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satellite images using deep learning model YOLO: A comparative analysis
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ABSTRACT

Mango (Mangifera indica L.) is a widely cultivated horticultural cash crop in tropical and subtropical regions, 
valued for its exceptional taste, aroma, nutritional benefits, and medicinal properties. Tree counting is a crucial 
aspect of orchard inventory management, enabling efficient resource allocation, yield estimation, and precision 
agriculture applications. However, traditional methods often rely on manual efforts or expensive feature engineering, 
leading to errors, inefficiencies, and limited scalability. Recent advancements in deep learning-based approaches 
have demonstrated state-of-the-art performance in automated tree counting, offering improved accuracy, robustness, 
and computational efficiency. The study was carried out during 2023–24 presenting a comparative evaluation of 
YOLO architectures for mango tree detection and counting. The research analyzes YOLOv5, YOLOv6, YOLOv7, 
and YOLOv8 using satellite remote sensing imagery from the Bulandshahr district of Uttar Pradesh. Performance 
evaluation is conducted using precision, Recall, F1-score, and mean average precision (mAP). Experimental results 
reveal that YOLOv8 exhibits superior performance, achieving a well-balanced trade-off between detection accuracy, 
processing speed, and generalization. These findings highlight the potential of deep learning models for scalable 
orchard monitoring, precision agriculture, and sustainable fruit production.
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Mango (Mangifera indica L.) is important and widely 
cultivated fruit crops in India. With an annual production 
of 20.77 Mt from an area of 2.35 million hectares, India 
is the world's largest producer of mangos (National 
Horticulture Board 2023). Mango is India's most important 
commercial fruit crop, accounting for more than 54% of 
global mango production (Srividhya et al. 2024). A crucial 
tool for managing orchards is orchard inventory. Orchard 
inventory supports a wide range of management activities, 
including efficient resource allocation, disease control, 
harvest planning, and targeted treatments. By maintaining 
accurate and comprehensive orchard inventory, orchard 
managers may promote sustainability. The orchard tree 
inventory may benefit government insurance schemes 
in addition to orchard management. In India, mango 
orchard inventory includes number of trees to assess the 
production potential of mango orchards. For large mango 
orchard sites, tree counting in mango orchard is costly 

and time consuming. Combination of remote sensing and 
deep learning tools is game changing approach for tree 
counting in mango orchard. This approach can also help in 
estimating crop yields, planning harvesting operations, and 
making informed decisions regarding fertilizer, irrigation, 
and pest control.

Computer algorithms have proven highly effective in 
autonomously detecting and pinpointing trees as distinct 
objects within images (Putra and Wijayanto 2023). Among 
these algorithms, the You Only Look Once (YOLO) (Liu 
et al. 2024) architecture has established itself as a highly 
efficient and precise framework for performing object 
detection tasks (Redmon et al. 2015). 

This study provides in-depth performance assessment 
of multiple YOLO architectures YOLOv5, YOLOv6, 
YOLOv7, and YOLOv8 for the tasks of mango tree 
detection and tree counting utilizing remote sensing 
imagery. Notably, YOLOv8 is highlighted as a key focus 
of this evaluation. This study uses a variety of measures, 
including as recall, precision, F1-score, loss, and mean 
average precision (mAP), to assess the performance of the 
examined architectures. Additionally, this research utilizes 
satellite images of Bulandshahr district, Uttar Pradesh, 
India. These images were collected from Google Earth 
Engine. In this study all models showed great accuracy. 
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1 displays the green regions in the ground truth, which 
represent individual mango tree crowns, each enclosed 
within a bounding box. These bounding boxes, known 
as annotation boxes, are used to identify and assess the 
detection and counting of individual tree crowns. Each 
annotation box corresponds to one distinct mango tree 
crown, serving as a key element for evaluation. The green 
areas in Fig. 1 are the ground truth's individual mango tree 
crowns, each of which is bounded by a box. Individual 
tree crowns are detected and counted using these bounding 
boxes, often referred to as annotation boxes. An important 
component for evaluation is the annotation box, which 
represents a single, unique mango tree crown.

Architectures under study 
YOLOv5: “You Only Look Once version 5”, YOLOv5 

(Zhao et al. 2019) has rapidly established itself as a leading 
solution in the object detection field due to its continuous 
performance and speed optimization. The YOLOv5 model 
(Supplementary Fig. 2) is made up of three essential 
components; the head, neck, and backbone. The backbone of 
YOLOv5 utilizes the CSP-Darknet53 convolutional network 
and the Cross Stage Partial (CSP) network structure (Itakura 
and Hosoi 2020, Mekhalfi et al. 2021). This approach 
successfully addresses problems with duplicate gradients and 
vanishing gradients while guaranteeing a strong information 
flow, particularly in deep layers (Mathew and Mahesh 2022). 
The YOLOv5 model's neck implements Path Aggregation 
Network (PANet) and uses a variant of the Spatial Pyramid 
Pooling (SPP). As with its predecessors, the YOLOv5 
model's head, which consists of three convolution layers, is 
the last component. Similar to earlier versions, the YOLOv5 
model's head is made up of three convolution layers that 
predict object classifications, scores, and bounding box 
coordinates (Mathew and Mahesh 2022).

YOLOv6: YOLOv6 (Jiang et al. 2022) model, which 
consists of the Backbone, Neck, and Head (Supplementary 
Fig. 3). To further increase its uniqueness in the field, 
YOLOv6 sets itself apart by presenting an anchor free 
model with a reparameterized backbone (Jiang et al. 
2022). YOLOv6 introduces reparameterized backbones 
to address the competing demands of speed and accuracy 
that are frequently present in linear networks like VGG 
and classic multi-branch networks like ResNets (Gupta et 
al. 2023). YOLOv6 has a reparametrized backbone called 
EfficientRep, while medium and large models utilize 

However, YOLOv8 outperformed the earlier YOLO 
versions by achieving the highest scores in precision, recall, 
F1-score, and mAP@50.

MATERIALS AND METHODS
Study area: The study was carried out during 2023–24. 

Uttar Pradesh, Andhra Pradesh, Karnataka, Maharashtra, 
Bihar, Gujarat, Tamil Nadu, Odisha, West Bengal, and 
Jharkhand are the major Indian states that produce 
mangoes. Western Uttar Pradesh, with its favourable 
agro-climatic conditions, serves as a significant region 
for mango production, offering a diverse range of mango 
varieties. The major mango producing districts in Uttar 
Pradesh are Lucknow, Sahranpur, Bareilly, Bulandshahr, 
Unnao, Muzzaffarnagar, Sultanpur, Meerut and Firozabad 
(Supplementary Fig. 1), these districts are known for their 
favourable climatic conditions and suitable soil for mango 
cultivation. Bulandshahr (28.000’– 28.040’ N latitude and 
77.030’– 78.030’ E longitude) is one of the districts which 
was selected for this study. Total mango orchard area 
in Bulandshahr district is 15–16 thousand hectares with 
2,65,000 Mt of mango production. Different-aged mango 
orchards (Cultivar: Daseri, Langra, Chausa) of 2–50 years 
old planted in Bulandshahr. 

The selection of Bulandshahr as the study area is 
based on several factors, including the ease of access and 
convenience for the investigator. The region is known for 
its large-scale mango orchards, which supply mangoes to 
the nearby Delhi NCR market. The straight-line distance 
between Delhi and Bulandshahr is 80.1 km. Additionally, 
the investigator's familiarity with the local language and 
close association with the area's people and officials, who 
are directly or indirectly involved in mango cultivation, 
played a significant role in choosing this location.

Data acquisition and preparation: High Resolution 
remote sensing images of study area by Google Earth Engine 
(GEE) were used for this study. Data was collected from 
14 location of Bulandshahr district (Gyaspur, Nimkhera, 
Chewali, Bahalimpur, Kazapur, Ranapur, Waira Firozpu, 
Sahanpur, Siyana, Bulandshahr, Rampura, Chandpur, Bigaur 
and Ghansoorpur) through GEE. The images collected 
were within the visible spectrum and had a resolution of  
1162 × 632 pixels. These images, which depicted various 
sections of the orchard, feature 4 different varieties of 
mango trees (Alphonso, Dasheri, Langra, and Chausa), 
included both young and mature trees. The images were 
carefully selected to create a varied dataset. Any images 
with ambiguous tree appearances, identified through visual 
inspection, were cropped to eliminate the uncertainty. In 
total, 750 images were gathered from 14 different locations 
across the Bulandshahr district in Uttar Pradesh.

Ground truth labelling was done manually while 
inspecting images of the corresponding study area. Mango 
tree crown pixels were marked with a green box in the 
ground truth images for individual tree detection, while 
all other pixels belonged to the background class. The JPG 
files were used to hold the ground truth photographs. Fig. 
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Fig. 1	Mango orchard image with bounding box.
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(2020), is a key metric in evaluating the accuracy of positive 
predictions made by object detection models. 

Precision =
TP

(1)
TP + FP

Where TP, Count of true positive predictions; and FP, 
Count of false positives, or instances incorrectly classified 
as positive.

Recall: Recall (Padilla et al. 2021) in equation 2, also 
known as the true positive rate or sensitivity, measures the 
proportion of actual positive instances correctly identified 
by the model, ensuring that true detections are maximized. 

Recall =
TP

(2)
TP + FN

Where TP, Count of true positive predictions; and FN, 
Count of false negatives, or instances incorrectly classified 
as negative.

F1-Score: A balanced statistic that integrates accuracy 
and recall into a single number is the F1-score (Zhao and 
Li 2020). It gives a general indication of how accurate the 
model is in detecting objects.

F1–Score =
2 × (Precision × Recall)

(3)
Precision + Recall

Accuracy: It shows what percentage of all instances 
both positive and negative were accurately anticipated 
(Equation 4). The model's overall performance across all 
classes is gauged by accuracy. 

Accuracy =
TP + TN

(4)
TP + TN + FP + FN

Where TP, Count of true positive predictions; TN, Count 
of true negative predictions; FP, Count of false positives or 
instances incorrectly classified as positive; FN, Count of false 
negatives, or instances incorrectly classified as negative.

Mean average precision(mAP@50): mAP (Zhu et 
al. 2020) computes the average of the average precision 
(Equation 5) values over different recall thresholds with a 
50% IoU (Intersection Over Union) for each class in order 
to provide a comprehensive assessment of the model's 
performance across a number of classes.

	 mAP
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Loss: Loss, as described by Casas et al. (2023), is a 
metric that quantifies the difference between a model’s 
predicted outcomes and the actual or expected values. 
A smaller loss value signifies closer alignment between 
the model's predictions and the actual data. The primary 
objective during training is to minimize this loss to enhance 
the model’s performance. Different YOLO versions 
incorporate distinct loss functions to optimize various 
aspects of detection, including box loss, objectness (obj) loss, 
distributional focal loss (dfl), and classification (cls) loss.

To determine whether observed performance differences 
between YOLO models are statistically significant, we 
conducted a pairwise t-test along with 95% Confidence 

CSPStackRep and nano and tiny models have RepVGG. 
The neck structure resembles that of YOLOv5, but it has a 
separated classification and detection head and bi-directional 
concatenation for improved localization accuracy (Jiang et 
al. 2022).

YOLOv7: YOLOv7 (Wang et al. 2023) is also composed 
of three primary parts: the head, neck, and backbone 
(Supplementary Fig. 4). The ultimate objective of YOLOv7's 
development was to develop a network architecture that 
could predict bounding boxes more accurately than other 
models of a similar kind while still retaining a similar 
inference speed (Wang et al. 2023). 

One notable advancement in YOLOv7 is the 
incorporation of the Extended Efficient Layer Aggregation 
Network (E-ELAN), which is an optimized version of 
the ELAN computational block (Patel et al. 2022, Wang 
et al. 2023). This enhancement improves the efficiency 
of the convolutional layers within the YOLO network's 
backbone by organizing computational blocks without 
altering the transition layers. It aims to shorten the gradient's 
backpropagation distance in order to increase the network's 
learning efficiency, while also accounting for the memory 
requirements for layer retention (Gupta et al. 2023).

YOLOv8: YOLOv8 (Sohan et al. 2024) retains the core 
architectural components of the YOLO framework, namely 
the Backbone, Neck, and Head, which work synergistically 
to perform various tasks (Supplementary Fig. 5). A notable 
feature of YOLOv8 is its adoption of an anchor-free model, 
which distinguishes it from previous YOLO versions that 
utilized anchor boxes for object detection. This anchor-
free approach significantly speeds up the Non-Maximum 
Suppression (NMS) phase, a crucial post-processing step 
that filters through potential detections after the model 
makes its predictions, by reducing the total number of box 
predictions.

YOLOv8 also introduces key advancements in its 
convolutional operations, which are the foundational 
elements of its neural network structure. The architecture 
has been made more efficient and adaptable with the 
replacement of C3 with C2f, as well as replacing of the 
original 6×6 convolution in the core with a more efficient 
3×3 convolution. To improve the model’s capacity to identify 
objects of different sizes, YOLOv8 integrates the Spatial 
Pyramid Pooling Feature (SPPF), improving its multi-scale 
feature extraction. Furthermore, the model employs an image 
augmentation approach, such as mosaic augmentation, 
during training. This method combines four images into 
one, allowing the model to learn objects in various locations 
with variable surrounding pixel arrangements, and under 
partial occlusion (Tamang et al. 2023).

Performance evaluation: Precision, recall, accuracy, 
loss, and mean average precision (mAP) are among the 
frequently used metrics that we have chosen from the 
literature to assess model performance and provide useful 
comparisons. We then give a thorough explanation of every 
metric that was chosen.

Precision: Precision, as discussed by Padilla et al. 
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are 85.9% and 85%. The trade-off in mAP@50 scores as 
the number of epochs grows is seen in Fig. 2(d).

Table 2	Comparative performance of different YOLO models in 
terms of precision, recall, F1-score, and mAP@50

YOLO variant Precision (%) 
(95% CI)

Recall (%) 
(95% CI)

F1- 
score 

mAP @50 
(95% CI)

YOLOv5 85.7 80.3 82.9 85.9 
YOLOv6 85.6 79.3 82.3 86.0 
YOLOv7 86.5 79.5 82.8 85.0 
YOLOv8 93.1 94.2 93.6 97.0 

CI, Confidence intervals.

YOLOv8 achieved the highest performance across 
all key metrics, demonstrating significantly superior 
precision (93.1%), recall (94.2%), F1-score (93.6%), and 
mAP@50 (97.0%) (Table 2). The confidence intervals 
(CIs) for YOLOv8 do not overlap with those of YOLOv5, 
YOLOv6, and YOLOv7, confirming that its improvements 
in detection accuracy are statistically significant. Conversely, 
the overlapping CIs among YOLOv5, YOLOv6, and 
YOLOv7 indicated that their performance differences were 
minor and not statistically significant. While YOLOv8 is 
the most accurate model, practical considerations such as 
computational efficiency and processing time may influence 
model selection, making YOLOv5, YOLOv6, or YOLOv7 
viable alternatives for applications where a balance between 
accuracy and efficiency is required.

These findings suggested that YOLOv8 has outstanding 
accuracy, recall, F1-score, and mAP@50 performance, 
which makes it a viable choice for tasks involving the 
recognition and counting of mango trees. However, other 
models, including YOLOv5, YOLOv6, and YOLOv7, also 
showed competitive performance, particularly in terms of 
training time. 

Fig. 2 displays the performance of every measurement 
for variants of YOLO on the validation dataset. It is evident 
that YOLOv8 experiences slower convergence across all 
metrics when compared to the other models. YOLOv8 
showed stability for all measures beyond the 50th epoch, 
suggesting that model's performance has reached its peak. 
In contrast, YOLOv5, YOLOv6, and YOLOv7 exhibit faster 
convergence during the initial epochs, especially with regard 
to precision, F1-score, and mAP@50. Additionally, after 
50th epoch, YOLOv8 model exhibits reduced variability 
and improved stability across all measures. Furthermore, 
YOLOv8 maintains consistent performance across all epochs 
without significant degradation in results.

YOLOv8 is a promising choice for mango tree 
recognition and tree counting in mango orchards since 
it finds an equilibrium between model complexity and 
performance measures. A key observation is the balance 
between accuracy and computational efficiency. While 
YOLOv8 exhibits the highest detection accuracy, its training 
time was relatively longer than other models. YOLOv7 also 
demands considerable computational resources but does not 

Intervals (CIs). This statistical analysis provides an in-depth 
validation of performance comparisons.

RESULTS AND DISCUSSION
This research evaluated the performance of YOLO 

models in object detection and counting tasks by comparing 
key metrics, including precision, recall, F1-score, mAP@50, 
and training time. According to Table 1, training time 
increases from YOLOv5 to YOLOv8, with YOLOv8 
requiring 48 min and 58 sec. YOLOv5 has the shortest 
training time, while YOLOv7 takes the longest. These 
results align with expectations, as YOLOv7 is as resource-
intensive as YOLOv8, both models showing similar training 
durations. The study concluded that YOLOv5 is the most 
efficient model for detecting mango trees in satellite imagery 
and for training on large datasets for tree counting. These 
findings highlight the computational cost of every model 
variant. When selecting a model, training time is an essential 
factor, but it should be weighed against other performance 
indicators like inference speed.

Table 1  Training time of YOLO’s variant

Variants of YOLO Training Time (min)
YOLOV5 37.54
YOLOv6 45.55
YOLOv7 49.08
YOLOv8 48.58

Each YOLO model's performance metrics on the 
validation dataset are shown in Table 2. The ability of 
YOLOv8 to lower false positive detections is demonstrated 
by its greatest precision of 93.1% when precision values 
are compared. Fig. 2(b), which visualizes the precision 
values for each model at 50 epochs, shows YOLOv8 
leading with the highest precision, followed by YOLOv7 
at 86.5%. Both YOLOv5 and YOLOv6 have a precision 
value of 85.7%.

Turning to recall, Fig. 2 (a) demonstrates that YOLOv8 
outperforms the others with a recall value of 94.2%, 
underscoring its ability to identify real-world mango tree 
occurrences. With a recall of 80.3%, Table 2 shows that 
YOLOv5 comes in second, demonstrating its capacity to 
identify occurrences. Additionally, YOLOv6 and YOLOv7 
perform well, with recall scores of 79.3% and 79.5%, 
respectively.

With the best score of 93.6%, YOLOv8 once again 
distinguishes out when examining the F1-score (Fig. 2c), 
demonstrating a solid balance between recall and accuracy. 
Notably, the F1-scores of the other models are almost the 
same, with YOLOv5, YOLOv6, and YOLOv7 obtaining 
scores of 82.9%, 82.3%, and 82.8%, respectively, indicating 
their competitive ability to strike a balance between recall 
and precision.

YOLOv8 achieves the greatest score of 97% in terms 
of mAP@50, followed by YOLOv6 with a score of 86% 
(Table 2). The equivalent scores for YOLOv5 and YOLOv7 

COMPARATIVE ANALYSIS OF YOLO MODEL IN MANGO ORCHARD



682 [Indian Journal of Agricultural Sciences 95 (6)

74

considering the training and validation cls losses, YOLOv5 
and YOLOv7 have nearly identical loss values, while 
YOLOv8 showed higher but still competitive losses. 
Regarding obj loss, both YOLOv5 and YOLOv7 exhibited 
a small difference between training and validation losses in 
Fig. 3(a) and 3(c), suggested that they are not overfitting 
the training dataset. Despite significant overfitting during 
training, YOLOv5 had a smaller validation obj loss than 
YOLOv7, indicating that it may generalize better in 
identifying objects in the validation data. 

The deployment of YOLO-based models in agricultural 
applications extends beyond mango tree detection, playing 
a significant role in precision agriculture, automated orchard 

match the accuracy of YOLOv8. In contrast, YOLOv5 and 
YOLOv6 offered a more computationally efficient alternative 
while maintaining competitive accuracy levels, making them 
viable choices for real-time applications where processing 
power is a limiting factor. These findings emphasize that 
model selection should depend on the specific use case, 
whether prioritizing accuracy (YOLOv8) or computational 
efficiency (YOLOv5/YOLOv6).

Moving on to the loss analysis, Fig. 3 presents average 
loss values for YOLO models. Beginning with box loss, 
both YOLOv8 and YOLOv5 exhibit consistent trend, 
with YOLOv8 having the lowest training and validation 
box losses compared to all previous YOLO versions. 
This suggested that the 
YOLOv8 model learned 
to predict bounding boxes 
more well, which improved 
generalization of bounding 
box predictions. As the box 
loss, the classification (cls) 
loss in Fig. 3 has a somewhat 
predictable pattern. The 
declining trend in training cls 
loss suggested that YOLOv5 
and YOLOv7 performed better 
during training. Notably, 
YOLOv6 displayed a higher 
validation cls loss than the 
other models, yet it doesn't 
outperform them overall. This 
suggested that YOLOv6’s 
training in cls prediction 
does not necessarily result in 
better generalization. When 

TRIPATHI ET AL.

Fig. 2	Performance of all metrics for validated YOLO models.

Fig. 3	The average loss values for all the YOLO’s variants.
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monitoring, and yield estimation. Accurate tree detection 
facilitates resource optimization, irrigation planning, and 
harvesting strategies, reducing the dependence on manual 
surveying techniques. However, practical deployment 
of YOLO based mango tree detection is limited by 
hardware constraints, high computational demands, and 
model generalizability. While YOLOv8 delivers superior 
accuracy, its resource intensive nature makes it unsuitable 
for low-power devices, whereas YOLOv5, though less 
accurate, offers better efficiency for real-time applications, 
with potential improvements through model optimization 
techniques. To address these challenges, future research 
should focus on model optimization techniques, such as 
quantization, pruning, and edge computing acceleration 
using TensorRT, EdgeTPU, or cloud-based processing. 
Additionally, hybrid models combining YOLO with 
traditional remote sensing techniques could further enhance 
precision and detection robustness, particularly in dense 
orchard settings.

In order to recognize mango trees and count the number 
of trees in mango orchards, we thoroughly evaluated the 
performance of several YOLO architectures in this work, 
including YOLOv5, YOLOv6, YOLOv7, and YOLOv8. 
The findings showed that, in both testing and validation, 
YOLOv8 had the best overall balance across all metrics. 
The YOLOv8 model demonstrated outstanding performance 
in accurately detecting trees, with an overall Precision of 
93.14%, Recall of 94.25%, F1-score of 93.69%, and a 
mean average precision (mAP) of 97.03%. These results 
highlight the efficiency of the YOLOv8 architecture in 
mango tree detection and counting tasks. It is important to 
note, nevertheless, that throughout testing and validation, 
the YOLOv6 variation performed much worse across all 
metrics. In conclusion, the particular requirements of the 
application need to direct the model selection, taking into 
factors like accuracy, recall, inference time, and the trade-
offs between these characteristics.
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