Tea mosquito bug (*Helopeltis* spp.) – A devastating pest of cashew plantations in India: A review

P L SAROJ¹, P S BHAT² and K K SRIKUMAR³

ICAR-Directorate of Cashew Research, Puttur, Karnataka 574 202

Received: 1 July 2015; Accepted: 29 December 2015

ABSTRACT

More than 32 countries are growing cashew in the world, wherein India occupies largest area under cashew plantations (20%) and earning foreign exchange of over 5 000 crores per annum through export of cashew kernels and cashew nut shell liquid. Often, there is a serious loss in cashew nut yield due to attack of tea mosquito bug (*Helopeltis* spp., Heteroptera: Miridae) which is a major sucking pest of cashew plantations in India. Under severe out break conditions, yield losses are as high as 40-50%. There are three common species of *Helopeltis*, viz. *H. antonii* Signoret, *H. bradyi* Waterhouse and *H. theivora* Waterhouse found in west coast and *H. antonii* is most predominant in the east coast, though in east coast its occurrence is prevalent from Tamil Nadu to Odisha. Whereas, *H. theivora* is predominant species in north-east region. Besides cashew, a large number of host plants like, tea, guava, cocoa, neem, cinchona etc. are reported. The seasonality study suggested that the population of tea mosquito bug reaches its peak during the flushing, flowering and fruiting season in cashew, i.e. from November to February. As a management strategy, varietal screening suggested that no cashew varieties are resistant to tea mosquito bug infestation but Dhana and Bhaskara varieties are moderately susceptible. Therefore, even today only chemical means of tea mosquito bug management is adopted under commercial cashew plantation. As a biological control strategy, the solitary egg parasitoids, viz. *Telenomus cuspis*, *Chaetostricha* sp. and *Erythmelus helopeltidis* Gahan were specifically promising against *Helopeltis*. The adult parasitoid, *Leiophron* sp. is additional asset for natural control strategies of *Helopeltis* spp. on cashew. Recent researches have incorporated 117 species of spiders and 18 species of reduviids into cashew management strategies. Laboratory mass culture techniques of reduviids have also been standardized using wax moth larvae as prey. Adults of *H. antonii* and *H. theivora* were found to be infested by predatory mite, *Leptus* sp. attached ecdysial line from head and thorax. Moreover, sex pheromone based technology development is the need of the hour to manage this pest. In this paper, efforts have been made to review the literature pertaining to the pest taxonomy, biology, distribution, host plants, nature of damage, seasonality and management strategy of *Helopeltis* spp. focusing on Indian subcontinent, so as to bring out non-chemical based management strategies.

Key words: Biology, Cashew, Host range, Management, Reduviids, Taxonomy, Tea mosquito bug

In India, cashew (*Anacardium occidentale* L.) is grown on 10.27 million ha area with annual production of 7.25 lakh tonnes (2014-15). Sometimes, complete scorching of cashew foliage is seen to “blossom blight” (Devasahayam and Nair 1986). Sometimes, complete scorching of cashew foliage is seen as depicted in Fig 1. In India, three species of TMB, viz. *Helopeltis antonii* Signoret, *Helopeltis bradyi* Waterhouse and *Helopeltis theivora* Waterhouse were recorded (De Silva 1957, Stonedah 1991, Sundararaju 1996). Among them, *H. antonii* is the dominant species (Sundararaju and Bakhavatsalam 1994, Sundararaju 1996). Many species of Oriental *Helopeltis* are very similar and several of the broadly distributed taxa are highly variable in overall size, colouration and some structures of external morphology such as scutellar process and it is often necessary to examine structures of male and female genitalia to obtain accurate identifications. The form of the female genital chamber and its associated structures and the shape of the lobal sclerite of the male vesicles are particularly useful.
taxonomic characters (Stonedahl 1991). The buildup of pest
commences during October/November is noticed in high
numbers during December to March with the population
reaching a peak during January when trees are in full bloom
with flowering and fruiting, prevails predominantly in the
plantation till May and subsequently exists in negligible
number during monsoon period (Sundararaju 2005). Each
insect can damage 3-4 shoots or panicles leading to heavy
loss in yield.

So far, chemical control measures are recommended for
management of H. antonii on cashew (Sundararaju et al.
1993). Since, there is potential restriction in developed
countries in import of cashew kernels containing pesticides
residues, developing integrated pest management with main
emphasis on non-insecticidal control methods, viz.
biological control (natural enemy complex) is required. The
studies conducted so far have helped in understanding the
host range, seasonal abundance, recording of natural
enemy complex, efficacy of plant products and insecticides
suitable for management of TMB. The development of sex
pheromone technology to manage this pest is another area
of research. In spite of serious damage by TMB on cashew,
very less effort has been made to develop suitable
management strategies which are environmentally sound
and economically viable. Thus, it was thought to review all
the works done on various aspects of TMB and to suggest
some future line of action, which will help researcher to
formulate some strategic action plan for the management
of this serious pest of cashew.

Taxonomy

The group of bugs commonly referred as mirids
belongs to order Hemiptera (Suborder: Heteroptera). Miridae
contains a number of species important both from
phytophagy and the maintenance of natural balance
(Akingbohungbe, 1983). The latest classification is by
Carvalho (1957-60) who recognized six subfamilies, viz.
Bryocorinae, Phylinae, Orthotylinia, Mirinae, Cyllapinae and
Deraecorinae. Schuh (1986) proposed a phylogenetic
scheme for the subfamilies of Miridae and also presented
an analysis relationship for the subfamily Bryocorinae.
According to Carvalho (1957-60), in the largest subfamily
Mirinae, more than 250 Mirine genera were described by
1955. Sub family Bryocorinae consists of two tribes, viz.
Monalonini and Odoniellini. Signoret (1858) erected the
genus Helopeltis under the tribe Monalonini to receive an
insect found on the tea by Antonie Dohrn in Sri Lanka and
described as H. antonii. Subsequently for Helopeltis spp.,
lot of research work has been conducted and compiled in
three prominent reviews (Devasahayam and Nair 1986,

Helopeltis is distinguished from other groups of
Bryocorinae by the elongate, cylindrical body form, the
structure of the pretarsus, the reduced numbers of meso
and metafemoral trichobothria with strongly tuberculate
bothria and indistinct trichomae, the metathoracic scent
efferent system lacking developed ostiole and evaporative
area on metaepisternum (Stonedahl 1991) and the eggs with
respiratory horns (Schuh 1976). Helopeltis is readily
distinguished from other members of the tribe by the large,
spine like process on the scutellum and by characteristics
of the male and female genitalia, particularly the structure
of the genital chamber of the female (Bhat and Srikumar
2013).

Biology

The eggs are white, ovoelongate (slightly narrower
apically) and laterally compressed apically, 1.0 to 1.31 mm
long (Miller 1941, Tan 1974, Satapathy 1993, Ambika and
Abraham 1979). Two unequal extra-chorionic processes (a
long ventral one and shorter dorsal one) arise from the
anterior end of the eggs; those usually are 0.29-0.67 mm in
length. The eggs are embedded in plant tissue singly or in
small groups usually with the operculum and extra-
chorionic processes exposed. On finding the puncture, the
ovipositor was thrust through it and the egg was laid
(Thontadarya and Basavanna 1962). Initially, after deposit
of egg in the plant tissue, the shape of egg is almost
cylindrical. After two days, expansion of eggs to a tune of
0.04 to 0.08 mm both longitudinally and laterally, particularly
at the distal region is seen. The colour of the operculum is
hyaline for the first two days and it later turns light brown
in colour. Similarly, the eggs are whitish for first two days
and subsequently turn to orange colour with a distinct
dark orange band at the distal region (Sundararaju 1996,
described respiratory function of extra-chorionic process.

The majority of species appear to have preferred
oviposition sites depending on the host plant. On cocoa,
H. theivora prefers the pods but occasionally oviposits on
young shoots (Miller 1941, Tan 1974), while on tea this
species prefers new shoots and rarely the petals and
midribs of leaves (Das 1984, Mann 1902). H. antonii lays
its eggs primarily on the young shoots, inflorescence stalks
and tender nuts of cashew, but sometimes accept the
petioles and ventral midribs of leaves (Ambika and
Abraham 1979). On guava, H. antonii lays eggs primarily on ventral
midribs of leaves, flower buds and pea size guava fruit
either singly or in groups (Sundararaju and Sundarababu
1999). Lever (1949) reported that both H. bradyi and H.
chinconae select young tea shoots for oviposition.
Incubation periods vary depending on locality, season and
host plant, but generally in the range of 6 to 11 days
(Stonedahl 1991). Much longer period (20-27 days) were
noted for winter populations of H. theivora in north east
India (Das 1984) and for H. bradyi (13-16 days) and H.
chinconae (17-22 days) on winter tea in the Cameron
Highlands, West Malaysia (Lever 1949). Incubation period of
H. antonii on neem (8-9 days), guava (9-10 days) and
cashew (7-8) was reported by Sundararaju (1996).

However, in all species for proper hatching of eggs, the plant parts
containing eggs should be always in alive and turgid
condition (Devasahayam and Nair 1986, Sundararaju and
Sundarababu 1999).
Helopeltis spp. has five nymphal instars that vary in size, colour and development of body parts. Descriptions and illustrations of the nymphal instars are provided by Ambika and Abraham (1979) and Satapathy (1993) for H. antonii and Miller (1941) for H. theivora. The rate of nymphal development is affected by climatic factors and/or rearing conditions such as temperature and relative humidity (Betrem 1950, Sundararaju and John 1992), as well as quality of food source (Awang et al. 1988). Nymphs develop more rapidly on cocoa and guava (22-23 days) than on tea (Jeevaratnam and Rajapakse 1981). Most reported nymphal lifespans (I-V) are in the range of 9 to 19 days (Ambika and Abraham 1979, Devasahayam 1985, Miller 1941, Tan 1974, Sundararaju 1996) and 22 to 25 days (Jeevaratnam and Rajapakse 1981). Nymphal developmental periods of 15.3 ± 0.82 days was recorded for H. antonii on neem; 20.24 ± 1.79 days on guava and 12.60 ± 0.50 days on cashew (Sundararaju 1996).

Longevity and fecundity vary depending on rearing conditions. Tan (1974) recorded a mean adult longevity of 30 days for H. theivora raised on cocoa pods in West Malaysia. The same species was reported by Awang et al. (1988) to have a mean longevity of 20 days when reared on cocoa pods, but only 6 days when raised on the shoots. According to Songyot and Punpen (1997), longevity of female and male H. theivora on cashew was 36.8 and 33.6 days, respectively. The longevity of H. antonii varied from 7 to 46 days (Stonedahl 1991, Sundararaju 1996, Srikumar and Bhat 2011). Fecundity of H. antonii on cashew was 10 to 41 eggs (Pillai, et al. 1984) and 28 to 35 eggs (Ambika and Abraham 1979). Fecundity of H. antonii on cashew and guava varies from 10 to 220 and 48 to 185, whereas, of H. theivora on tea and cocoa is 172 and 63, respectively, and of H. bradyi is 235 eggs/ female (Sundararaju 1996, Srikumar and Bhat 2011). Fecundity of H. theivora on cocoa is in the range of 50 to 63 eggs (Wheeler 2001, Schaefer and Panizzi 2010).

Colour morphs

Colour variations in H. antonii and H. bradyi were reported by Sathiamma (1981) and Sundararaju (1996). Three pronotal color variants occurred in the adults of H. antonii and H. bradyi: dark red (DR), black (B) and brownish black (BB). In H. antonii, dark red variants were significantly higher than black and black were significantly higher than brownish black. In contrast, male H. bradyi population dominated with higher occurrence of black colour variant. H. theivora population in the Sub-Himalayan dooars tea plantation exhibited 9 pronotal color variants with males and females having 5 colour variants, while females having 6 colour variants (Roy et al. 2009).

Molecular diversity

Mitochondrial Cytochrome Oxidase I (mtCOI) shows reliable inter-specific variation as compared to other markers (Savolainen et al. 2005). The mtCOI gene analysis of 32 individuals of Helopeltis spp. from different host plants and geographical location in India revealed that very less intraspecific variation for H. antonii (0.00-0.51%), H. theivora (0.00-0.48%), and H. bradyi (0.00-0.73%), whereas the interspecific variation between H. antonii and H. bradyi, H. antonii and H. theivora, and H. theivora and H. bradyi were 8.2, 13.14, and 13.94 per cent, respectively. The neighbour-joining tree for the 32 individuals of Helopeltis species revealed that, there are three major clades, in which the Clade I clearly associated with the H. antonii population, whereas the Clade II represents the closely related species H. bradyi and the Clade III consists of H. theivora collected on various hosts from different geographical locations in India. On the other hand the mtCOI analysis did not reveal any host-associated genetic differentiation in Helopeltis spp. (Asokan et al. 2012, Rebijith et al. 2012). The genetic polymorphism detected using RAPD-PCR among colour variants show that H. theivora population consists of discontinuous phenotypes among individuals within a freely interbreeding population. Latip et al. (2010) developed microsatellite markers for H. theivora.

Distribution and host range

Palaetropical distribution of Helopeltis has been reported, extending from West Africa to New Guinea and northern Australia. Comprehensive reviews (Schmitz 1968, 1988, Stonedahl 1991, Stonedahl et al. 1995, Sundararaju and Sundarababu 1999) suggested occurrence of 41 recognized species of which 26 are restricted to Africa and 15 prevalent in Asia and Pacific region. Stonedahl (1991) recognized two subgenera: Afropeltis subgen. Nov. (type species Eucerocoris westwoodii White) including all the African species of the genus Helopeltis sensu stricto, containing the Oriental and Australasian species which included one non-existing species H. podagricus (Costa). Earlier the records of H. antonii occurring in Indonesia are the mistaken identity (Roepke 1916, Sudarmadji and Gunawan 1994) and its correct identity is H. bradyi (Stonedahl 1991, Sundararaju and Sundarababu 1999). H. antonii is only confined to south and east India, Andaman Islands and Sri Lanka whereas, H. bradyi is confined to south India, Sri Lanka and Indonesia and Malaysia (Stonedahl 1991, Sundararaju 1996) and H. theivora in south India, north east India, Sri Lanka and southeast Asia. Three species of Helopeltis, viz. H. antonii, H. bradyi and H. theivora were recorded in India, where H. antonii is the dominant species (Sundararaju and Bakthavatsalam 1994). Recent surveys in west coast and east coast of India confirmed three species, viz. H. antonii, H. bradyi and H. theivora spread over different host plants (Srikumar et al. 2013a) and H. antonii was observed as the predominant species from 14 locations whereas; H. bradyi from five locations. H. antonii was also recorded recently from Gujarat, Chhattisgarh and Odisha cashew growing regions. H. bradyi was reported from high altitude Tura region, Meghalaya and H. theivora was predominant species on cashew in the north east region.
Since the late 1800s over 100 species of plants have been reported as hosts for *Helopeltis* spp. (Stonedahl 1991). Devasahayam and Nair (1986) and Sundararaju and Sundarababu (1999) compiled various plant species representing different families of *H. antonii*. The host range of *Helopeltis* spp. as follows:

Helopeltis antonii: Cocoa, cinchona, Persian neem and annatto (Fletcher 1914), Mahogany (Fletcher 1914, Rao 1915); cashew and guava (Ayyar 1940, Puttarudriah 1952); avocado (Puttarudriah 1952), apple and grapevine (Puttarudriah and Appanna 1955); cotton (Puttarudriah 1958) cocoa (Abraham and Remamony 1979); camphire (*Lawsonia alba* Lam.) (Sundararaju 1984); drumstick (*Moringa oleifera* Lam.) (Pillai et al. 1979); rose apple, mango, all spice and black pepper (Devasahayam and Nair 1986); poria tree (*Thespesia populnea* L.) (Sundararaju and Baktavatsalam 1994); *Ailanthus excels* Roxb. (Satapathy 1993, Sundararaju, 1996); ber (*Zizyphus mauritiana* Lam.), Indian gooseberry (*Emblica officinalis* L.), cotton (*Gossypium barbadense* L. and *G. hirsutum* L.), cowpea and a Compositae weed plant (*Lactuca runcinata* DC.) (Sundararaju 1996); neem

![Fig 1 TMB infested cashew plantation](image)

![Fig 2 Influence of climatic parameters on TMB population](image)
Population dynamics

Helopeltis bradyi: Tea, cinchona, Dioscorea sp., Oxalis sp. and Cephalis angustifolia Ridl. (Miller 1941); cocoa, cashew, cinchona, tea, Capsicum sp. and Citrus sp. in Java, guuta percha (*Palaquium guutta* Hook.) in West Malaysia, coffee (*Coffea arabica* L.) in Sri Lanka and Eucalyptus saligna Sm. in Sumatra (Lever 1949); cocoa (De Silva 1957); coffee in Sri Lanka, *E. saligna* and *Acacia mangium* Willd. in Sarawak (Hamid 1987); cashew (Sundararaju 1996).

Population dynamics

Helopeltis spp. exhibit a more or less continuous cycle of generations throughout the year. In peninsular India, the buildup of populations of *H. antonii* on cashew in October/November is synchronized with the emergence of new foliage following the cessation of the monsoon rains. Peak abundance is reached in January/February when cashew trees are in full bloom, the insects remaining active on the plants until the onset of the monsoon rains in June (Devasahayam 1985, Sundararaju 1984). There is also evidence indicating that *Helopeltis* populations fluctuate in response to more localized and less regular climatic events, tending not to do well under conditions of heavy rain, high winds, or low relative humidity (Miller 1941, Betrem 1950, Pillai et al. 1984). During the monsoon period, June to September when the succulent parts are not generally available on grown up trees the population of the pest was completely absent (NRCC 1993, Sundararaju 2005). However, the pest is known to damage younger trees throughout the year as they produce flushes almost continuously (Sathiamma 1977, Devasahayam and Nair 1986, Sundararaju and Sundarababu 1999). *H. antonii* population build up was negatively correlated with minimum temperature, relative humidity, rainfall and positively with sunshine (Pillai et al. 1984). Meanwhile, negative relationship between rainfall and incidence of *H. antonii* was also reported by Senguttuvan and Bhaskaran (1993). The significant relationship of population was also stressed especially with minimum temperature, rainfall and sunshine hours (Sundararaju 2005). The population distribution of various types of *H. antonii* in relation to climatic parameters at Experimental farm of ICAR-Directorate of Cashew Research, Puttur (Karnataka) during 2009-2012 is depicted in Fig. 2. Distribution analysis of *H. antonii* population on cashew plantations in Indonesia showed aggregated distribution particularly during flushing-flowering seasons of cashew (Siswanto et al. 2008).

Economic damage

In Indonesia (Java), the first record of symptoms that could almost certainly be attributed to attack of *Helopeltis* was on cocoa in 1841 (Giesberger 1983) and on tea as ‘Roest’ disease in 1847 (Shaw 1928). Typical feeding damage by *Helopeltis* spp. appears as a discoloured necrotic area or lesion around the point of entry of the labial stylostyles into the plant tissue. The lesion can be elongate or spherical and becomes darker with age as the tissue around the stylostyle puncture dies, presumably in response to the enzymatic action of the insect’s salivary secretions. Miles (1987) reported pectinase in the salivary glands of *H. clavifer* and noted that the insect feeds by evacuating the contents of individual plant cells, leaving the cell walls intact and uncollapsed. Nymphs and adults of *H. antonii* initially tapped the plant surface with labial tip followed by immediate insertion of stylostyle with a minimum depth of 0.3 mm. Water soaked lesion appeared within a minute after insertion of stylostyle indicating rapid diffusion of salivary secretion. Subsequently, the melanization and necrosis of feeding lesions appeared (Sundararaju 1996). In the salivary gland of *H. antonii*, hydrolytic enzymes (protease and lipase), oxido-reductase enzymes (catecol oxidase, catalase and peroxidase) and free amino acids were detected. The salivary enzymes were implicated for the phytotoxaemia on various host plants as well detoxification of defensive chemicals especially in the neem (Sundararaju 1996, Sundararaju and Sundarababu 1999).

H. antonii is the most serious pest of cashew, with crop losses sometimes reaching 30 to 40 per cent (Devasahayam and Nair 1986). The co-existence of *H. theivora* and *H. bradyi* with *H. antonii* was found in the west coast of India (Sundararaju and Sundarababu 1999) and in few other parts of India (Ambika and Abraham 1984). Losses in nut yield of 25 to 50 per cent have been reported from Karnataka, Goa, Kerala and West Bengal (CCCRS 1966, Desai et al. 1977, Abraham and Nair 1981, Chatterjee 1989, Sundararaju and Sundarababu 1999). The nature of damage caused by *H. antonii* has been described by various...
workers (Abraham 1958, Pillai and Abraham 1975, Ambika and Abraham 1979, Pillai et al. 1979, Devasahayam and Nair 1986, Satapathy 1993, Sundararaju 1996). The nymphs and adults feed on the leaves, new shoots, panicles, and on the developing nuts. In severe infestations the young shoots and panicles dry up, giving the infested trees a scorched appearance. The lesions on shoots and panicles coalesce and ultimately result in shoot blight and blossom blight. Successive attacks on new growth can result in stunting or death of the tree. Damage to immature nuts causes them to shrivel, while older nuts develop a blistered or scabby appearance. Infestations during the early stages of fruit set often result in an immature fruit drop. In field trials, Sathiamma (1977) found that panicles (48.5%) and fruits (32%) sustained higher levels of attack than young shoots (14%). Nymphs caged on young shoots made an average of 114 feeding lesions per day (range 78-235), while females made an average of 97 (16-238) and males 25 (11-59). A single nymph can cause blighting of emerging tender shoots and panicles within 3 to 4 days of feeding. In 24 hour feeding, the mean number of feeding lesions produced by a single nymph/adult on tender shoot and leaves of cashew seedlings varied from 87.4 ± 41.4 to 139.4 ± 60.5. In the damaged cashew shoot, hypersensitive reactions consisting of melanization, shrinking of cell walls and necrosis of feeding lesion occurred in a sequence within a week’s time (Sundararaju 1996, Sundararaju and Sundarababu 1999).

MANAGEMENT STRATEGIES

Varietal resistance

The identification of promising cashew types having tolerance to TMB infestation would be one of the most desirable and eco-friendly non-chemical strategies to manage the pest and augment the productivity. Beevi and Mahapatro (2007) stated that in spite of a wide array of cashew germplasm available in India, the use of host plant resistance to manage this problem pest has not been exploited well. Though, studies indicated that wide variation exists in the cashew tree populations with regard to the susceptibility to TMB infestation. In earlier field screening studies with the seedling progenies, cashew accessions, viz. VTH 153, Kunthur 24, Goa 11/6, VTH 153/1, VTH 9/78 and 51 different cashew types in Karnataka, accession No. 665 in Kerala and BLA-39-4 in West Bengal were reported as least susceptible to *H. antonii* (Ghosh and Chatterjee 1987, NRCC 1988, Uthaiah et al. 1994, Hiremath 1991, Sundararaju and John 1993). Least susceptible types to *H. antonii* contain higher phenols (Annapoorna and Nagaraja 1988) which cannot be implicated towards resistance, since *H. antonii* has potential salivary detoxification mechanism. Besides, the existence of other antibiosis mechanism is also remote, since Kunthur 24 and Goa 11/6 accessions had not shown any inhibitory effect on the growth of *H. antonii* (NRCC 1994).

The screening of cashew types at Ullal Centre (coastal Karnataka) revealed that 51 types are promising against (Hiremath 1991). Beevi et al. (2001) attempted in categorizing the cashew accessions based on damage score in to four groups: less susceptible (0-0.250), moderately susceptible (0.251-0.500), susceptible (0.501-0.750) and highly susceptible (0.751-1.000). Screening of 68 cashew accessions revealed that all the accessions were susceptible to TMB infestation with none resistant/tolerant to the target-insect pest. Accessions Amrutha, Damodar and Raghav were found to be least susceptible (LS), while Priyanka and Anagha were highly susceptible (HS). Damage analysis indicated that, none of the accessions exhibited damage below 10 per cent (very low) (Beevi and Mahapatro 2007). Dhana variety showed significantly least damage score (0.36 ± 0.05) for three year screening studies. The varieties, viz. Bhaskara, VRI 3, Vengurle 7, Ullal 3, Ullal 4, Vengurle 3, NRCC Sel-1, Madakkathara 2, NRC 493, VTH 174, Kanaka, Ullal 1 and Ullal 2 were statistically on par with damage score ranging from 0.48 ± 0.07 to 0.58 ± 0.09. While, NRCC Sel-2, Vengurle 4 and Priyanka, showed significantly higher damage score ranging from 0.73 ± 0.09 to 0.92 ± 0.13. Dhana and Bhaskara varieties consistently showed lower damage score value and were grouped under Moderately Susceptible (MS) category.

Natural enemies

(i) Egg parasitoids: *Telenomus* (Hymenoptera: Platygastridae) are particularly promising egg parasitoids of *Helopeltis* spp. (Chang 1982). In Ghana 10 to 73 per cent of *H. bergrothi* eggs were parasitized by *Telenomus* sp. (CIBC 1983), *Telenomus* sp. has been reported in India *on H. cinchonae* Mann (Simmonds 1970), *on H. theobromae* Miller from Malaysia (Ibrahim 1989) and *on H. antonii* Signoret from India (Sundararaju 1993). Four species of egg parasitoids, viz. *Telenomus* sp., *Ufens* sp., *Chaetostricia* sp. (Trichogrammatidae), *Erythmelus helopeltidis* Gahan and *Gonatocerus* sp. (Mymaridae) has been reported attacking *Helopeltis* spp. (Sundararaju 1996, Sundararaju and Sundarababu 2000). All these species are solitary parasitoids. In Malaysia *E. helopeltidis* has been reported to parasitize up to 36 per cent of the fertile eggs of *H. cinchona* on tea (Lever 1949) and 11 to 47 per cent of the eggs of *H. theivora* on cocoa (Ibrahim 1989). *E. helopeltidis* has been reported as egg parasitoid of *H. antonii* (Devasahayam 1989); *H. theivora* on tea (Sudhakaran and Muraleedharan 2006) in India. The highest parasitism up to 70.8 per cent by *Telenomus* sp. in certain months was recorded by Sundararaju (1996). Parasitism by *Telenomus* sp. is negligible in the eggs of *H. antonii* laid on neem in east coast (Tamil Nadu) whereas it is a dominant species in cashew ecosystem of west coast of India. *Ufens* sp., thelytokous type is the dominant species in the neem ecosystem of Tamil Nadu. The study on relative intensity of parasitism indicated that *Telenomus* sp. might have evolved in the eggs of *H. bradyi* (Sundararaju 1996). Recently, the recorded *Telenomus* species parasitizing eggs of *H. antonii* was identified and described as a new species:
Predators of *Telenomus cuspis* Rajmohana and Srikumar (Rajmohana et al. 2013)

(ii) Nymphal adult parasitoids: Parasitoids of genus *Leiophron* (Hymenoptera: Braconidae) were reported as promising biological control agents of *Helopeltis*. Parasitism levels of 6 to 66 per cent have been reported for *Leiophron* (Heteroptera: Miridae) in West Africa (CIBC 1983). The existence of hyperparasitoids limited their potentiality in biological control especially due to *Stictopisthus javensis* (Hymenoptera: Ichneumonidae) on *H. bradyi* (Giesberge 1983) and *Stictopisthus* sp. on *H. bergrothi* (Kirkpatrick 1947). In India, nymphal parasitoid and nematode, *Agamermis paracaudata* Steiner (Mirmithidae) have been reported from *H. theivora* on tea (Durgadas and Sambhunath 1956). Sundararaju (2002) reported that *Leiophron* like nymphal adult parasite attack on *H. antonii*. From a total population of 2452 *H. antonii* adults collected 32 were parasitized with *Leiophron* sp. The size of the mature parasitoid (just before pupation) larvae was 3.66 ± 0.11 mm in length and 1.31 ± 0.03 mm in breadth, respectively. However in depth studies are required to understand its role in regulation of *H. antonii* population.

(iii) Predators: Predators also appear to play an important role in the natural control of *Helopeltis* spp. The main predators of *Helopeltis* includes spiders, reduviids, mantids and ants.

Spiders: In cashew agro-ecosystem, spiders are the most abundant predators of arthropod-pest complex. Basu (1962) had documented large number of spiders belonging to seven families occurring predominately in Kerala. Spider population corresponds to the seasonal occurrence of pests on the cashew crop (Devasahayam and Nair 1986). Four spider species, viz. *Hyllus* sp., *Oxyopes schireta*, *Philippus* sp. and *Matidia* sp. have been observed predating on *H. antonii* (Sundararaju 1984, 1986; Devasahayam and Nair 1986). Most of the studied spiders preferred adults than nymphs, while *O. sunandae* Tikader, *Telamonia elagans* Thorell and *Hyllus diacanthes* preferred nymphs (Beevi and Mahapatro 2008). Recent diversity studies of spiders on cashew ecosystem by Bhat et al. (2013) has reported 117 species of spiders belonging to 18 families. The spiders, viz. *Telamonia dimidiata* and *Oxyopes shweta* were the major predators of *Helopeltis* spp., whereas *Argiope pulchella*, *Cyclosa fiscicauca*, *Eriovixa laglazei*, *Neoscona mukerjii*, *Nepila pilipes*, *Oxyopes sunandae*, *Bavia kairali*, *Carrhotus viduus*, *Epocilla aurantiaca*, *Hyllus semiocupreus*, *Achaearanea mundula*, *Camariaceus formosus* and *Thomisus lobosus* were also recorded as superior predators of *Helopeltis* spp.

Reduviids: Five species of reduviid predators, viz. *Euagorus plagiatus* Burm., *Rhinocoris marginellus* Thub., *Sycanus Leucomesus* Wik., *Isyndus heros* F. and *Cosmolastes picticeps* Stal, were introduced into tea plantations in the Cameroon Highlands of Malaysia from the lowlands to prey on *H. bradyi* and *H. cinchona*. Three other species, *Endochus cameronicus*, *Isyndus* sp. and *Euagorus* sp. which were already known to attack *Helopeltis* in highlands were also bred and released. However, the effect of these predators on the pest was not known (Rao et al. 1971). Naik and Sundararaju (1982) recorded *Endochus inornatus* Stal as a predator of *H. antonii*. *E. inornatus* was also reported predating as many as 20 individuals of *H. antonii* per day (Devasahayam and Nair 1986). Sundararaju (1984) and Vennison and Ambrose (1990) reported five species of reduviid bugs, viz. *Sycanus collaris* Fab., *Sphedanolesis signatus* Dist., *E. inornatus*, *Irantha armipes* Stal and *Occamus typicus* Dist., as predators of *H. antonii* on cashew in India. In addition to the above species recently *Alcema* sp., *Biasticus* sp., *Cydnocoris gilvus* Burmeister, *Endochus albomaculatus* Stal, *Endochus* sp., *Epidaus bicolor* Dist., *Epidaus* sp., *Euagoras plagiatus* Burmeister, *Lanca* sp., *Panthous bimaculatus* Distant, *Rhynocoris fuscipes* Fabricius, *Rhirhuris trochantericus* Stal var. sanguineous, *Rhirhuris trochantericus* Stal var. luteous, *Scadra* sp. and *Sycanus galbanus* Distant. were recorded as predators of *Helopeltis* spp. Mass culture technique for *R. trochantericus* were standardized using wax moth (*Galleria mellonella* L.) larvae, as prey and its predatory potentiality was proved in laboratory conditions (Bhat et al. 2013).

Ants: Some work has been done on the role of ants in controlling or deterring *Helopeltis* spp. on cocoa and measures had been taken to encourage certain species of ants in cocoa growing areas (Entwistle 1972). However, Collingwood (1977) discussed this in detail and concluded that the activities of ants normally have only a marginal effect on mirid population. But the later studies have shown encouraging results by increasing the activities of *Dolichoderus thoracicus* Smith and *Oecophylla smaragdina* F., the infestation of *Helopeltis* spp. could be reduced (Way and Khoo 1992, Peng et al. 1995). Ambika and Abraham (1979) reported *Crematogaster wroghtoni* Forel as the predator of first and second instar larvae of *H. antonii* at Madakkathara (Kerala). *Oecophylla smaragdina* significantly reduced the numbers of *H. pernicialis* Stonedahl on cashew trees in tropical northern Australia (Peng et al. 1995, 1997). Beevi and Mahapatro (2008) reported 3 species of ant genera, viz. *Tetraponera*, *Crematogaster* and *Oecophylla* were noticed as predators of *Helopeltis* spp. In a field experiment, Sreekumar et al. (2011) reported TMB population was significantly lower in plants colonized by red ants.

Other predators: *Chrysoperla carnea* Stephens (Neuroptera: Crypsoidea) as predator of *H. theivora* has been reported by Das et al. (2010). Green lacewing (*Mallada* sp.) consumed 10 to 11 nymphs/hr and the time taken to consume a single nymph varied from 3 to 10 minutes. Praying mantids were also recorded feeding on *H. theivora* (Manun and Ahmed 2011). Adults of *H. antonii* and *H. theivora* were found to be infested by predatory mite, *Leptus* sp. attacked by mouth parts to the ecdysial lines on the bugs head and thorax.

(iv) Insect-pathogens: Two fungal pathogens, viz.
Aspergillus flavus Johann and A. tamarii (Eurotiales: Trichocomaceae) can cause infection to H. antonii (Sathiamma and Saraswathy 1990, Karthikeyan 1992, Satapathy 1993). An entomopathogen, Beauveria bassiana Bals. (Hypocreales: Clavicipitaceae) was isolated from H. antonii infesting guava (Visalakshy and Mani 2011).

Pheromones

As a prelude, studies on existence of sex pheromones have been established in females of H. clavifer (Smith 1977) H. theivora (Somchoudhury et al. 1993) and H. antonii (Sundararaju et al. 1994). Gas chromatography-mass spectrometry (GC-MS) analysis of female thoracic extracts and dynamic head space samples of virgin females showed the presence of five compounds: (Z)-3 hexenyl acetate, (Z)-3 hexenyl butanoate, (E)-2 hexenyl pentanoate, 2,4 dimethyl pentanal, and (E)-2-hexenol. Male insects were attracted to blends of (Z)-3 hexenyl acetate and (E)-2-hexenol in the wind tunnel with a 1:5 ratio eliciting the greatest response. EAG recordings of male antenna confirmed the ability of this blend to evoke antennal responses in male insects. This female sex pheromone blend may be useful for TMB control and management in future (Sachin et al. 2008).

Use of botanicals

Plant products especially neem formulations evaluated against H. antonii indicated low mortality and also with low feeding deterrence (Satapathy 1993, NRCC 1994, Bhat et al. 1994, Angaiah 1995). However, kernel extracts of Pongamia, Calophyllum and Pongamia oil extracts gave increased mortality of H. antonii than any other plant extract (NRCC 1993, Satapathy 1993). The aqueous extract of Clerodendrum viscosum L. (Lamiaeae) effectively and significantly reduced the mite population as well as the infestation of H. theivora in tea by 68 to 95 and 73 to 86 per cent, respectively, and their bioefficacy is comparable to synthetic and neem pesticides (Roy et al. 2010).

Chemical control

For management of Helopeltis spp., use of chemicals is the only successful and widely accepted technique. The insecticide to combat against Helopeltis spp. started by Damodaran and Nair (1969) where they reported that two sprayings of DDT at 15 days interval proved the best control of H. antonii on cashew. Later, lindane was widely used to control H. antonii on cashew in India (Pillai, 1987). Lindane was replaced with endosulfan to control H. antonii on cashew (Devasahayam and Nair, 1986) and H. theivora on tea (Das 1984, Smith et al. 1985). Endosulfan (0.05%) was found to be effective when sprayed thrice during emergence of flushes, panicles and after fruit set (Sundararaju and Sundarababu 1999) but now it is not in use. Other efficacious chemicals like carbaryl, monocrotophos, phosalone, phosphamidon, quinalphos, dimethoate and dichlorvos had been recommended for control of H. antonii on cashew (Sundararaju 1984, Devasahayam and Nair 1986, Samiyyam et al. 1989, Sundararaju and Bakthavatsalam 1994). Effectiveness of synthetic pyrethroids, viz. decamethrin (0.002%), permethrin (0.01%), cypermethrin (0.0075%) against H. antonii was also reported (NRCC, 1988; Godse et al. 1993).

The method and timing of insecticide applications have been shown to be important factors in the control of Helopeltis spp. infestations on tropical crops. On cashew, it is recommended that insecticide treatments coincide with the emergence of new shoots, panicle emergence and again at fruit set (Babu et al. 1983, Pillai 1987). Early morning and late afternoon applications have been shown to be most effective, as these are the times when Helopeltis spp. are most active. Insecticides such as lindane, carbaryl and phosalone are very effective when applied as dusts or powders particularly in dry weather conditions (Smith 1984) and a few such as the synthetic pyrethroids are best applied through fogging (Tuck 1987). Superiority of carbaryl dust formulations in bringing down TMB infestation was reported by Bakthavatsalam et al. (1993). Although, cashew is an insect pollinated crop, spraying of insecticides during flowering season did not influence the fruit set (Sundararaju et al. 1993). Under severe outbreaks of H. antonii on cashew, carbaryl (0.1%) or monocrotophos (0.05 %) can be used (Sundararaju 1996). All the insecticides tested shown no ovicidal action but 1-cyhalothrin followed by carbaryl and monocrotophos exhibited highest residual action for seven days against late instar nymphs and adults of TMB (Raviprasad et al. 2005). The sequential sprays of monocrotophos, λ-cyhalothrin and carbaryl registered the least per cent TMB damage and higher nut yield (Naik and Chakravarthy 2013). In general, λ-cyhalothrin has been recommended as alternative and effective insecticide against H. antonii (Mahapatro 2008).

Future thrusts

In Indian subcontinent, three species of TMB, viz. H. antonii, H. bradyi and H. theivora cause serious economic damage to cashew and other crops such as cocoa, guava, neem and tea. It is quite possible to develop IPM strategy against Helopeltis spp. by reviewing the present scenario on host plant resistance, natural enemies, behavioural approaches and insecticidal control. Using tolerant varieties play a key role in integrated pest management programs where moderately tolerant varieties may increase the effectiveness of biological and chemical control methods.

Bioccontrol programs, focused on natural enemies of Helopeltis spp. have also been a step forward in recent time. The new species of egg parasitoid Telenomus cusps from H. antonii provides higher scope for its augmentation techniques as they are highly specialized parasitoids, specific to Helopeltis spp. Besides, field observation revealed that spider species like Oxyopes sweta and Telamonia dimidiata are very good predators of Helopeltis spp. Another important step is mass rearing of reduviids Cydnoecris gilvus which showed higher predatory potential against Helopeltis. The success of Oecophylla smaragdina
against Helopeltis is another area of research. The research for utilization of Beauveria bassiana strain for the management of Helopeltis spp. on different crops has been in swift. Since the presence of sex pheromone communication was well demonstrated in all species of Helopeltis, further investigations have to be intensified to identify the bioactive components of sex pheromone and for further synthesis. The synthetic sex pheromone can be used as a lure and kill method.

Even though investigations on newer molecules of insecticides are under progress, the potential risk of pesticidal residues in cashew kernels is a major predicament. Improving the non-insecticidal methods like use of tolerant varieties, biocontrol agents, biotechnological approaches and synthetic sex pheromone (as lure and kill method) will have better scope to manage this pest and reduce the dependency on insecticidal control of Helopeltis spp.

REFERENCES

49: 288–9.

Puttarudriah M. 1958. A new species of Platylagnostus Telenomus cuspis sp. nov. (Hymenoptera), egg parasitoid of tea mosquito bug from India, with notes on its biomics and micrCol data. Oriental Insects 47: 226–32.

Stonedahl G M. 1991. The Oriental species of Helopeltis (Heteroptera: Miridae): a review of economic literature and

