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ABSTRACT

The present study was carried out during 2022-2024 at Indian Institute of Information Technology, Nagpur,
Maharashtra to evaluate SOC stocks in the Dhamtari district of Chhattisgarh, India. Two machine learning models
and their variants-Boosted Regression Tree, Boosted Regression Tree with Early Stopping, Multilayer Perceptron,
and Multilayer Perceptron with Early Stopping were used for predicting Soil Organic Carbon (SOC). The findings of
the research indicated that Multilayer Perceptron produced better results in both scenarios that is, without and with
Early Stopping technique applied. Multilayer Perceptron with Early Stopping model recorded nearly the same RMSE
for both calibration and validation datasets as 0.1618 and 0.1601, respectively. Produced soil maps will assist farmers
in adopting accurate information for decisions which will boost farm output and offer security for food through the

balanced use of nutrients.
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Earth's topsoil provides a variety of ecosystem services
that allow life to exist. The world's soil is under strain
because of the fast transformations in land use and cover,
particularly the transformation of natural ecosystems into
agroecosystems. Various characteristics of soil are affected
by agricultural land uses, consequences of which is soil
degradation, especially the demise of soil organic matter
(SOM). The primary component of SOM, i.e. SOC, controls
soil properties. It preserves quality of soil by providing
nutrients and increasing water-holding ability (Bationo
et al. 2007). Frequent ploughing and other disorders
degenerate the aggregates and change the soil's aeration,
water holding capacity, and temperature conditions, which
leads to the depletion of SOC which influences fertility
of soil and, consequently, potential for agriculture (Batjes
1996, Zhenxing Bian and Jia 2020). Furthermore, there is a
correlation between SOC stock and soil water penetration,
water holding, and soil structural stability (Lefevre et al.
2017). Thus, information on the various aspects of SOC is
needed worldwide for different purposes. To forecast the
SOC of different types of soil or locations, it is therefore
essential to develop a system that is more accurate and
reliable. To use soil for agricultural and other ecological
purposes, it is essential to know the spatial spread of these

Indian Institute of Information Technology, Nagpur,
Mabharashtra. *Corresponding author email: mundadasg30@
gmail.com

important nutritional elements in soil (Brady and Weil 2008,
El-Ramady ef al. 2014). Also, proper nutrient management
in soil enhances the crop productivity (Sarkar et al. 2025).
With advancements in data analysis, remote sensing, and
geographic information systems, a variety of mapping
techniques have been used and developed to increase the
precision of the approach and the produced spatial maps.
Digital soil mapping (DSM) is based on this concept where
soil property's variability is described by how it relates to
soil-forming elements including terrain, climate, vegetation,
and soil nature. Prediction of SOC using this technique
made use of a wide range of statistical techniques, such as
kriging (Cambule et al. 2014), regression-kriging (Hengl
and Heuvelink 2004, Hengl and Heuvelink 2007, Kumar
et al. 2012), multiple linear regression (Meersmans et al.
2008), generalized linear models (Yuanhe ez al. 2008),
linear mixed models (Doetterl et al. 2013, Karunaratne et
al. 2014). Recently, a few studies have also used cutting-
edge techniques from the field of machine learning, such
as artificial neural networks (Malone et al. 2009, Jaber and
Al-Qinna 2011, Li ef al. 2013) , support vector machines
(Rossel and Behrens 2010), boosted regression trees (Martin
et al. 2011), Cubist (Kumaraperumal ef al. 2022, Kumar et
al. 2023, Meliho et al. 2023) and random forests (Grimm
et al. 2008, Wiesmeier ef al. 2011, Vagen and Winowiecki
2013) to prepare spatial maps of SOC. Machine learning
techniques address the limitations of parametric and non-
parametric statistical techniques (Drake et al. 2006). Thus,
goal of this research is to create and assess machine learning
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models that predict and map variations of SOC stocks in
the Dhamtari District of Chhattisgarh State.

MATERIALS AND METHODS

Research terrain: The present study was carried
out during 2022-2024 at Indian Institute of Information
Technology, Nagpur, Maharashtra. To anticipate SOC, a
set of attributes representing terrain, climate and spectral
indices was chosen.

Data processing: Numerous biological and
environmental factors, as well as the associations between
them, influence the amount of nutrients in the soil. A set
of factors encompassing topography, climate, and remote
sensing were chosen to forecast soil properties. For this
research, soil health card data were used. Block-by-block
matching of the locations was done, and any missing or
incorrectly valued data was eliminated. Multitemporal
information was retrieved from SRTM DEM and Landsat-8
(Roy et al. 2014) images collected from the USGS/NASA.
Climate data at a resolution of 21 km? was acquired from
WorldClim 2.1 spanning more than 20 years. 17 terrain
variables, 19 bioclimate variables and 7 soil-related spectral
indices, were retrieved using set of pre-processed raster
images (Table 1). The SRTM DEM was used to extract
topographical data with a spatial resolution of 30 m. To
match the digital elevation model's (DEM) resolution,
climate data were interpolated to 30 m resolution. The
SAGA GIS tool was utilized to calculate the bioclimate
variables and terrain variables.

Modelling techniques: It has been observed that most
ML models used for experimentation for such research
problems suffer from overfitting and need high computation
time. Two machine learning algorithms have been used,
namely Multi-Layer Perceptron (MLP) used and second one,
Boosted Regression Tree (BRT). To overcome the overfitting
problem, in this study a technique called early stopping
has been used. It is an optimization strategy which reduces

Table 1 List of predictor variables for modelling

Category Predictor Variables

Topography Plan Curvature, Flow Accumulation, Topographic
Position Index, Aspect, Channel Network Base
Level, Total Catchment Area, Elevation, Multi-
Resolution Ridge Top Flatness, Channel Network
Distance, Slope, Terrain Ruggedness Index, Valley
Depth, Convergence Index, Terrain Wetness Index,
Profile Curvature, Multi Resolution Valley Bottom

Flatness, Relative Slope Position
Bio-Climatel to Bio-Climate19

Saturation Index (SI) (Raya et al. 2004),
Atmospherically Resistant Vegetation Index
(ARVI]) (Kaufman and Tanre 1992), Normalized
Difference Vegetation Index (NDVI) (Huete ef al.
2002), Coloration Index (CI) (Raya et al. 2004),
Brightness Index (BI) (Raya ez al. 2004), Crust Index
(Crl) (Karnieli 1997), Soil Adjusted Vegetation
Index (SAVI)

Climate

Spectral
Indices

overfitting without affecting model accuracy. It is primarily
about terminating training before a model becomes overfit.
Summary for the used ML models is mentioned below.

Two techniques are combined, namely Boosting and
Decision Trees algorithms to create Boosted Regression
Trees (BRT) models. BRT, a tree-based algorithm was
designed by (Friedman et al. 2000) and uses boosting to
enhance accuracy. Instead of obtaining a single, highly
accurate model, boosting relies on merging multiple
approximation prediction models (Schapire 2003). As a
result, the decision trees grow successively so that each one
forecasts the residual of the one before it; as a result, the
algorithm's performance is affected by the number of trees
and needs to be adjusted. However, the trees are developed
on a randomly chosen data subset with no replacement to
introduce randomness into the model and hence boost the
robustness of performance (Friedman 2002). The learning
rate also referred to as shrinkage regulates each new tree's
contribution to the final model (Hastie et al. 2009).

A specific branch of artificial intelligence that is
frequently utilized for modelling is artificial neural networks.
One kind of neural network comprised of Multilayer
Perceptron (Gardner and Dorling 1998). It is a model made
up of a network of fundamentally connected neurons, or
nodes, that shows a non-linear relation between an input
vector and an output vector. Every node in the layer
was linked to every other node in the layer preceding it.
Strengths and weights may be symmetrical or non-divergent
for each node in a network, data enters the input layer
and progresses progressively through each layer to the
last layer, i.e. output layer. The architecture of a MLP can
vary, although it usually has multiple layers of neurons.
Just the input vector is sent to the network by the input
layer; no computations are performed there. Fig. 1 depicts
architecture for MLP considered in this study, here n1=200,
n2=150,n3=100, n4=50, n5=10 tells us about size of hidden
layers, respectively. The input layer has 7 nodes which are
components derived from SVD, and output layer consists
of one node as SOC prediction value.

Hyperparameter setting: The potential of
hyperparameters to directly regulate the training algorithm's
behaviour contributes to their significance. The choice of
appropriate hyperparameters has a significant effect on
the training model's performance. In this research work
a set of hyperparameters have been considered which are
derived using optimization technique called GridSearch.
It is perhaps the most straightforward traditional approach
to carrying out hyperparameter optimisation (Shekar and
Dagnew 2019). It generates a Cartesian product of every
possible combination of hyperparameters. Grid Search
trains the machine learning algorithm for every feasible
combination of hyperparameters and tests performance
using the "cross-validation" technique on the training set.

Model evaluation: We utilized root mean square error,
RMSE (Willmott and Matsuura 2005) and coefficient
of determination, R?> (Wright 1921) as the performance
indicator. Also, computation time (CT), the total amount
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Fig. 1

of time needed to finish the training process, was measured
as a metric for model efficiency.
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the scales of the singular values that the SVD reveals will
demonstrate if there is no conceivable reduction. Using the
SVD method, any matrix can be factored into three new
matrices with unique properties that can be used further.
SVD of a linear transformation S is written as:

S=UzvT (1)

Where U, Orthogonal matrix of size M x M and referred
as left singular vectors of S, will M x N diagonal matrix in
which diagonal elements are termed as singular values of S
and VT is orthogonal right singular vectors of S having size of
N x N elements. Expanded version of linear transformation
S, in SVD is as shown below, considering M<N:
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Fig. 2 Feature correlation analysis between principal components derived and environmental
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Total Catchment Area and Channel Network Base Level
have good contribution in prediction of SOC for the study
area. On statistical analysis, it was observed that SOC of
study location ranged from 0.06—1.76, having mean of 0.44
and a standard deviation of 0.24, presenting a positive-
skewed distribution with value as 0.8365. Skewness in the
values of a specific independent variable (feature) degrades
model performance. That’s why skewness of data has been
reduced by applying logarithmic transformation. After the
transformation, skewness of 0.4290 was noted.

The performance of BRT, BRT ES, MLP, MLP ES was
evaluated with the help of testing datasets and validation
datasets. Table 2 shows the implementation outcomes of
all ML models. Using both training and testing datasets,
the effectiveness of four models for predicting the SOC
in the Dhamtari District Indian state of Chattisgarh was
assessed. During the study, experimentation was carried
out with multiple sets of principal components as input,
which were generated using SVD algorithm. Early stopping
technique (Stankewitz 2024) used to overcome the problem
of overfitting. It proved its significance prominently in BRT
than MLP. In line with the observations depicted in Table
2, modelling technique with input as 7 components proved
more accurate as compared to others. On comparing ML
models based on computation time, it is found that both
algorithms using early stopping technique acquired very
little time. For the training dataset, it was observed that
Boosted Regression Tree algorithm showed the highest R?
as 0.9884 while MLP recorded lowest R, as 0.0670. Based
on RMSE, Boosted Regression Tree (BRT) recorded the
lowest RMSE as 0.0175 only for Training Dataset while
Multilayer Perceptron (MLP) showed good result for both
datasets without suffering from overfitting i.e. can be
considered as a good fit model. Low R? may result from
high irregularity in climate variables and spectral indices
caused by the geological conditions in the study. Soil

[The Indian Journal of Agricultural Sciences 95 (8)

nutrient status is currently determined via laboratory-based
chemical analysis. This soil evaluation method is based on
routine soil sampling design, sample collection, sample
preparation, and subsequent laboratory chemical analysis.
However, evaluating soil across a wide region using this
method is expensive, time-consuming, and labour-intensive.
Furthermore, if handled incorrectly, the laboratory's acid-
base waste liquid may result in secondary environmental
contamination. Thus, a quick, on-site, ongoing, and non-
polluting detection technique mentioned in this work for soil
composition detection is very much useful and desperately
needed.

Spatial predictions of SOC, generated by each of the
machine learning models used in this study are displayed
in Fig. 2 for the whole Dhamtari district. All the prediction
model maps displayed both rapid and regular fluctuations
throughout the research region. For the BRT, BRT ES,
MLP, and MLP_ES models, estimated SOC ranged from
-0.002 to 0.71, 0.09 to 0.61, -0.36 to 1.72, and -0.037
to 0.85, in that order. It is difficult to choose the most
accurate model in the absence of individualistically
validating these predictions, we selected the Multi-Layer
Perceptron with Early Stopping (MLP_ES) model as the
"best" due to accuracy metrics and the fact that the spatial
projections visually matched our perception of the scene.
Multi-Layer Perceptron with Early Stopping (MLP_ES)
model predictions more closely matched the geo-graphical
distribution of the SOC we expected in the research area.
The study area's northern and some part of eastern region
have minor values due to intensive farming, which causes
significant wearing away and crop cultivation, while the
western and southern regions, which are covered with good
vegetation and dominated by forests, have high values of
SOC in all models. The various management strategies used
in regions with higher concentrations of intensive farming
can be used to clarify it.

Table 2 Model assessment results based on training data and testing data

ML model Principal CT Training Testing
components (sec) RMSE R2 RMSE
BRT 3 21.49 0.9884 0.0175 -0.3676 0.1958
4 28.32 0.9884 0.0175 -0.4089 0.1886
7 42.76 0.9884 0.0175 -0.2418 0.1771
BRT_ES 3 0.91 0.6684 0.0941 -0.1937 0.1746
4 1.53 0.6981 0.0898 -0.2009 0.1741
7 2.06 0.7480 0.0820 -0.1269 0.1687
MLP 3 14.01 0.0741 0.1567 -0.0476 0.1648
4 14.37 0.0743 0.1567 -0.4078 0.1911
7 14.45 0.2391 0.1421 -0.0898 0.1681
MLP_ES 3 1.17 -0.0009 0.1630 0.0078 0.1608
4 1.09 0.0171 0.1615 0.0098 0.1604
7 0.84 0.0032 0.1618 -0.1887 0.1601
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Fig. 2 Spatial prediction of SOC using different models.

A certain amount of uncertainty is unavoidable in
machine learning models. There are various methods for
measuring this uncertainty. Quantile Regression technique
was utilized to quantify this prediction uncertainty. The
uncertainty analysis for our best model, Multi-Layer
Perceptron with Early Stopping (MLP_ES), is shown in
Fig. 3. The tendency of the machine learning algorithms'
propensity to forecast the SOC was validated by the
uncertainty analysis. A confidence interval of 90% with both
lower and higher prediction bounds have been constructed
to show the level of uncertainty. The maximum predicted
SOC values were found to lie within the 90% confidence
interval. In Supplementary Fig. 1, just a sample of the
dataset covering the full research area has been presented
for presentation because of its vast size. The equilibrium
between carbon inputs and outputs in soils determines
SOC concentrations; this equilibrium is influenced by
several factors, including regional features like vegetation,
topography, and environmental circumstances (Sahoo et
al. 2019). The uncertainty map revealed that the southern
portion, which is mostly covered in healthy vegetation and
is dominated by forests, had stronger SOC estimates than
the northern parts.

In conclusion, the results of the study revealed how
successful digital soil-mapping techniques are at generating
accurate soil-related data, such as details on soil nutrients.
Before planting in each cycle, farmers evaluate the quality
of the soil (nutrient contents) to choose the best agricultural
management strategy for the soil's current state. However,
fertilization is usually done mechanically or involuntarily to
produce a high yield, which leads to an unequal distribution
of chemical fertilizers. However, scientific fertilization done
in line with the amount and quality of nutrients in the soil
produces high-yield crops of superior quality. Therefore,
determining the composition of the soil has become essential
for fertilization in precision agriculture. High-resolution
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Fig. 3 Dispersion of the 90% prediction interval's low and high
bounds for estimated SOC.

digital maps may be used to assess crop compatibility,
soil and land management strategies, site-specific fertilizer
recommendations, and irrigation scheduling all of which
can save operational costs. Fewer input costs and increased
farm outputs can be achieved by strategic crop selection,
effective landscape and soil management practices, and
balanced fertilization that use DSM. Two machine-learning
methods were investigated in this work. Patterns of SOC
spatial distribution in Dhamtari District of Indian state
Chattisgarh. This study used data associated with SOC
observations, environmental parameters, and optimal models
to determine the spatial map of the SOC. BRT produced
good results for training dataset, with highest R as 0.9884
and lowest RMSE as 0.0175 but for testing dataset R? was
noted very low. A similar pattern was observed with BRT ES
variant. MLP and MLP_ES showed better results for both
training and testing datasets. MLP_ES is confirmed as our
best model because of its computing time and lowest RMSE
for testing dataset as 0.1601.
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