
29

1Indian Institute of Information Technology, Nagpur, 
Maharashtra. *Corresponding author email: mundadasg30@
gmail.com

Indian Journal of Agricultural Sciences 95 (8): 897–903, August 2025/Article
https://doi.org/10.56093/ijas.v95i8.161380

Soil organic carbon variability assessment using satellite imagery and  
artificial neural network

SHYAMAL MUNDADA1* and POOJA JAIN1

Indian Institute of Information Technology, Nagpur, Maharashtra 441 108, India

Received: 28 November 2024; Accepted: 14 July 2025

ABSTRACT

The present study was carried out during 2022–2024 at Indian Institute of Information Technology, Nagpur, 
Maharashtra to evaluate SOC stocks in the Dhamtari district of Chhattisgarh, India. Two machine learning models 
and their variants-Boosted Regression Tree, Boosted Regression Tree with Early Stopping, Multilayer Perceptron, 
and Multilayer Perceptron with Early Stopping were used for predicting Soil Organic Carbon (SOC). The findings of 
the research indicated that Multilayer Perceptron produced better results in both scenarios that is, without and with 
Early Stopping technique applied. Multilayer Perceptron with Early Stopping model recorded nearly the same RMSE 
for both calibration and validation datasets as 0.1618 and 0.1601, respectively. Produced soil maps will assist farmers 
in adopting accurate information for decisions which will boost farm output and offer security for food through the 
balanced use of nutrients. 
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Earth's topsoil provides a variety of ecosystem services 
that allow life to exist. The world's soil is under strain 
because of the fast transformations in land use and cover, 
particularly the transformation of natural ecosystems into 
agroecosystems. Various characteristics of soil are affected 
by agricultural land uses, consequences of which is soil 
degradation, especially the demise of soil organic matter 
(SOM). The primary component of SOM, i.e. SOC, controls 
soil properties. It preserves quality of soil by providing 
nutrients and increasing water-holding ability (Bationo 
et al. 2007). Frequent ploughing and other disorders 
degenerate the aggregates and change the soil's aeration, 
water holding capacity, and temperature conditions, which 
leads to the depletion of SOC which influences fertility 
of soil and, consequently, potential for agriculture (Batjes 
1996, Zhenxing Bian and Jia 2020). Furthermore, there is a 
correlation between SOC stock and soil water penetration, 
water holding, and soil structural stability (Lefevre et al. 
2017). Thus, information on the various aspects of SOC is 
needed worldwide for different purposes. To forecast the 
SOC of different types of soil or locations, it is therefore 
essential to develop a system that is more accurate and 
reliable. To use soil for agricultural and other ecological 
purposes, it is essential to know the spatial spread of these 

important nutritional elements in soil (Brady and Weil 2008, 
El-Ramady et al. 2014). Also, proper nutrient management 
in soil enhances the crop productivity (Sarkar et al. 2025). 
With advancements in data analysis, remote sensing, and 
geographic information systems, a variety of mapping 
techniques have been used and developed to increase the 
precision of the approach and the produced spatial maps. 
Digital soil mapping (DSM) is based on this concept where 
soil property's variability is described by how it relates to 
soil-forming elements including terrain, climate, vegetation, 
and soil nature. Prediction of SOC using this technique 
made use of a wide range of statistical techniques, such as 
kriging (Cambule et al. 2014), regression-kriging (Hengl 
and Heuvelink 2004, Hengl and Heuvelink 2007, Kumar 
et al. 2012), multiple linear regression (Meersmans et al. 
2008), generalized linear models (Yuanhe et al. 2008), 
linear mixed models (Doetterl et al. 2013, Karunaratne et 
al. 2014). Recently, a few studies have also used cutting-
edge techniques from the field of machine learning, such 
as artificial neural networks (Malone et al. 2009, Jaber and 
Al-Qinna 2011, Li et al. 2013) , support vector machines 
(Rossel and Behrens 2010), boosted regression trees (Martin 
et al. 2011), Cubist (Kumaraperumal et al. 2022, Kumar et 
al. 2023, Meliho et al. 2023) and random forests (Grimm 
et al. 2008, Wiesmeier et al. 2011, Vagen and Winowiecki 
2013) to prepare spatial maps of SOC. Machine learning 
techniques address the limitations of parametric and non-
parametric statistical techniques (Drake et al. 2006). Thus, 
goal of this research is to create and assess machine learning 



898 [The Indian Journal of Agricultural Sciences 95 (8)

30

models that predict and map variations of SOC stocks in 
the Dhamtari District of Chhattisgarh State.

MATERIALS AND METHODS
Research terrain: The present study was carried 

out during 2022–2024 at Indian Institute of Information 
Technology, Nagpur, Maharashtra. To anticipate SOC, a 
set of attributes representing terrain, climate and spectral 
indices was chosen.

Data processing:  Numerous biological and 
environmental factors, as well as the associations between 
them, influence the amount of nutrients in the soil. A set 
of factors encompassing topography, climate, and remote 
sensing were chosen to forecast soil properties. For this 
research, soil health card data were used. Block-by-block 
matching of the locations was done, and any missing or 
incorrectly valued data was eliminated. Multitemporal 
information was retrieved from SRTM DEM and Landsat-8 
(Roy et al. 2014) images collected from the USGS/NASA. 
Climate data at a resolution of 21 km2 was acquired from 
WorldClim 2.1 spanning more than 20 years. 17 terrain 
variables, 19 bioclimate variables and 7 soil-related spectral 
indices, were retrieved using set of pre-processed raster 
images (Table 1). The SRTM DEM was used to extract 
topographical data with a spatial resolution of 30 m. To 
match the digital elevation model's (DEM) resolution, 
climate data were interpolated to 30 m resolution. The 
SAGA GIS tool was utilized to calculate the bioclimate 
variables and terrain variables. 

Modelling techniques: It has been observed that most 
ML models used for experimentation for such research 
problems suffer from overfitting and need high computation 
time. Two machine learning algorithms have been used, 
namely Multi-Layer Perceptron (MLP) used and second one, 
Boosted Regression Tree (BRT). To overcome the overfitting 
problem, in this study a technique called early stopping 
has been used. It is an optimization strategy which reduces 

overfitting without affecting model accuracy. It is primarily 
about terminating training before a model becomes overfit. 
Summary for the used ML models is mentioned below.

Two techniques are combined, namely Boosting and 
Decision Trees algorithms to create Boosted Regression 
Trees (BRT) models. BRT, a tree-based algorithm was 
designed by (Friedman et al. 2000) and uses boosting to 
enhance accuracy. Instead of obtaining a single, highly 
accurate model, boosting relies on merging multiple 
approximation prediction models (Schapire 2003). As a 
result, the decision trees grow successively so that each one 
forecasts the residual of the one before it; as a result, the 
algorithm's performance is affected by the number of trees 
and needs to be adjusted. However, the trees are developed 
on a randomly chosen data subset with no replacement to 
introduce randomness into the model and hence boost the 
robustness of performance (Friedman 2002). The learning 
rate also referred to as shrinkage regulates each new tree's 
contribution to the final model (Hastie et al. 2009). 

A specific branch of artificial intelligence that is 
frequently utilized for modelling is artificial neural networks. 
One kind of neural network comprised of Multilayer 
Perceptron (Gardner and Dorling 1998). It is a model made 
up of a network of fundamentally connected neurons, or 
nodes, that shows a non-linear relation between an input 
vector and an output vector. Every node in the layer 
was linked to every other node in the layer preceding it. 
Strengths and weights may be symmetrical or non-divergent 
for each node in a network, data enters the input layer 
and progresses progressively through each layer to the 
last layer, i.e. output layer. The architecture of a MLP can 
vary, although it usually has multiple layers of neurons. 
Just the input vector is sent to the network by the input 
layer; no computations are performed there. Fig. 1 depicts 
architecture for MLP considered in this study, here n1=200, 
n2=150, n3=100, n4=50, n5=10 tells us about size of hidden 
layers, respectively. The input layer has 7 nodes which are 
components derived from SVD, and output layer consists 
of one node as SOC prediction value.

Hyperparameter set t ing :  The potential  of 
hyperparameters to directly regulate the training algorithm's 
behaviour contributes to their significance. The choice of 
appropriate hyperparameters has a significant effect on 
the training model's performance. In this research work 
a set of hyperparameters have been considered which are 
derived using optimization technique called GridSearch. 
It is perhaps the most straightforward traditional approach 
to carrying out hyperparameter optimisation (Shekar and 
Dagnew 2019). It generates a Cartesian product of every 
possible combination of hyperparameters. Grid Search 
trains the machine learning algorithm for every feasible 
combination of hyperparameters and tests performance 
using the "cross-validation" technique on the training set. 

Model evaluation: We utilized root mean square error, 
RMSE (Willmott and Matsuura 2005) and coefficient 
of determination, R2 (Wright 1921) as the performance 
indicator. Also, computation time (CT), the total amount 

Table 1  List of predictor variables for modelling

Category Predictor Variables
Topography Plan Curvature, Flow Accumulation, Topographic 

Position Index, Aspect, Channel Network Base 
Level, Total Catchment Area, Elevation, Multi-
Resolution Ridge Top Flatness, Channel Network 
Distance, Slope, Terrain Ruggedness Index, Valley 
Depth, Convergence Index, Terrain Wetness Index, 
Profile Curvature, Multi Resolution Valley Bottom 
Flatness, Relative Slope Position

Climate Bio-Climate1 to Bio-Climate19
Spectral
Indices

Saturation Index (SI) (Raya et al. 2004), 
Atmospherically Resistant Vegetation Index 
(ARVI) (Kaufman and Tanre 1992), Normalized 
Difference Vegetation Index (NDVI) (Huete et al. 
2002), Coloration Index (CI) (Raya et al. 2004), 
Brightness Index (BI) (Raya et al. 2004), Crust Index 
(CrI) (Karnieli 1997), Soil Adjusted Vegetation 
Index (SAVI) 
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of time needed to finish the training process, was measured 
as a metric for model efficiency. 
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RESULTS AND 
DISCUSSION

Prior to prediction, the 
dimensions of satellite data 
to be reduced using a feature 
reduction technique. As a large 
quantity of features for any 
model can increase prediction 
e r r o r ,  d i m e n s i o n a l i t y 
reduction technique has 
the potential to improve 
prediction accuracies, shorten 
processing times needed 
to complete a prediction, 
and enable the removal of 
noise. A statistically more 
stable approach is to use the 
technique known as singular 
value decomposition (SVD) 
demonstrated in (Golub and 
Reinsch 1970, Danaher and 
O'Mongain 1992). The SVD 
is a strong contender for 
feature reduction because of 
the inherent correlations that 
exist in nature. Furthermore, 

the scales of the singular values that the SVD reveals will 
demonstrate if there is no conceivable reduction. Using the 
SVD method, any matrix can be factored into three new 
matrices with unique properties that can be used further. 
SVD of a linear transformation S is written as:

	 S = UΣVT	 (1)

Where U, Orthogonal matrix of size M × M and referred 
as left singular vectors of S, will M × N diagonal matrix in 
which diagonal elements are termed as singular values of S 
and VT is orthogonal right singular vectors of S having size of 
N × N elements. Expanded version of linear transformation 
S, in SVD is as shown below, considering M<N:
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	(2)

Principal Components were considered with cumulative 
variance in the range of 90–99%. Correlation coefficients 
are as depicted in Fig. 2. It was identified that all the 
vegetation indices except Crust Index have good correlation 
coefficient in all components. Also, Bio-climate variables 
from Bio14 to Bio19 and terrain attributes namely Aspect, 

Fig. 1	 Architecture of MLP.

Fig. 2	 Feature correlation analysis between principal components derived and environmental 
covariates.
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Total Catchment Area and Channel Network Base Level 
have good contribution in prediction of SOC for the study 
area. On statistical analysis, it was observed that SOC of 
study location ranged from 0.06–1.76, having mean of 0.44 
and a standard deviation of 0.24, presenting a positive-
skewed distribution with value as 0.8365. Skewness in the 
values of a specific independent variable (feature) degrades 
model performance. That’s why skewness of data has been 
reduced by applying logarithmic transformation. After the 
transformation, skewness of 0.4290 was noted. 

The performance of BRT, BRT_ES, MLP, MLP_ES was 
evaluated with the help of testing datasets and validation 
datasets. Table 2 shows the implementation outcomes of 
all ML models. Using both training and testing datasets, 
the effectiveness of four models for predicting the SOC 
in the Dhamtari District Indian state of Chattisgarh was 
assessed. During the study, experimentation was carried 
out with multiple sets of principal components as input, 
which were generated using SVD algorithm. Early stopping 
technique (Stankewitz 2024) used to overcome the problem 
of overfitting. It proved its significance prominently in BRT 
than MLP. In line with the observations depicted in Table 
2, modelling technique with input as 7 components proved 
more accurate as compared to others. On comparing ML 
models based on computation time, it is found that both 
algorithms using early stopping technique acquired very 
little time. For the training dataset, it was observed that 
Boosted Regression Tree algorithm showed the highest R2 
as 0.9884 while MLP recorded lowest R2 as 0.0670. Based 
on RMSE, Boosted Regression Tree (BRT) recorded the 
lowest RMSE as 0.0175 only for Training Dataset while 
Multilayer Perceptron (MLP) showed good result for both 
datasets without suffering from overfitting i.e. can be 
considered as a good fit model. Low R2 may result from 
high irregularity in climate variables and spectral indices 
caused by the geological conditions in the study. Soil 

nutrient status is currently determined via laboratory-based 
chemical analysis. This soil evaluation method is based on 
routine soil sampling design, sample collection, sample 
preparation, and subsequent laboratory chemical analysis. 
However, evaluating soil across a wide region using this 
method is expensive, time-consuming, and labour-intensive. 
Furthermore, if handled incorrectly, the laboratory's acid-
base waste liquid may result in secondary environmental 
contamination. Thus, a quick, on-site, ongoing, and non-
polluting detection technique mentioned in this work for soil 
composition detection is very much useful and desperately 
needed.

Spatial predictions of SOC, generated by each of the 
machine learning models used in this study are displayed 
in Fig. 2 for the whole Dhamtari district. All the prediction 
model maps displayed both rapid and regular fluctuations 
throughout the research region. For the BRT, BRT_ES, 
MLP, and MLP_ES models, estimated SOC ranged from 
-0.002 to 0.71, 0.09 to 0.61, -0.36 to 1.72, and -0.037 
to 0.85, in that order. It is difficult to choose the most 
accurate model in the absence of individualistically 
validating these predictions, we selected the Multi-Layer 
Perceptron with Early Stopping (MLP_ES) model as the 
"best" due to accuracy metrics and the fact that the spatial 
projections visually matched our perception of the scene. 
Multi-Layer Perceptron with Early Stopping (MLP_ES) 
model predictions more closely matched the geo-graphical 
distribution of the SOC we expected in the research area. 
The study area's northern and some part of eastern region 
have minor values due to intensive farming, which causes 
significant wearing away and crop cultivation, while the 
western and southern regions, which are covered with good 
vegetation and dominated by forests, have high values of 
SOC in all models. The various management strategies used 
in regions with higher concentrations of intensive farming 
can be used to clarify it. 

Table 2  Model assessment results based on training data and testing data

ML model Principal 
components

CT  
(sec)

Training Testing

R2 RMSE R2 RMSE
BRT 3 21.49 0.9884 0.0175 -0.3676 0.1958

4 28.32 0.9884 0.0175 -0.4089 0.1886

7 42.76 0.9884 0.0175 -0.2418 0.1771

BRT_ES 3 0.91 0.6684 0.0941 -0.1937 0.1746

4 1.53 0.6981 0.0898 -0.2009 0.1741

7 2.06 0.7480 0.0820 -0.1269 0.1687

MLP 3 14.01 0.0741 0.1567 -0.0476 0.1648

4 14.37 0.0743 0.1567 -0.4078 0.1911

7 14.45 0.2391 0.1421 -0.0898 0.1681

MLP_ES 3 1.17 -0.0009 0.1630 0.0078 0.1608

4 1.09 0.0171 0.1615 0.0098 0.1604

7 0.84 0.0032 0.1618 -0.1887 0.1601

MUNDADA AND JAIN
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A certain amount of uncertainty is unavoidable in 
machine learning models. There are various methods for 
measuring this uncertainty. Quantile Regression technique 
was utilized to quantify this prediction uncertainty. The 
uncertainty analysis for our best model, Multi-Layer 
Perceptron with Early Stopping (MLP_ES), is shown in 
Fig. 3. The tendency of the machine learning algorithms' 
propensity to forecast the SOC was validated by the 
uncertainty analysis. A confidence interval of 90% with both 
lower and higher prediction bounds have been constructed 
to show the level of uncertainty. The maximum predicted 
SOC values were found to lie within the 90% confidence 
interval. In Supplementary Fig. 1, just a sample of the 
dataset covering the full research area has been presented 
for presentation because of its vast size. The equilibrium 
between carbon inputs and outputs in soils determines 
SOC concentrations; this equilibrium is influenced by 
several factors, including regional features like vegetation, 
topography, and environmental circumstances (Sahoo et 
al. 2019). The uncertainty map revealed that the southern 
portion, which is mostly covered in healthy vegetation and 
is dominated by forests, had stronger SOC estimates than 
the northern parts.

In conclusion, the results of the study revealed how 
successful digital soil-mapping techniques are at generating 
accurate soil-related data, such as details on soil nutrients. 
Before planting in each cycle, farmers evaluate the quality 
of the soil (nutrient contents) to choose the best agricultural 
management strategy for the soil's current state. However, 
fertilization is usually done mechanically or involuntarily to 
produce a high yield, which leads to an unequal distribution 
of chemical fertilizers. However, scientific fertilization done 
in line with the amount and quality of nutrients in the soil 
produces high-yield crops of superior quality. Therefore, 
determining the composition of the soil has become essential 
for fertilization in precision agriculture. High-resolution 

digital maps may be used to assess crop compatibility, 
soil and land management strategies, site-specific fertilizer 
recommendations, and irrigation scheduling all of which 
can save operational costs. Fewer input costs and increased 
farm outputs can be achieved by strategic crop selection, 
effective landscape and soil management practices, and 
balanced fertilization that use DSM. Two machine-learning 
methods were investigated in this work. Patterns of SOC 
spatial distribution in Dhamtari District of Indian state 
Chattisgarh. This study used data associated with SOC 
observations, environmental parameters, and optimal models 
to determine the spatial map of the SOC. BRT produced 
good results for training dataset, with highest R2 as 0.9884 
and lowest RMSE as 0.0175 but for testing dataset R2 was 
noted very low. A similar pattern was observed with BRT_ES 
variant. MLP and MLP_ES showed better results for both 
training and testing datasets. MLP_ES is confirmed as our 
best model because of its computing time and lowest RMSE 
for testing dataset as 0.1601.
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