0.22 ^k	5.67±0.01 ^m	1.50±0.00 ^{jklm}	4.17±0.01 ^{hij}
TSP 12-7	30.68±0.21 lmno	22.20±0.08 ^{efgh}	5.79±0.00 ^{ij}	1.04±0.03st	4.75±0.03ab
TSP 12-9	31.66±0.34 ^{ijkl}	19.42±0.41 ^{kl}	5.05±0.01 ^w	1.86±0.06 ^{cde}	3.19 ± 0.06^{z}
TSP 12-11	31.21±0.98 ^{jklm}	16.31±0.23 ^{rst}	5.79±0.00 ^{ij}	1.84±0.03 ^{cde}	3.95±0.03 ^{lmnopq}
TSP 12-12	31.93±0.71 ^{hijkl}	20.71±0.56 ^j	$5.86\pm0.01^{\text{fgh}}$	$1.76\pm0.03^{\text{defg}}$	4.10 ± 0.04^{ijk}

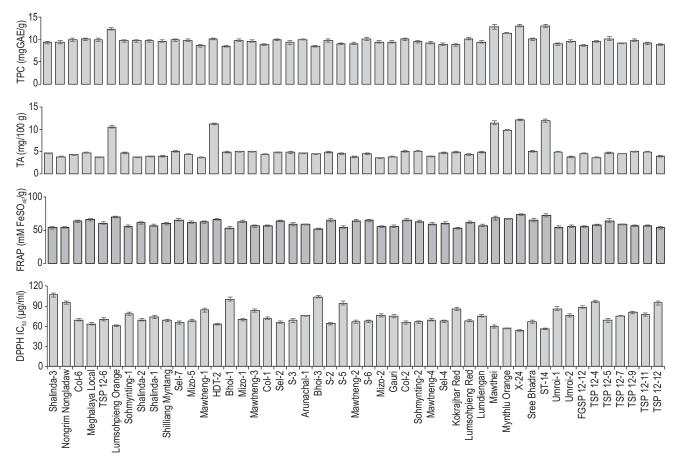


Fig. 1 Antioxidant properties of the sweet potato accessions.

positive significant correlation with tuber weight $(r^2 =$ 0.656) followed by yield ($r^2 = 0.518$), total anthocyanin $(r^2 = 0.484)$ and total phenolic content $(r^2 = 0.409)$ at P < 0.01. Yield had significant correlation with weight ($r^2 =$ 0.716), diameter of tuber ($r^2 = 0.518$) at P < 0.01 and total anthocyanin ($r^2 = 0.326$) at P < 0.05 while no significant correlation was observed with other variables. Dry matter had significant positive correlation with length of tuber (r²) = 0.345) and negative correlation with total anthocyanin (r^2 = -0.295) at P<0.05. Starch is found to be non-significant with all other traits. Total sugar had the highest significant positive correlation with non-reducing sugar ($r^2 = 0.556$) followed by reducing sugar ($r^2 = 0.376$) at P < 0.01 and total anthocyanin ($r^2 = 0.356$) at P < 0.05. Reducing sugar had the highest positive significant correlation with total sugar $(r^2=0.376, P<0.01)$ and length of tuber $(r^2=0.303, P<0.05)$ and significant negative correlation with non-reducing sugar $(r^2 = -0.560, P < 0.01)$. Non-reducing sugar had significant negative correlation with length of tuber ($r^2=-0.369$) at P<0.01. Similar finding were also reported by Islam et al. (2002) in potatoes. This may be attributed to the interconversion between the starch and sugar content in the tubers (Verma et al. 2023).

With regards to antioxidants parameters, total phenolic content exhibited the highest positive significant correlation with total anthocyanin ($r^2 = 0.842$, P < 0.01) and FRAP ($r^2 = 0.842$, P < 0.01)

0.801, P<0.01). However, a significant negative correlation was found between total phenolic content and DPPH ($r^2 =$ -0.654, P<0.01). FRAP had significant positive correlation with anthocyanin ($r^2 = 0.674$), but negative correlation with DPPH ($r^2 = -0.845$) at P < 0.01. A significant negative correlation was observed between DPPH and anthocyanin $(r^2 = -0.498, P < 0.01)$. Makori et al. (2020) also reported a similar positive correlation between total phenolic content and FRAP ($r^2 = 0.535$, P < 0.001). Previous studies have likewise reported a positive correlation between antioxidant activity and both phenolic and anthocyanin content in sweet potato (Cui et al. 2011, Gan et al. 2012). This positive correlation underscores the significant role of polyphenols in plant extracts in their antioxidant activity (Kiselova et al. 2006), which serves as a useful indicator of the antioxidant properties of sweet potatoes (Khurnpoon and Rungnoi 2012).

The study unveiled notable variations in yield, biochemical, and antioxidant properties among the sweet potato accessions collected from the north-eastern region. Based on the mean performance, accession Mynthlu Orange, X-24 and Col-6 was found promising for yield, biochemical and antioxidant parameters. Considering the limited research on the above aspects, these findings hold potential for further enhancements in the yield and quality of sweet potato.

lable 3 Correlation among the yield, biochemical and antioxidant parameters of sweet potato

)	,				•				
	Weight	Weight Length Diameter	Diameter	Dry	Starch	Total	Reducing	Non-	FRAP	DPPH	Total	Total	Yield
	(g)	(mm)	(mm)	matter	(%)	sugar	sugar	reducing	(mmol	IC_{ξ_0}	phenolic	anthocyanin	(t/ha)
				(%)		(%)	(%)	sugar (%)	\sim	(lm/gnl)	content (mg	(mg/100 g)	
											GAE/g)		
Weight (g)	1.000**	1.000** 0.071 ^{NS} 0.656**		$0.150^{ m NS}$	$0.224^{ m NS}$	$-0.107^{\rm NS}$	-0.003^{NS}	-0.094^{NS}	-0.049^{NS}	$0.084^{ m NS}$	$0.141^{ m NS}$	$0.239^{ m NS}$	0.716^{**}
Length (mm)		1.000^{**}	-0.080 _{NS}	0.345^{*}	0.050^{NS}	-0.109^{NS}	0.303^{*}	-0.369**	-0.007 ^{NS}	0.079^{NS}	$0.102^{ m NS}$	-0.042^{NS}	$0.001^{ m NS}$
Diameter (mm)			1.000^{**}	-0.173^{NS}	-0.018^{NS}	0.016^{NS}	$0.104^{ m NS}$	-0.079 ^{NS}	0.166^{NS}	-0.113^{NS}	0.409**	0.484^{**}	0.518**
Dry matter (%)				1.000^{**}	$0.036^{ m NS}$	-0.216^{NS}	-0.183^{NS}	-0.029^{NS}		0.227^{NS}	$-0.266^{\rm NS}$	-0.295*	-0.056^{NS}
Starch (%)					1.000**	-0.240^{NS}		-0.075 ^{NS}	-0.068 ^{NS}	$0.020^{ m NS}$	-0.038^{NS}	-0.077^{NS}	0.009NS
Total sugar (%)						1.000^{**}	0.376^{**}	0.556**	$0.278^{ m NS}$	-0.092 ^{NS}	$0.278^{ m NS}$	0.356^{*}	0.025^{NS}
Reducing sugar (%)							1.000^{**}	-0.560**	0.161^{NS}	$-0.050^{\rm NS}$	0.243^{NS}	0.185^{NS}	0.193^{NS}
Non-reducing sugar (%)								1.000^{**}	$0.104^{ m NS}$	-0.037^{NS}	$0.030^{ m NS}$	0.152^{NS}	-0.152^{NS}
FRAP (mmol FeSO ₄ E/g)									1.000**	-0.845**	0.801^{**}	0.674**	-0.026^{NS}
DPPH IC50 (µg/ml)										1.000^{**}	-0.654**	-0.498**	$0.044^{ m NS}$
Total phenolic content (mg GAE/g)	(;										1.000^{**}	0.842**	0.177^{NS}
Total anthocyanin (mg/100 g)												1.000**	0.326^{*}
*, Significant at 5%; **, Significant at 1%; NS, Non-significant.	ificant at 19	%; NS, No	n-significant	نبا									

ACKNOWLEDGEMENT

The authors are grateful to AICRP on Tuber Crops and ICAR Research Complex for NEH Region, Umiam, Meghalaya for providing financial support and laboratory facilities during the study.

REFERENCES

- Anonymous. 2023. Area and Production estimates of Horticulture Crops 2021–22. Department of Agriculture and Farmers Welfare, Govt. of India. https://agriwelfare.gov.in/en/StatHortEst
- Benzie I F and Strain J J.1999. Ferric reducing/antioxidant power assay: Direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. *Methods Enzymology* **299**: 15–27.
- Chen S P, Wang S Y, Huang M Y, Lin K H, Hua S M, Lu H H, Lai Y C and Yang C M. 2018. Physiological and molecular analyses of chlorophyllase in sweet potatoes with differentcoloured leaves. *South African Journal of Botany* **114**: 272–79.
- CIP. 2020. Discovery to impact: Science-based solutions for global challenges, CIP Annual Report 2019, pp. 37. Lima P (Ed.). CIP: Pyrmont, Australia.
- Comert E D, Mogol B A and Gokmen V. 2020. Relationship between colour and antioxidant capacity of fruits and vegetables. *Current Research in Food Science* 2: 1–10.
- Cui L, Liu C, Li D and Song J. 2011. Effect of processing on taste quality and health-relevant functionality of sweet potato tips. *Agricultural Sciences in China* 10: 456–62.
- Du Bois M, Gilles K A, Hamilton J K, Rebers P A and Smith F. 1956. Colorimetric method for determination of sugars and related substances. *Analytical Chemistry* 28: 350–56.
- Felenji H, Aharizad S, Afsharmanesh G R and Ahmadizadeh M. 2011. Evaluating correlation and factor analysis of morphological traits in potato cultivars in fall cultivation of jiroft area. American-Eurasian Journal of Agricultural and Environmental Sciences 11: 679–84.
- Gan L J, Yang D, Shin J A, Kim S J, Hong S T, Lee J H, Sung C K and Lee K T. 2012. Oxidative comparison of emulsion systems from fish oil-based structured lipid versus physically blended lipid with purple-fleshed sweet potato (*Ipomoea batatas* L.) extracts. *Journal of Agricultural and Food Chemistry* 60: 467–75.
- Grace M H, Yousef G G, Gustafson S J, Truong V, Yencho G C and Lila M A. 2014. Phytochemical changes in phenolics, anthocyanins, ascorbic acid, and carotenoids associated with sweet potato storage and impacts on bioactive properties. *Food Chemistry* **145**: 717–24.
- Gunathilake K D P P and Ranaweera K K D S. 2016. Antioxidative properties of 34 green leafy vegetables. *Journal of Functional Foods* **26**: 176–86.
- Hayati M, Sabaruddin E and Anhar A A. 2020. Morphological characteristics and yields of several sweet potato (*Ipomoea batatas* L.) tubers. *IOP Conference Series: Earth and Environmental Science* 425: 012055.
- Hedge J E and Hofreiter B T. 1962. *Carbohydrate Chemistry*, pp. 17. Whistler R L and Be Miller J N (Eds). Academic Press.
- Islam M J, Haque M Z, Majumder U K, Haque M M and Hossain M F. 2002. Growth and yield potential of nine selected genotypes of sweet potato. *Pakistan Journal of Biological Sciences* **5**: 537–38.
- Keskin-Sasic I, Tahirovic I, Topcagic A, Klepo L, Salihovic M, Ibragic S, Toromanovic J, Ajanovic A and Velispahic E. 2012.

- Total phenolic content and antioxidant capacity of fruit juices. *Bulletin of the Chemists and Technologists of Bosnia and Herzegovina* **39**: 25–28.
- Khurnpoon L and Rungnoi O. 2012. The correlation between total phenol and antioxidant capacity of sweet potato (*Ipomoea batatas* L.) with varying flesh colour. *Acta Horticulturae* **945**: 413–19.
- Kim J M, Park S J, Lee C S, Ren C, Kim S S and Shin M. 2011. Functional properties of different Korean sweet potato varieties. *Food Science and Biotechnology* **20**: 1501–07
- Kiselova Y, Ivanova D, Chervenkov T, Gerova D, Galunska B and Yankova T. 2006. Correlation between the *in vitro* antioxidant activity and polyphenol content of aqueous extracts from bulgarian herbs. *Phytotherapy Research* **20**: 961–65.
- Makori S I, Mu T H and Sun H N. 2020. Total polyphenol content, antioxidant activity, and individual phenolic composition of different edible parts of 4 sweet potato cultivars. *Natural Product Communications* **15**: 1–12.
- Mary J, Prameela P, Menon S S and Vijayan V D. 2022. Performance of high yielding sweet potato varieties under different seasons. *International Journal of Plant and Soil Science* **34**: 794–02.
- Miller G L. 1959. Use of dinitrosalicylic acid for determination of reducing sugars. *Analytical Chemistry* **31**: 426–28.
- Paliwal P, Jain D, Joshi A, Ameta K D, Chaudhary R and Singh A. 2020. Diversity analysis of sweet potato [*Ipomoea batatas* (L.) Lam] genotypes using morphological, biochemical and molecular markers. *Indian Journal of Experimental Biology* 58: 276–85.
- Pavithra P, Thangamani C, Pugalendhi L and Kumar J S. 2023. Assessment of sweet potato (*Ipomoea batatas*) accessions for growth, yield and quality traits. *The Indian Journal of Agricultural Sciences* **93**(3): 332–35. https://doi.org/10.56093/ijas.y93i3.132490
- Rahman N and Nurdin N M. 2023. Phytochemicals, nutrient levels and antioxidants of various types of sweet potatoes (*Ipomoea batatas* L.). *Poltekita: Jurnal Ilmu Kesehatan* 17(2): 301–08
- Rajurkar N S and Hande S M. 2011. Estimation. *Indian Journal of Pharmaceutical Sciences* **73**: 146–51.
- Roy S, Banerjee A, Tarafdar J and Mitra S. 2012. Tuber quality assessment of orange-fleshed sweet potato (*Ipomoea batatas*) cultivars and their genetic relatedness as revealed by SDS-PAGE of tuber proteins. *The Indian Journal of Agricultural Sciences* 82(6): 482–88.
- Shan B, Cai Y Z, Sun M and Corke H. 2005. Antioxidant capacity of 26 spice extracts and characterization of their phenolic

- constituents. *Journal of Agricultural and Food Chemistry* **53**: 7749–59.
- Shen Q, Zhang B, Xu R, Wang Y, Ding X and Li P. 2010. Antioxidant activity in vitro of the selenium-contained protein from the Se-enriched Bifidobacterium animalis. Anaerobe 16: 380–86.
- Sivakumar P S. 2003. Sweet potato: A crops for food and nutritional security in Orissa. *Orissa Review* 61–64.
- Srivastava R P and Kumar S. 2002. *Fruit and Vegetable Preservation: Principle and Practice*, 3rd edn, pp. 360–61. Inter Book distribution company, India.
- Talang H D, Verma V K, Rymbai H, Devi M B, Assumi S R, Vanlalruati, Hazarika S and Mishra V K. 2023. Tuber crops: Future smart crops. Division of System Research and Engineering ICAR Research Complex for NEH Region Umroi Road Umiam, Meghalaya and ICAR-AICRP on Tuber Crops, ICAR-Central Tuber Crops Research Institute Thiruvananthapuram, Kerala.
- Tang Y, Cai W and Xu B. 2015. Profiles of phenolics, carotenoids and antioxidative capacities of thermal processed white, yellow, orange and purple sweet potatoes grown in Guilin, China. *Food Science and Human Wellness* 4: 123–32.
- Tegeye M, Kaur A, Kaur J and Singh H. 2019. Value added convenience food from composite sorghum-maize-sweet potato flour blends. *The Indian Journal of Agricultural Sciences* **89**(11): 1906–10.
- Truong V D, Mcfeeters R F, Thompson R T, Dean L L and Shofran B. 2007. Phenolic acid content and composition in leaves and roots of common commercial sweet potato (*Ipomea batatas* L.) cultivars in the United States. *Journal of Food Science* 72: C(343–49).
- Verma V K, Kumar A, Rymbai H, Talang H, Devi M B, Baiswar P and Hazarika S. 2023. Genetic diversity and stability analysis of sweet potato accessions of north-eastern India grown under the mid-hill conditions of Meghalaya. *Plant Genetic Resources:* Characterization and Utilization 21: 537–47.
- Wang S, Nie S and Zhu F. 2016. Chemical constituents and health effects of sweet potato. Food Research International Journal 89: 90–116.
- Yildirim Z, Tokusoglu O and Ozturk O. 2011. Determination of sweet potato [*Ipomoea batatas* (L.)] genotypes suitable to the Aegean region of Turkey. *Turkey Journal of Field Crops* 16(1): 48–53.
- Yooyongwech S, Samphumphuang T, Theerawitaya C and Cha Um S. 2014. Physio-morphological responses of sweet potato [*Ipomoea batatas* (L.) Lam.] genotypes to water deficit stress. *Plant Omics* 7(5): 361–68.