Phytochemicals and antioxidants in watermelon (*Citrullus lanatus*) genotypes under hot arid region

B R CHAUDHARY¹, S M HALDHAR², S K MAHESHWARI³, R BHARGAVA⁴ and S K SHARMA⁵

ICAR-Central Institute for Arid Horticulture, Bikaner, Rajasthan 334 006

Received: 15 May 2014; Revised accepted: 16 December 2014

ABSTRACT

Ten genotypes of red-fleshed watermelon (*Citrullus lanatus* (Thunb.)) were estimated for various health promoting bioactive compounds. The evaluated genotypes showed wide variability in total phenols, total flavonoids, tannin, total carotenoids and lycopene contents. The antioxidant activity was estimated by using *in vitro* assay of cupric reducing antioxidant capacity (CUPRAC). The significant difference (P=0.05) was observed among evaluated watermelon genotypes for different phytochemicals and antioxidants. The total phenols varied from 16.77 to 21.41 mg/g, total flavonoids 55.60 to 100.93 mg/100g and tannin content 35.07 to 60.83 mg/100g on dry weight basis. Total carotenoids and lycopene ranged from 4.90 to 8.06 mg/100g and 3.74 to 6.80 mg/100g, respectively on fresh weight basis. The average antioxidant activity was found to be varied from 40.13 to 84.05 µmol TE/100g fresh weight. The results indicate that red-fleshed genotypes of watermelon are good source of antioxidants and showed significant variability for different phytochemicals and antioxidants that could be exploited to develop new cultivars/hybrids of superior quality for nutritional security.

Key words: Antioxidants, Antioxidant activity, Watermelon

MATERIALS AND METHODS

A total of 10 diverse red fleshe...
watermelon comprising 8 released varieties from different research institutes of India (Sugar Baby, Durgapura Lal, Charleston Grey, Asahi Yamato, Arka Manik, AHW 19, AHW 65 and Thar Manik), one advance breeding line (AHW/BR-16) and one indigenous collection (IC 582909) were selected for studies. The experiment was planned in randomized block design with three replications at Research Farm of ICAR-Central Institute for Arid Horticulture (CIAH), Bikaner, India located at 28°N latitude, 73°18'E longitude at an altitude of 234.84m above sea level and crop was sown during summer season of 2013. The soil of experimental field was loamy sand with a pH of 8.7, EC 0.20 dS/m and organic carbon 0.07%. The crop was raised on drip system maintaining row to row distance 2.5m and plant to plant 0.60m. All recommended integrated crop management practices were followed to successful crop production. Based on maturity indices the ripened fruit were harvested in the month of May and randomly selected five fruits per line from each replication for analysis of quality attributes.

The five selected fruits were carried to Plant Physiology Laboratory of ICAR-CIAH, Bikaner. The fresh fruits were cut and flesh sample was taken from the centre and locular areas of the fruit to get best homogenous sample. The flesh was dried and determined total flavonoids (Ebrahimzadeh et al. 2008) and tannin content (Schanderl 2007) and results were expressed as mg/100g dry weight (DW) basis. The quantification of total phenols was carried out following protocol of Malik and Singh (1980) and results were expressed as mg/g DW basis. About 200g flesh per fruit without seeds was also collected and stored at -20°C for estimation of antioxidants in laboratory. For analysis a composite sample of 50g of frozen flesh was ground for 2-3 minutes using a homogenizer. Total carotenoids and lycopene content of individual fruits was measured by spectrophotometer using wave length of 452 nm and 503 nm, respectively (Ranganna 1986). The results were expressed as mg/100g fresh weight (FW) basis. Antioxidant activity was estimated spectrophotometrically using cupric reducing antioxidant capacity (CUPRAC) and CUPRAC assay was performed according to method developed by Apak et al. (2007). To 100 µL of sample aliquot, 1 ml each of copper (II) chloride solution (10-2M), neocuproine solution (705x10-3M) and ammonium acetate buffer solution (pH 7) was mixed. The tubes were stopped and after 1 hour, absorbance at 450 nm was recorded against a reagent blank and the antioxidant activity was expressed as µmol Trolox equivalent (TE)/100g FW basis as suggested by Pentelidis et al. (2007).

The data obtained were statistically analyzed through one-way analysis of variance (ANOVA) using SPSS 16 software and significance was determined at P<0.05. The data are presented as mean ± SD of three replicates. Correlation between different antioxidants was also computed using correlation analysis.

RESULTS AND DISCUSSION

Significant difference (P=0.05) was observed among the watermelon genotypes for total phenols, total flavonoids and tannin content (Table 1). The results revealed that total phenols showed a considerable variation among the genotypes tested and varied from 16.77 to 21.41 mg/g DW basis. The highest total phenols was noted in Asahi Yamato (21.41 mg/g DW basis) followed by AHW/BR 16 and Sugar Baby (20.67 and 20.61 mg/g DW basis, respectively). A wide variation had also been reported for total phenolics in watermelon fruits ranging from 13.05 to 18.08 mg gallic acid equivalent/100g fresh weight basis (Nagal et al. 2012). Likewise, significant differences in total flavonoids (55.60-100.93 mg/100g DW basis) among the different genotypes were recorded. The cultivar Asahi Yamato had the highest content of total flavonoids (100.93 mg/100g DW basis) which was significantly superior over all genotypes and about twofold higher than AHW 19 (55.60 mg/100g DW). Flavonoids are considered one of the major contributors to the antioxidant activity of vegetables and it has been also well recognized that flavonoids show antioxidant activity and have considerable effect on human health through scavenging or chelating of free radicals (Ebrahimzadeh et al. 2008). The results indicated that the differences in tannin content among watermelon genotypes were statistically significant and ranged from 35.07 to 60.83 mg/100g DW basis being highest in cultivar Durgapura Lal. These differences in phenolic composition might be influenced due to several factors such as genotype, sampling area and climatic conditions (Tilli et al. 2011 and Nagal et al. 2012).

The significant difference in total carotenoids, lycopene and antioxidant activity among different genotypes of watermelon were recorded (Table 1). Total carotenoid content varied from 4.90 to 8.06 mg/100g FW basis being maximum in Asahi Yamato (8.06 mg/100g FW) followed by AHW/BR 16 and Sugar Baby (6.90 and 6.65 mg/100g FW, respectively). Similar observations on carotenoids in watermelon have been previously reported by various researchers (Perkins-Veazie 2007 and Zhao et al. 2013). The lycopene content in red fleshed watermelon genotypes varied from 3.74 to 6.80 mg/100g FW basis showing twofold variation (Fig 1). The cultivar Asahi Yamato had the highest lycopene content (10.93 mg/100g FW) and AHW/BR 16 (6.01 mg/100 g FW) were found significantly superior over all other genotypes. However, Choo and Sin (2012) reported low content of lycopene (0.95 mg/100 g) in red-fleshed watermelons than the present study. This difference was due to red-fleshed watermelons varied in their lycopene content depending on genotype and environmental conditions (Perkins-Veazie et al. 2001). Lycopene provided the largest portion of the total carotenoids (84-97%) as reported by Kang et al. (2010). The results of total carotenoids and lycopene of this study are in close agreement with cultivars grown in different parts of world (Nagal et al. 2012). The varying range of lycopene content in major cultivars of watermelon has been earlier reported as 4.26 mg/100g (Tadmor et al. 2005), 3.3-12.0 mg/100g (Perkins-Veazie 2007) and 3.46-8.0 mg/
100 g (Nagal et al. 2012) which was higher than tomato (Tadmor et al. 2005).

The chemical diversity of phenolic antioxidants compounds render it difficult to separate and quantify individual antioxidants from the plant matrix. Therefore, the total antioxidant activity is more meaningful to evaluate health benefits because it is integrated parameter of all antioxidants present in a complex sample (Apak et al. 2007). The average antioxidant activity of different watermelon genotypes were 40.13 to 84.05 µmol Trolox equivalent (TE)/100 g FW as determined by the CUPRAC assay. According to the results obtained, the cultivar Asahi Yamato had statistically significant antioxidant activity (84.05µmol TE/100g FW) over all the genotypes followed by AHW/BR 16 and Sugar Baby (72.98 and 66.79 µmol TE/100g FW, respectively). The high antioxidant activity of these genotypes can be ascribed either to presence of high phenols or flavonoids or lycopene or other reducing agents which may also reduce the oxidized state of antioxidant compounds. Similar observation has been recorded by Nagal et al. (2012) and Choo and Sin (2012) in watermelon. The phenolic compounds are the dominant antioxidants in vegetables, which exhibit scavenging efficiency on free radicals. Besides vitamin C, a great number of phenolic compounds have exhibited high in vitro antioxidant activity (Pantelidis et al. 2007). Since, lycopene is the main carotenoids in watermelon, accounting for 84-97% of total carotenoids (Kang et al. 2010) which have higher relative antioxidant potential and it is expected that the total antioxidant content of fruits also varies in the same conditions.

The correlation coefficient of total phenols (r=0.921), total flavonoids (r=0.966), total carotenoids (r=0.979) and lycopene (r=0.992) showed a high positive correlation (P=0.01) with antioxidant activity measured by CUPRAC assay (Table 2). But there was little correlation between antioxidant activity and tannin content. This indicates that total phenols, total flavonoids, total carotenoids and lycopene content are the major contributors towards antioxidant activity in watermelon. The highly positive correlation between antioxidant activity and phenolic content has also been reported by Nagal et al. (2012) in watermelon.

Table 2 Pearson’s correlation coefficients between different antioxidants in watermelon

<table>
<thead>
<tr>
<th>Attributes</th>
<th>Total phenols</th>
<th>Total flavonoids</th>
<th>Total Tannin content</th>
<th>Total carotenoids</th>
<th>Lycopene</th>
<th>Antioxidant capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>0.966**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>flavonoids</td>
<td>0.328</td>
<td>0.189</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tannin</td>
<td>0.922**</td>
<td>0.982**</td>
<td>0.129</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>carotenoids</td>
<td>0.912**</td>
<td>0.957**</td>
<td>0.172</td>
<td>0.979**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lycopene</td>
<td>0.921**</td>
<td>0.966**</td>
<td>0.237</td>
<td>0.979**</td>
<td>0.992**</td>
<td></td>
</tr>
</tbody>
</table>

**Significant at P=0.01 (two-tailed)

CONCLUSION

This study suggests that watermelon is a potential...
source of health promoting bioactive compounds, which may have beneficial impact on human health. The findings indicate that a wide range of phytochemicals and antioxidants exists among red-fleshed watermelon genotypes and that watermelon cultivars with very high lycopene contents are available. Such genotypes could be exploited to develop new cultivars/hybrids rich in phenolics and lycopene for health benefits and nutritional security.

REFERENCES

