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satellite images using deep learning model YOLO: A comparative analysis
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ABSTRACT

Mango (Mangifera indica L.) is a widely cultivated horticultural cash crop in tropical and subtropical regions,
valued for its exceptional taste, aroma, nutritional benefits, and medicinal properties. Tree counting is a crucial
aspect of orchard inventory management, enabling efficient resource allocation, yield estimation, and precision
agriculture applications. However, traditional methods often rely on manual efforts or expensive feature engineering,
leading to errors, inefficiencies, and limited scalability. Recent advancements in deep learning-based approaches
have demonstrated state-of-the-art performance in automated tree counting, offering improved accuracy, robustness,
and computational efficiency. The study was carried out during 2023—-24 presenting a comparative evaluation of
YOLO architectures for mango tree detection and counting. The research analyzes YOLOvS, YOLOv6, YOLOvV7,
and YOLOVS8 using satellite remote sensing imagery from the Bulandshahr district of Uttar Pradesh. Performance
evaluation is conducted using precision, Recall, F1-score, and mean average precision (mAP). Experimental results
reveal that YOLOVS exhibits superior performance, achieving a well-balanced trade-off between detection accuracy,
processing speed, and generalization. These findings highlight the potential of deep learning models for scalable
orchard monitoring, precision agriculture, and sustainable fruit production.
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Mango (Mangifera indica L.) is important and widely
cultivated fruit crops in India. With an annual production
of 20.77 Mt from an area of 2.35 million hectares, India
is the world's largest producer of mangos (National
Horticulture Board 2023). Mango is India's most important
commercial fruit crop, accounting for more than 54% of
global mango production (Srividhya et al. 2024). A crucial
tool for managing orchards is orchard inventory. Orchard
inventory supports a wide range of management activities,
including efficient resource allocation, disease control,
harvest planning, and targeted treatments. By maintaining
accurate and comprehensive orchard inventory, orchard
managers may promote sustainability. The orchard tree
inventory may benefit government insurance schemes
in addition to orchard management. In India, mango
orchard inventory includes number of trees to assess the
production potential of mango orchards. For large mango
orchard sites, tree counting in mango orchard is costly

IICAR-Indian Agricultural Research Institute, New Delhi;
ZJCAR-National Institute of Agricultural Economics and Policy
Research, New Delhi; JICAR-National Academy of Agricultural
Research Management, Hyderabad. *Corresponding author email:
ansdix@gmail.com

and time consuming. Combination of remote sensing and
deep learning tools is game changing approach for tree
counting in mango orchard. This approach can also help in
estimating crop yields, planning harvesting operations, and
making informed decisions regarding fertilizer, irrigation,
and pest control.

Computer algorithms have proven highly effective in
autonomously detecting and pinpointing trees as distinct
objects within images (Putra and Wijayanto 2023). Among
these algorithms, the You Only Look Once (YOLO) (Liu
et al. 2024) architecture has established itself as a highly
efficient and precise framework for performing object
detection tasks (Redmon et al. 2015).

This study provides in-depth performance assessment
of multiple YOLO architectures YOLOvS, YOLOvV®6,
YOLOv7, and YOLOvV8 for the tasks of mango tree
detection and tree counting utilizing remote sensing
imagery. Notably, YOLOVS is highlighted as a key focus
of this evaluation. This study uses a variety of measures,
including as recall, precision, Fl-score, loss, and mean
average precision (mAP), to assess the performance of the
examined architectures. Additionally, this research utilizes
satellite images of Bulandshahr district, Uttar Pradesh,
India. These images were collected from Google Earth
Engine. In this study all models showed great accuracy.
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However, YOLOvS8 outperformed the earlier YOLO
versions by achieving the highest scores in precision, recall,
F1-score, and mAP@50.

MATERIALS AND METHODS

Study area: The study was carried out during 2023-24.
Uttar Pradesh, Andhra Pradesh, Karnataka, Maharashtra,
Bihar, Gujarat, Tamil Nadu, Odisha, West Bengal, and
Jharkhand are the major Indian states that produce
mangoes. Western Uttar Pradesh, with its favourable
agro-climatic conditions, serves as a significant region
for mango production, offering a diverse range of mango
varieties. The major mango producing districts in Uttar
Pradesh are Lucknow, Sahranpur, Bareilly, Bulandshahr,
Unnao, Muzzaffarnagar, Sultanpur, Meerut and Firozabad
(Supplementary Fig. 1), these districts are known for their
favourable climatic conditions and suitable soil for mango
cultivation. Bulandshahr (28.000’— 28.040’ N latitude and
77.030°— 78.030° E longitude) is one of the districts which
was selected for this study. Total mango orchard area
in Bulandshahr district is 15-16 thousand hectares with
2,65,000 Mt of mango production. Different-aged mango
orchards (Cultivar: Daseri, Langra, Chausa) of 2-50 years
old planted in Bulandshahr.

The selection of Bulandshahr as the study area is
based on several factors, including the ease of access and
convenience for the investigator. The region is known for
its large-scale mango orchards, which supply mangoes to
the nearby Delhi NCR market. The straight-line distance
between Delhi and Bulandshahr is 80.1 km. Additionally,
the investigator's familiarity with the local language and
close association with the area's people and officials, who
are directly or indirectly involved in mango cultivation,
played a significant role in choosing this location.

Data acquisition and preparation: High Resolution
remote sensing images of study area by Google Earth Engine
(GEE) were used for this study. Data was collected from
14 location of Bulandshahr district (Gyaspur, Nimkhera,
Chewali, Bahalimpur, Kazapur, Ranapur, Waira Firozpu,
Sahanpur, Siyana, Bulandshahr, Rampura, Chandpur, Bigaur
and Ghansoorpur) through GEE. The images collected
were within the visible spectrum and had a resolution of
1162 x 632 pixels. These images, which depicted various
sections of the orchard, feature 4 different varieties of
mango trees (Alphonso, Dasheri, Langra, and Chausa),
included both young and mature trees. The images were
carefully selected to create a varied dataset. Any images
with ambiguous tree appearances, identified through visual
inspection, were cropped to eliminate the uncertainty. In
total, 750 images were gathered from 14 different locations
across the Bulandshahr district in Uttar Pradesh.

Ground truth labelling was done manually while
inspecting images of the corresponding study area. Mango
tree crown pixels were marked with a green box in the
ground truth images for individual tree detection, while
all other pixels belonged to the background class. The JPG
files were used to hold the ground truth photographs. Fig.
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Fig. 1 Mango orchard image with bounding box.

1 displays the green regions in the ground truth, which
represent individual mango tree crowns, each enclosed
within a bounding box. These bounding boxes, known
as annotation boxes, are used to identify and assess the
detection and counting of individual tree crowns. Each
annotation box corresponds to one distinct mango tree
crown, serving as a key element for evaluation. The green
areas in Fig. 1 are the ground truth's individual mango tree
crowns, each of which is bounded by a box. Individual
tree crowns are detected and counted using these bounding
boxes, often referred to as annotation boxes. An important
component for evaluation is the annotation box, which
represents a single, unique mango tree crown.

Architectures under study

YOLOvS5: “You Only Look Once version 57, YOLOVS5
(Zhao et al. 2019) has rapidly established itself as a leading
solution in the object detection field due to its continuous
performance and speed optimization. The YOLOvS model
(Supplementary Fig. 2) is made up of three essential
components; the head, neck, and backbone. The backbone of
YOLOVS utilizes the CSP-Darknet53 convolutional network
and the Cross Stage Partial (CSP) network structure (Itakura
and Hosoi 2020, Mekhalfi et al. 2021). This approach
successfully addresses problems with duplicate gradients and
vanishing gradients while guaranteeing a strong information
flow, particularly in deep layers (Mathew and Mahesh 2022).
The YOLOvV5 model's neck implements Path Aggregation
Network (PANet) and uses a variant of the Spatial Pyramid
Pooling (SPP). As with its predecessors, the YOLOvVS
model's head, which consists of three convolution layers, is
the last component. Similar to earlier versions, the YOLOvVS
model's head is made up of three convolution layers that
predict object classifications, scores, and bounding box
coordinates (Mathew and Mahesh 2022).

YOLOv6: YOLOvV6 (Jiang et al. 2022) model, which
consists of the Backbone, Neck, and Head (Supplementary
Fig. 3). To further increase its uniqueness in the field,
YOLOV6 sets itself apart by presenting an anchor free
model with a reparameterized backbone (Jiang et al.
2022). YOLOV6 introduces reparameterized backbones
to address the competing demands of speed and accuracy
that are frequently present in linear networks like VGG
and classic multi-branch networks like ResNets (Gupta et
al. 2023). YOLOV6 has a reparametrized backbone called
EfficientRep, while medium and large models utilize
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CSPStackRep and nano and tiny models have RepVGG.
The neck structure resembles that of YOLOVS, but it has a
separated classification and detection head and bi-directional
concatenation for improved localization accuracy (Jiang et
al. 2022).

YOLOv7: YOLOV7 (Wang et al. 2023) is also composed
of three primary parts: the head, neck, and backbone
(Supplementary Fig. 4). The ultimate objective of YOLOvV7's
development was to develop a network architecture that
could predict bounding boxes more accurately than other
models of a similar kind while still retaining a similar
inference speed (Wang et al. 2023).

One notable advancement in YOLOV7 is the
incorporation of the Extended Efficient Layer Aggregation
Network (E-ELAN), which is an optimized version of
the ELAN computational block (Patel ef al. 2022, Wang
et al. 2023). This enhancement improves the efficiency
of the convolutional layers within the YOLO network's
backbone by organizing computational blocks without
altering the transition layers. It aims to shorten the gradient's
backpropagation distance in order to increase the network's
learning efficiency, while also accounting for the memory
requirements for layer retention (Gupta et al. 2023).

YOLOvS8: YOLOVS (Sohan et al. 2024) retains the core
architectural components of the YOLO framework, namely
the Backbone, Neck, and Head, which work synergistically
to perform various tasks (Supplementary Fig. 5). A notable
feature of YOLOWVS is its adoption of an anchor-free model,
which distinguishes it from previous YOLO versions that
utilized anchor boxes for object detection. This anchor-
free approach significantly speeds up the Non-Maximum
Suppression (NMS) phase, a crucial post-processing step
that filters through potential detections after the model
makes its predictions, by reducing the total number of box
predictions.

YOLOVS also introduces key advancements in its
convolutional operations, which are the foundational
elements of its neural network structure. The architecture
has been made more efficient and adaptable with the
replacement of C3 with C2f, as well as replacing of the
original 6x6 convolution in the core with a more efficient
3x3 convolution. To improve the model’s capacity to identify
objects of different sizes, YOLOVS integrates the Spatial
Pyramid Pooling Feature (SPPF), improving its multi-scale
feature extraction. Furthermore, the model employs an image
augmentation approach, such as mosaic augmentation,
during training. This method combines four images into
one, allowing the model to learn objects in various locations
with variable surrounding pixel arrangements, and under
partial occlusion (Tamang et al. 2023).

Performance evaluation: Precision, recall, accuracy,
loss, and mean average precision (mAP) are among the
frequently used metrics that we have chosen from the
literature to assess model performance and provide useful
comparisons. We then give a thorough explanation of every
metric that was chosen.

Precision: Precision, as discussed by Padilla et al.
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(2020), is a key metric in evaluating the accuracy of positive
predictions made by object detection models.
TP
Precision = ——— @9
TP + FP

Where TP, Count of true positive predictions; and FP,
Count of false positives, or instances incorrectly classified
as positive.

Recall: Recall (Padilla ef al. 2021) in equation 2, also
known as the true positive rate or sensitivity, measures the
proportion of actual positive instances correctly identified
by the model, ensuring that true detections are maximized.

TP
Recall= ——— 2)
TP + FN

Where TP, Count of true positive predictions; and FN,
Count of false negatives, or instances incorrectly classified
as negative.

F1-Score: A balanced statistic that integrates accuracy
and recall into a single number is the F1-score (Zhao and
Li 2020). It gives a general indication of how accurate the
model is in detecting objects.

2 x (Precision x Recall)

F1-Score = — 3)
Precision + Recall

Accuracy: 1t shows what percentage of all instances
both positive and negative were accurately anticipated
(Equation 4). The model's overall performance across all
classes is gauged by accuracy.

TP + TN

Accuracy = 4)
TP + TN + FP + FN

Where TP, Count of true positive predictions; TN, Count
of true negative predictions; FP, Count of false positives or
instances incorrectly classified as positive; FN, Count of false
negatives, or instances incorrectly classified as negative.

Mean average precision(mAP@50): mAP (Zhu et
al. 2020) computes the average of the average precision
(Equation 5) values over different recall thresholds with a
50% IoU (Intersection Over Union) for each class in order
to provide a comprehensive assessment of the model's
performance across a number of classes.

1 <~
mAP_EZi:lAPi ©)

Loss: Loss, as described by Casas et al. (2023), is a
metric that quantifies the difference between a model’s
predicted outcomes and the actual or expected values.
A smaller loss value signifies closer alignment between
the model's predictions and the actual data. The primary
objective during training is to minimize this loss to enhance
the model’s performance. Different YOLO versions
incorporate distinct loss functions to optimize various
aspects of detection, including box loss, objectness (obj) loss,
distributional focal loss (dfl), and classification (cls) loss.

To determine whether observed performance differences
between YOLO models are statistically significant, we
conducted a pairwise t-test along with 95% Confidence



June 2025]

Intervals (CIs). This statistical analysis provides an in-depth
validation of performance comparisons.

RESULTS AND DISCUSSION

This research evaluated the performance of YOLO
models in object detection and counting tasks by comparing
key metrics, including precision, recall, F1-score, mnAP@50,
and training time. According to Table 1, training time
increases from YOLOvVS to YOLOvVS, with YOLOvS
requiring 48 min and 58 sec. YOLOVS has the shortest
training time, while YOLOvV7 takes the longest. These
results align with expectations, as YOLOV7 is as resource-
intensive as YOLOVS, both models showing similar training
durations. The study concluded that YOLOVS is the most
efficient model for detecting mango trees in satellite imagery
and for training on large datasets for tree counting. These
findings highlight the computational cost of every model
variant. When selecting a model, training time is an essential
factor, but it should be weighed against other performance
indicators like inference speed.

Table 1 Training time of YOLO’s variant
Variants of YOLO Training Time (min)
YOLOVS 37.54
YOLOv6 45.55
YOLOv7 49.08
YOLOvV8 48.58

Each YOLO model's performance metrics on the
validation dataset are shown in Table 2. The ability of
YOLOVS to lower false positive detections is demonstrated
by its greatest precision of 93.1% when precision values
are compared. Fig. 2(b), which visualizes the precision
values for each model at 50 epochs, shows YOLOvVS
leading with the highest precision, followed by YOLOvV7
at 86.5%. Both YOLOvVS and YOLOv6 have a precision
value of 85.7%.

Turning to recall, Fig. 2 (a) demonstrates that YOLOVS
outperforms the others with a recall value of 94.2%,
underscoring its ability to identify real-world mango tree
occurrences. With a recall of 80.3%, Table 2 shows that
YOLOVS comes in second, demonstrating its capacity to
identify occurrences. Additionally, YOLOvV6 and YOLOv7
perform well, with recall scores of 79.3% and 79.5%,
respectively.

With the best score of 93.6%, YOLOVS once again
distinguishes out when examining the Fl-score (Fig. 2c),
demonstrating a solid balance between recall and accuracy.
Notably, the F1-scores of the other models are almost the
same, with YOLOVS, YOLOv6, and YOLOv7 obtaining
scores of 82.9%, 82.3%, and 82.8%, respectively, indicating
their competitive ability to strike a balance between recall
and precision.

YOLOVS achieves the greatest score of 97% in terms
of mAP@50, followed by YOLOv6 with a score of 86%
(Table 2). The equivalent scores for YOLOvS and YOLOV7
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are 85.9% and 85%. The trade-off in mAP@50 scores as
the number of epochs grows is seen in Fig. 2(d).

Table 2 Comparative performance of different YOLO models in
terms of precision, recall, F1-score, and mAP@50

YOLO variant  Precision (%) Recall (%) F1- mAP @50
(95% CI) (95% CI) score (95% CI)
YOLOV5 85.7 80.3 82.9 85.9
YOLOv6 85.6 79.3 82.3 86.0
YOLOv7 86.5 79.5 82.8 85.0
YOLOvV8 93.1 94.2 93.6 97.0

CI, Confidence intervals.

YOLOVS achieved the highest performance across
all key metrics, demonstrating significantly superior
precision (93.1%), recall (94.2%), F1l-score (93.6%), and
mAP@50 (97.0%) (Table 2). The confidence intervals
(CIs) for YOLOv8 do not overlap with those of YOLOVS,
YOLOV6, and YOLOV7, confirming that its improvements
in detection accuracy are statistically significant. Conversely,
the overlapping Cls among YOLOVS, YOLOv6, and
YOLOV7 indicated that their performance differences were
minor and not statistically significant. While YOLOVS is
the most accurate model, practical considerations such as
computational efficiency and processing time may influence
model selection, making YOLOVS, YOLOv6, or YOLOvV7
viable alternatives for applications where a balance between
accuracy and efficiency is required.

These findings suggested that YOLOVS has outstanding
accuracy, recall, Fl-score, and mAP@50 performance,
which makes it a viable choice for tasks involving the
recognition and counting of mango trees. However, other
models, including YOLOVS, YOLOvV6, and YOLOvV7, also
showed competitive performance, particularly in terms of
training time.

Fig. 2 displays the performance of every measurement
for variants of YOLO on the validation dataset. It is evident
that YOLOVS8 experiences slower convergence across all
metrics when compared to the other models. YOLOv8
showed stability for all measures beyond the 50 epoch,
suggesting that model's performance has reached its peak.
In contrast, YOLOvV5, YOLOvV6, and YOLOV7 exhibit faster
convergence during the initial epochs, especially with regard
to precision, Fl-score, and mAP@50. Additionally, after
50t epoch, YOLOv8 model exhibits reduced variability
and improved stability across all measures. Furthermore,
YOLOVS8 maintains consistent performance across all epochs
without significant degradation in results.

YOLOvVS is a promising choice for mango tree
recognition and tree counting in mango orchards since
it finds an equilibrium between model complexity and
performance measures. A key observation is the balance
between accuracy and computational efficiency. While
YOLOVS exhibits the highest detection accuracy, its training
time was relatively longer than other models. YOLOvV7 also
demands considerable computational resources but does not
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Fig. 2 Performance of all metrics for validated YOLO models.

match the accuracy of YOLOVS. In contrast, YOLOvVS5 and
YOLOV6 offered a more computationally efficient alternative
while maintaining competitive accuracy levels, making them
viable choices for real-time applications where processing
power is a limiting factor. These findings emphasize that
model selection should depend on the specific use case,
whether prioritizing accuracy (YOLOvVS8) or computational
efficiency (YOLOVS5/YOLOV6).

Moving on to the loss analysis, Fig. 3 presents average
loss values for YOLO models. Beginning with box loss,
both YOLOvV8 and YOLOVS exhibit consistent trend,
with YOLOVS having the lowest training and validation
box losses compared to all previous YOLO versions.
This suggested that the
YOLOv8 model learned
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considering the training and validation cls losses, YOLOVS
and YOLOv7 have nearly identical loss values, while
YOLOvS8 showed higher but still competitive losses.
Regarding obj loss, both YOLOv5 and YOLOV7 exhibited
a small difference between training and validation losses in
Fig. 3(a) and 3(c), suggested that they are not overfitting
the training dataset. Despite significant overfitting during
training, YOLOvVS5 had a smaller validation obj loss than
YOLOV7, indicating that it may generalize better in
identifying objects in the validation data.

The deployment of YOLO-based models in agricultural
applications extends beyond mango tree detection, playing
a significant role in precision agriculture, automated orchard
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Fig. 3 The average loss values for all the YOLO’s variants.
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monitoring, and yield estimation. Accurate tree detection
facilitates resource optimization, irrigation planning, and
harvesting strategies, reducing the dependence on manual
surveying techniques. However, practical deployment
of YOLO based mango tree detection is limited by
hardware constraints, high computational demands, and
model generalizability. While YOLOvS delivers superior
accuracy, its resource intensive nature makes it unsuitable
for low-power devices, whereas YOLOvVS, though less
accurate, offers better efficiency for real-time applications,
with potential improvements through model optimization
techniques. To address these challenges, future research
should focus on model optimization techniques, such as
quantization, pruning, and edge computing acceleration
using TensorRT, EdgeTPU, or cloud-based processing.
Additionally, hybrid models combining YOLO with
traditional remote sensing techniques could further enhance
precision and detection robustness, particularly in dense
orchard settings.

In order to recognize mango trees and count the number
of trees in mango orchards, we thoroughly evaluated the
performance of several YOLO architectures in this work,
including YOLOvVS, YOLOv6, YOLOv7, and YOLOVS.
The findings showed that, in both testing and validation,
YOLOVS had the best overall balance across all metrics.
The YOLOv8 model demonstrated outstanding performance
in accurately detecting trees, with an overall Precision of
93.14%, Recall of 94.25%, Fl-score of 93.69%, and a
mean average precision (mAP) of 97.03%. These results
highlight the efficiency of the YOLOvVS architecture in
mango tree detection and counting tasks. It is important to
note, nevertheless, that throughout testing and validation,
the YOLOvV6 variation performed much worse across all
metrics. In conclusion, the particular requirements of the
application need to direct the model selection, taking into
factors like accuracy, recall, inference time, and the trade-
offs between these characteristics.
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