Field design and irrigation management practices have a significant impact on surface irrigation performance (Raine et al. 1998) but have received only limited consideration to date. Improper design and management of border irrigation system may result in water wastage in terms of over irrigation, waterlogging and losses of fertilizers and pesticides out of root zones. Study of the performance of border irrigation method can help improve the design and management of the system and provide information for the design of irrigation systems in future by developing relationship between the performance indices and the system variables. Holzapfel et al. (1985) developed relationships between performance irrigation parameters and surface irrigation design variables along with yield. A number of surface irrigation models were used by various researchers to simulate furrow and border irrigations, assuming that the simulated irrigations are representative for the season. Feyen and Zerihun (1999) assessed the performance of border and furrow irrigation systems and the relationship between performance indicators and system variables using software tools BORDEV and FURDEV. He concluded that the relationship between the performance indices and the system variable contains valuable information for the system design and management.

Navabian M et al. (2009) developed empirical functions for dependent variables in cutback furrow irrigation. This study employs sensitivity, dimensional and regression analysis in the development of empirical functions for application efficiency, deep percolation, runoff and distribution uniformity. The proposed functions were evaluated using a numerical zero-inertia model and field measured data. As the functions were general (not site and irrigation specific) and explicit, they could prove to be of practical significance in both conventional and optimal design and management of free-draining, graded furrow irrigation systems with cutback flows. Alazba (1999) assessed the effect of inflow rate on the performance of furrow irrigation system by using various performance irrigation parameters. Keeping in mind the previous studies, the present study was undertaken to study the relationship between irrigation performance parameters and their relationship to border irrigation design variables, crop yield and net returns. Crop yield was estimated on the basis of amount of water applied to the crop as differential irrigation along the run of the field, assuming that all other inputs and factors affecting production were held constant.

The study was carried out at Research Farm of Department of Soil and Water Engineering, Punjab Agricultural University, Ludhiana during the year 2006–07. The average rainfall in the region is about 600 mm-800 mm out of which 80 percent occurs during the months of July to September. Samples were taken from various places from the same field to get the average value of field capacity and permanent wilting point of sandy loam soil which were found out to be 11.70% and 4.0% respectively. The average bulk density of soil was found out to be 1.40 g/cm³. The average soil slope of the field was found out to be 0.2%. The soil moisture content was measured by gravimetric method before and after each irrigation. There were three treatments, i.e. T₁ (Border length 63 m, border width 5 m and inflow rate 7.5 l/s), T₂ (Border length 63 m, border width 5 m and inflow rate 8.5 l/s) and T₃ (Border length 63 m, border width 5 m and inflow rate 10.0 l/s) with three replications. The treatments were laid in a randomized block design. Wheat variety 502 was sown in the month of November after the pre-sowing irrigation. Irrigation was planned on the basis on IW/CPE of 0.9. The total discharge available during each irrigation at the field was determined using Parshall Flume installed in the irrigation channel.

In the present study, water application efficiency (Eₐ), water storage efficiency (Eₛ) and water distribution efficiency (E₅) are the parameters that were analyzed. The selection of
parameters was based on the fact that these take into account
the depth of water required by the crop during irrigation as
per the previous studies (Varlev 1976 and Seginer 1978).
Irrigation performance parameters that measure the irrigation
performance were analyzed for their relationship to surface
irrigation design variables. The, non-linear regression
(NLREG) model was used to obtain the equation (via multiple
regression) for the irrigation performance parameters as a
function of the design variables. The regression equation
was as follows:

\[IPP = K \cdot Q^{-a} \cdot L^b \cdot T^{-c} \cdot D^{-e} \] \hspace{1cm} (1)

where

- \(IPP \) = irrigation performance parameter
- \(Q \) = inflow rate, l/s
- \(L \) = length of run, m
- \(T \) = cut off time, min
- \(D \) = depth of irrigation, m
- \(K \) = constant for the equation
- \(a, b, c \) and \(e \) = exponential coefficients of inflow rate,
 length, cutoff time and depth.

The irrigation efficiencies and yield of wheat crop were
computed for all the irrigations during growing period of
crop. Several combinations of the design variables were used
to determine the values of the irrigation performance
parameters. Multiple regression analysis was used to
determine relationships between irrigation performance
parameters and border irrigation design variables, yield and
net returns.

Values of the constants for each irrigation performance
parameter selected are presented in Table 1.

It is evident from the table that the water application
efficiency had a higher coefficient of multiple determinations
as compared to the other irrigation performance parameter.
The relationship was

\[E_a = K \cdot Q^{-a} \cdot L^b \cdot T^{-c} \cdot D^{-e} \] \hspace{1cm} (2)

indicating that \(E_a \) increased with decrease in inflow rate,

<table>
<thead>
<tr>
<th>Function</th>
<th>(K_A)</th>
<th>(K_B)</th>
<th>(K_C)</th>
<th>(K_D)</th>
<th>(K_E)</th>
<th>(K_F)</th>
<th>(K_G)</th>
<th>(R^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear</td>
<td>0.393</td>
<td>64.53</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.632</td>
</tr>
<tr>
<td>Exponential</td>
<td>29.25</td>
<td>0.269</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.65</td>
</tr>
<tr>
<td>Quadratic</td>
<td>356.00</td>
<td>-8.75</td>
<td>0.071</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.741</td>
</tr>
</tbody>
</table>

From the Table 2 it is clear that water application
efficiency correlated well with relative yield for quadratic
function.

The water application efficiency \(E_a \) is the irrigation
performance parameter that was analyzed to find relation between net returns and irrigation performance parameter based on relationship between design variables and IPP. The NLREG, non-linear regression model was used to find the parameters. The regression equations are:

\[NR = K_H \times (IPP) + K_I \]
\[NR = K_J \times (IPP)^2 + K_K \]
\[NR = K_L + K_M \times (IPP) + K_N \times (IPP)^2 \]

Where

- \(NR \) = net returns, Rs/ha
- \(IPP \) = irrigation performance parameter
- \(K_H, K_J, K_K, K_L, K_M, K_N \) are regression coefficients for equation

Tables 3 shows the values of the constants for each parameter selected.

From the Table 3, it is clear that water application efficiency correlated well with net returns for quadratic function.

SUMMARY

The study was conducted at Research Farm of Department of Soil and Water Engineering, Punjab Agricultural University, Ludhiana to determine the performance of border irrigation method during the year 2006–07. It was based on irrigation performance parameters, such as water application efficiency, water storage efficiency and water distribution efficiency. Irrigation performance parameters that measure the irrigation performance were studied and analyzed for their relationship to surface irrigation design variables, i.e., inflow rate, length of run, cut off time and depth with the help of non-linear regression (NLREG) model. Water application efficiency is the irrigation performance parameter that correlated well with the design variables as compared to other irrigation performance parameters for exponential function. The quadratic function was best fit between water application efficiency and relative yield as well as net returns.

REFERENCES

RAO BAHADUR DR B VISWANATH AWARD (2011-12)

Nominations of outstanding agricultural scientists of Indian nationality are invited from the Secretaries of Science Departments of Government of India, Vice-Chancellors, Directors of Agricultural Research Institutes of national importance and Presidents, National Academics for the IVth Rao Bahadur Dr B Viswanath Award. The award carries a sum of ₹ 1,00,000, a medal and a citation. The nominee should not be less than 50 years of age and with a standing of 25 year’s contributions in the concerned field of agricultural sciences while working in India. The awardee will be required to deliver a lecture based on his/her research contributions. Nominations (10 copies) complete in all respects as per proforma available at Post Graduate School, IARI/Institute website www.iari.res.in should reach the Registrar, Post Graduate School, Indian Agricultural Research Institute, New Delhi 110 012 latest by 30th November 2012. The Institute is not responsible for any postal delay.

Sd/-
(B N Rao)
REGISTRAR
The Indian Journal of Agricultural Sciences

ARTICLE CERTIFICATE

F.No.

Article Entitled: ...
..

Title changed to: ...
...

Authors (names): ...
...

It is certified that:
1. The article has been seen by all the authors (signatures given below), who are satisfied with its form and content.
2. The sequence of names of authors in the by-line is as per their relative contribution to this experiment, giving due credit to all scientists who made notable contribution to it.
3. The address of the organization where the research was conducted is given in the by-line (changes of author's address is given the footnote).
4. The experiment was carried out during 20........, and the article is submitted soon after completion of the experiment.
5. The article is exclusive for this journal, and the results reported here have not been sent (and not be sent during its consideration by this journal) for publication in any other journal.
6. The article has not been rejected for publication in any other journal/rejected in ... whose comments are attached (such a rejection does not disqualify the article for consideration in this journal).
7. It is based/not based on a part/complete M.Sc/Ph.D thesis of the first author, who submitted the thesis in 20........ to the ... university, place).
8. Correct data and facts are presented in the article.
9. I/we agree to abide by the objective comments of referees and do agree to modify the article into a short note as per the recommendation, for publication in The Indian Journal of Agricultural Sciences.
10. If published in The Indian Journal of Agricultural Sciences, the copyright of this article would vest with the Indian Council of Agricultural Research who will have the right to enter into any agreement with any organization in India or abroad engaged in reprography, photocopying, storage and dissemination of information contained in it, and neither we nor our legal heirs will have any claims on royalty.

<table>
<thead>
<tr>
<th>Signature with date</th>
<th>Name in full and designation</th>
<th>Present official address</th>
<th>Subscription number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OPTIONAL

The above certificate is correct to the best of my knowledge and I have no objection to the publication of the article cited above in The Indian Journal of Agricultural Sciences

Signature and address of
Head of the department /Head of the Institute