Legume crops are not only used as human diet but also used for improving soil fertility through biological nitrogen fixation. Among the legumes, soybean (Glycine max L.) is a very important recognized oil seed and protein crop in the world. As a legume, soybean can obtain a significant portion of its N requirement through symbiotic N2 fixation when grown in association with effective and compatible Rhizobium strains (Walley 2005). On the other hand, Bradyrhizobium japonicum improves the growth and yield of this legume (Egamberdiyeva et al. 2004). According to Unkovich and Pate (2000), the highest rate of nitrogen usage (75 kg urea/ha) adversely inhibited nodulation of soybean. Number and dry weight of nodules/plant increased significantly with increasing nitrogen application rates up to 50 kg urea/ha. Seed inoculation with biofertilizers increased oil and protein contents. The maximum oil content was obtained by applying 50 kg urea/ha and seed inoculation with Bradyrhizobium. The saturated fatty acids (palmitic and stearic acids) declined in seed inoculation with Bradyrhizobium than the control, while it was vice versa in unsaturated fatty acids (linoleic, linolenic and oleic acids). Based on the results, it was concluded that application of suitable amounts of nitrogen fertilizer (i.e. between 50 and 75 kg urea/ha) as starter in seed inoculation with Bradyrhizobium japonicum can be recommended for profitable soybean production in the study area.

Key words: Linoleic acid, Linolenic acid, PGPR, Soybean, Yield

Integrated fertilization systems effects on yield, nodulation state and fatty acids composition of soybean (Glycine max)

RAOUF SEYED SHARIFI1, SEYYEDEH MOHADDESEH ABTAHI 2 and PEJMAN GHASEMINEJAD3

College of Agriculture University of Mohaghegh, Ardabili 5619911367

Received: 20 October 2015; Accepted: 18 March 2016

ABSTRACT

Combined application of organic and inorganic fertilizers can play an important role for increasing yield and quality of soybean (Glycine max L.). In order to study of effects of biofertilizers and nitrogen rates on yield, nodulation state and fatty acids composition of soybean, a factorial experiment was conducted based on randomized complete block design with three replications in 2012 and 2013. Factors were different rates of nitrogen fertilizer in four levels (without nitrogen and application 25, 50 and 75 kg urea/ ha) and seed inoculation with as biofertilizers in five levels (without inoculation, seed inoculation with Pseudomonas putida strain 41, P. putida strain 186, Azotobacter chroococcum strain 5 and Bradyrhizobium japonicum). The results showed that maximum of grain yield, plant height, number of filled pods and number of grains per plant were obtained from the highest level of nitrogen fertilizer (75 kg urea/ha) and Rh. inoculation. Furthermore, the highest rate of nitrogen usage (75 kg urea/ha) adversely inhibited nodulation of soybean. Number and dry weight of nodules/plant increased significantly with increasing nitrogen application rates up to 50 kg urea/ha. Seed inoculation with biofertilizers increased oil and protein contents. The maximum oil content was obtained by applying 50 kg urea/ha and seed inoculation with Bradyrhizobium. The saturated fatty acids (palmitic and stearic acids) declined in seed inoculation with Bradyrhizobium than the control, while it was vice versa in unsaturated fatty acids (linoleic, linolenic and oleic acids). Based on the results, it was concluded that application of suitable amounts of nitrogen fertilizer (i.e. between 50 and 75 kg urea/ha) as starter in seed inoculation with Bradyrhizobium japonicum can be recommended for profitable soybean production in the study area.

MATERIALS AND METHODS

Field experiment was conducted during 2012 and 2013 cropping season as factorial experiment based on randomized complete block design with three replications. Factors were different rates of nitrogen fertilizer in four levels (without nitrogen and application 25, 50 and 75 kg urea/ha) as N0,
INTEGRATED FERTILIZATION SYSTEMS EFFECT ON SOYBEAN

N₁, N₂ and N₃, respectively and seed inoculation with biofertilizers in five levels (without inoculation, seed inoculation with Pseudomonas putida strain 41, P. putida strain 186, Azotobacter chroococcum strain 5 and Bradyrhizobium japonicum).

The area is located at latitude 36° 85′ N and longitude 54° 27′ E at an altitude of 13 m above the mean sea level. Climatically, the area is situated in the wet zone with moderate winter and hot summer. The soil was silty loam, with pH about 7.9 and EC about 2.3 ds/m.

In each level, nitrogen fertilizer was divided into two equal parts; the first part of the N was broadcasted by hand and at 6–8 leaf, second parts used before flowering stage. In each plot there were 5 rows 4 m long. Plots and blocks were separated by 1 m unplanted distances. Seed placement was done by hand in individual hills at inter-row and intra-row spacing of 60 × 4.8 cm. Soybean seed (var. DPX) was planted in 10 July 2012 and 21 July 2013. Seeds were inoculated with Rhizobium japonicum and plant growth promoting rhizobacteria at the rate of approximately 1 × 10⁸ colony forming units (CFU)/ml just before planting that was obtained from the Soil and Fertilizer Research Institute, Tehran, Iran.

For inoculation, seeds were coated with gum Arabic as an adhesive and rolled into the suspension of bacteria until uniformly coated. Two seeds were sown per hill and two week after emergence and at 4–5 leaf stage thinned to one plant per hill. The field was immediately irrigated after planting. In each experimental plot, two beside rows and 0.5 m from beginning and ending of planting lines were removed as margin and measurements were done on three rows in the middle lines.

To study the nodules of root, five pots were sown in each plot. Each pot consisted of three plants. The pots in each plot were removed at harvest, and the soybean plants were uprooted carefully. Roots were washed using slow running water to remove soil particles and organic debris. After washing, the number of nodules per root system was counted and their weight was recorded after drying in an oven at 60°C (Namvar et al. 2011). The plants were harvested at maturity and yield components such as plant height, filled and unfilled pods/plant and number of grains/plant was recorded on 8 randomly selected plants in each plot.

Determination oil and protein contents: Seeds oil was extracted based on Folch et al. (1957) protocol by using of rotary evaporators. Extracted fatty acids were transformed to their methyl esters (FAME) using the Metcalf et al. (1966) method, and were determined using a gas chromatography (Unicam 4600) equipped with a FID detector. Nitrogen concentration of seeds was determined by Kjeldaul analysis. The protein amount was calculated by multiplying the nitrogen concentration by 6.25.

Grain yield: Three central rows each 1 m long were harvested in each plot. The total grain weight for sampled material was recorded and converted into grain yield (g/m²). Analysis of variance technique was used to test the significance and LSD at 5% probability level was used to compare the treatment’s means. The main and interaction effects of the treatments were determined by analysis of variance by statistical software SAS.

RESULTS AND DISCUSSION

Precipitation and temperature were generally similar in both growing seasons. The effects of nitrogen rates and biofertilizer application were significant for number of grains/plant, number of nodules and weight of nodules/plant, grain yield and yield attributes, oil and protein content and fatty acids compound of soybean.

Number of grains per plant, number of nodules and weight of nodules per plant

Number of grains/plant, number and weight of nodules/plant showed significant response to nitrogen rates and biofertilizer inoculation. The highest number of grains/plant (17.39), number (18.24 nodules/plant) and weight (24.03/ plant) of nodules/plant recorded in inoculation by rhizobium and application of 50 kg urea/ha that was statistically on a par with 75 kg urea/ha application. The lowest values of these traits was observed in control (Table 2).

The highest rate of nitrogen application (75 kg urea/ha) reduced the number and weight of nodules/plant by 57 and 66%, respectively, in comparison with application of 50 kg urea/ha, and 33 and 44% compared to no application of nitrogen, respectively (Table 1). A negative exponential relationship was observed between N fertilizer rate and N₂ fixation when N was applied in the top 0–20 cm of soil or on the soil surface (Salvagiotti et al. 2008). Biological N fixation begins around 2–5 weeks after planting and therefore, N uptake from biological N fixation is negligible in early growth stages. Thus, application of small amount of N at planting called as “starter N” is beneficial to improve early growth and yield of legumes in most cases (Caliskan et al. 2008).

Moreover, inoculated plants showed more number and weight of nodules/plant than non-inoculated plants. Rhizobium inoculation increased the number and weight of nodules/plant by 46 and 51.57%, respectively, compared to non-inoculated plants or control (Table 1). Plants inoculated with rhizobium increased about 46%, 24.1%, 17.2%, and 10.34% higher number of nodules per plant and 51.7%, 27%, 14.43% and 10.23% higher weight of nodules/plant compared to no inoculated, inoculated by Pseudomonas 41, Pseudomonas 186 and Azotobacter, respectively (Table 1).

Application of rhizobium showed the highest number of grains/plant (17.3% increase over control) and in Pseudomonas 41, Pseudomonas 186 and Azotobacter (14.22%, 8.55%, 4.2% increase over control) plants, respectively. Application of 75 kg urea/ha in inoculated plants by rhizobium increased the number of grains/plant by 45.9% compared to control. Inoculation with Rhizobium had the greatest effect on number of grains/plant in 50 and 75 kg urea/ha rather than other fertilizer levels that may be due to more effectiveness of Rh. inoculation in these levels compared to other levels of nitrogen usage.
Plant growth and some yield attributes

Application of high N rates (75 kg urea/ha) increased number of filled pods/plant, grain yield, plant height and 100-grains weight in comparison with control. Application of high N rates (75 kg urea/ha) resulted 9.24% and 11.1% increase in 100-grains weight and plant height compared with control, respectively. Plants inoculated with bio fertilizer showed higher 100-grains weight and plant height compared to control plants. Application of 75 kg urea/ha increased about 11.1%, 6.2%, and 4% higher plant height compared to application of 0, 25, 50 kg urea/ha, respectively. Plants inoculated with rhizobium increased about 13.97%, 3.9%, 6.9% and 4.3% higher 100-grains weight compared to application of no inoculated, inoculated by Pseudomonas strain 41, Pseudomonas strain 186 and Azotobacter, respectively (Table 1). These results are in line with the findings of Achakzai and Bangulzai (2006); Amany (2007) and Caliskan et al. (2008) who reported that 100-grains weight and plant height was increased with application of nitrogen fertilizer.

The number of unfilled pods/plant was 8.7 in control and decreased to 0.99 in application of 75 kg urea/ha. It was vice versa in the number of filled pods/plant. Increasing the number of unfilled pods/plant may be due to the less assimilation in plant for filling of whole pods in high levels of nitrogen application.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>PH (cm)</th>
<th>NGS (g/m²)</th>
<th>GY (g/m²)</th>
<th>100-GW (g)</th>
<th>NUFP</th>
<th>NFP</th>
<th>NN/plant</th>
<th>WN/plant</th>
</tr>
</thead>
<tbody>
<tr>
<td>N0=0</td>
<td>143d</td>
<td>76.9dd</td>
<td>414.6d</td>
<td>21.6d</td>
<td>8.7a</td>
<td>51.8d</td>
<td>6.3b</td>
<td>8.4b</td>
</tr>
<tr>
<td>N1=25</td>
<td>150.9c</td>
<td>97c</td>
<td>500.2c</td>
<td>22.2c</td>
<td>4.5b</td>
<td>61.1c</td>
<td>10.9a</td>
<td>14.2a</td>
</tr>
<tr>
<td>N2=50</td>
<td>155.3b</td>
<td>115.4b</td>
<td>563.6b</td>
<td>22.6b</td>
<td>2.6c</td>
<td>70b</td>
<td>9.7a</td>
<td>13.7a</td>
</tr>
<tr>
<td>N3=75</td>
<td>160.9a</td>
<td>134.7a</td>
<td>691a</td>
<td>23.8a</td>
<td>.99d</td>
<td>79.6a</td>
<td>4.2c</td>
<td>4.7c</td>
</tr>
<tr>
<td>LSD (p<0.05)</td>
<td>2.52</td>
<td>8.02</td>
<td>37.7</td>
<td>0.302</td>
<td>1.1</td>
<td>6.2</td>
<td>1.2</td>
<td>1.8</td>
</tr>
</tbody>
</table>

Effect of biofertilizer and nitrogen rates on grain filling rate, oil and protein contents of soybean (mean of two years or combined analysis of the two years (2012-2013))

<table>
<thead>
<tr>
<th>Treatment</th>
<th>PH (cm)</th>
<th>NGS (g/m²)</th>
<th>GY (g/m²)</th>
<th>100-GW (g)</th>
<th>NUFP</th>
<th>NFP</th>
<th>NN/plant</th>
<th>WN/plant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biofertilizers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S0 = no inoculation as control</td>
<td>146.6e</td>
<td>91.8e</td>
<td>342.7d</td>
<td>19.7d</td>
<td>5.41a</td>
<td>58e</td>
<td>7.8d</td>
<td>9.2d</td>
</tr>
<tr>
<td>S1 = Pseudomonas putida 41</td>
<td>149.1d</td>
<td>95.3d</td>
<td>498.2c</td>
<td>22b</td>
<td>4.73b</td>
<td>60.4d</td>
<td>11.0c</td>
<td>13.9c</td>
</tr>
<tr>
<td>S2 = Pseudomonas putida 186</td>
<td>150.4c</td>
<td>101.6c</td>
<td>520.6bc</td>
<td>21.3c</td>
<td>4.03c</td>
<td>63.6c</td>
<td>12.0b</td>
<td>16.3b</td>
</tr>
<tr>
<td>S3 = Azotobacter chrochoccoum</td>
<td>151.7b</td>
<td>106.4b</td>
<td>540.2b</td>
<td>21.9b</td>
<td>3.34d</td>
<td>65.6b</td>
<td>13.03b</td>
<td>17.1b</td>
</tr>
<tr>
<td>S4 = Bradyrhizobium japonicum</td>
<td>152.6a</td>
<td>111.1a</td>
<td>688.7a</td>
<td>22.9a</td>
<td>2.85e</td>
<td>68.2a</td>
<td>14.5a</td>
<td>19.05a</td>
</tr>
<tr>
<td>LSD (p<0.05)</td>
<td>0.6</td>
<td>2.03</td>
<td>31.7</td>
<td>0.31</td>
<td>0.262</td>
<td>1.03</td>
<td>0.988</td>
<td>1.4</td>
</tr>
</tbody>
</table>

Nitrogen (N)	**	**	**	**	**	**	**	**
Biofertilizer (B)	**	**	**	**	**	**	**	**
N*B	ns							
CV (%)	11	9.48	12.5	8.7	13.2	14.1	9.46	8.32

<table>
<thead>
<tr>
<th>Nitrogen rates (kg/ha urea)</th>
<th>PH (cm)</th>
<th>NGS (g/m²)</th>
<th>GY (g/m²)</th>
<th>100-GW (g)</th>
<th>NUFP</th>
<th>NFP</th>
<th>NN/plant</th>
<th>WN/plant</th>
</tr>
</thead>
<tbody>
<tr>
<td>N0=0</td>
<td>37.2 c</td>
<td>21c</td>
<td>12.06a</td>
<td>4.53a</td>
<td>21d</td>
<td>50c</td>
<td>6.66b</td>
<td></td>
</tr>
<tr>
<td>N1=25</td>
<td>40b</td>
<td>23.4b</td>
<td>11.73a</td>
<td>3.66a</td>
<td>22.2c</td>
<td>51.26b</td>
<td>7.53a</td>
<td></td>
</tr>
<tr>
<td>N2=50</td>
<td>42.5a</td>
<td>24.3a</td>
<td>11.13ab</td>
<td>4.93a</td>
<td>23.1b</td>
<td>52.86a</td>
<td>8.2a</td>
<td></td>
</tr>
<tr>
<td>N3=75</td>
<td>43.6a</td>
<td>24a</td>
<td>10.46b</td>
<td>4.53a</td>
<td>24a</td>
<td>53.32a</td>
<td>8.17a</td>
<td></td>
</tr>
<tr>
<td>LSD (P=0.05)</td>
<td>1.13</td>
<td>0.598</td>
<td>0.942</td>
<td>2.2</td>
<td>0.512</td>
<td>1.2</td>
<td>0.845</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Biofertilizers</th>
<th>PH (cm)</th>
<th>NGS (g/m²)</th>
<th>GY (g/m²)</th>
<th>100-GW (g)</th>
<th>NUFP</th>
<th>NFP</th>
<th>NN/plant</th>
<th>WN/plant</th>
</tr>
</thead>
<tbody>
<tr>
<td>B0 = no inoculation</td>
<td>40d</td>
<td>21d</td>
<td>12a</td>
<td>4.58a</td>
<td>22.5d</td>
<td>50.5b</td>
<td>6.91b</td>
<td></td>
</tr>
<tr>
<td>B1 = Pseudomonas putida 41</td>
<td>41.2c</td>
<td>22.58c</td>
<td>11.66ab</td>
<td>4.41b</td>
<td>23.6c</td>
<td>52.41ab</td>
<td>7.58ab</td>
<td></td>
</tr>
<tr>
<td>B2 = Pseudomonas putida 186</td>
<td>42.3b</td>
<td>23.22c</td>
<td>11.41ab</td>
<td>4.28c</td>
<td>23.8c</td>
<td>52ab</td>
<td>7.75ab</td>
<td></td>
</tr>
<tr>
<td>B3 = Azotobacter</td>
<td>44a</td>
<td>23.64ab</td>
<td>10.75b</td>
<td>4.16 d</td>
<td>24.2b</td>
<td>52.91ab</td>
<td>7.91a</td>
<td></td>
</tr>
<tr>
<td>B4 = Bradyrhizobium</td>
<td>44.3a</td>
<td>24a</td>
<td>10.91b</td>
<td>4 e</td>
<td>24.8a</td>
<td>53.75a</td>
<td>8.08a</td>
<td></td>
</tr>
<tr>
<td>LSD (P=0.05)</td>
<td>0.688</td>
<td>0.44</td>
<td>1.053</td>
<td>0.927</td>
<td>1.87</td>
<td>2.43</td>
<td>0.945</td>
<td></td>
</tr>
</tbody>
</table>

Nitrogen (N)	**	**	**	**	**	**	**	**
Biofertilizer (B)	**	**	**	**	**	**	**	**
N × B	ns							

ns, * and ** show no significant and significant differences at 0.05, 0.01 probability level, respectively; pH: Plant height; NGS: Number of grains/Plant; GY: Grain yield; 100-GW: 100 Grains weight; NUFP: Number of unfilled pods; NFP: Number of filled pods; NN: Number of nodules; WN: Weight of nodules; OC: oil content; PA: protein content; PA: palmitic acid; SA: stearic acid; OA: oleic acid; LILA: linoleic acid, LINLA: linolenic acid

ns, * and ** show no significant and significant differences at 0.05, 0.01 probability level, respectively; pH: Plant height; NGS: Number of grains/Plant; GY: Grain yield; 100-GW: 100 Grains weight; NUFP: Number of unfilled pods; NFP: Number of filled pods; NN: Number of nodules; WN: Weight of nodules; OC: oil content; PA: protein content; PA: palmitic acid; SA: stearic acid; OA: oleic acid; LILA: linoleic acid, LINLA: linolenic acid

Table 1 Effects of biofertilizer and nitrogen rates on grain filling rate, oil and protein contents of soybean (mean of two years or combined analysis of the two years (2012-2013))

These results are in line with the findings of Achakzai and Bangulzai (2006); Amany (2007) and Caliskan et al. (2008) who reported that 100-grains weight and plant height was increased with application of nitrogen fertilizer.
INTEGRATED FERTILIZATION SYSTEMS EFFECT ON SOYBEAN

The highest grain yield (670 g/m²) was obtained in application of 75 kg urea/ha and 697.5 g/m² in seed inoculation by rhizobium which was statistically significant to other treatments. Comparing with the uninoculated treatments, the treatment of biofertilizer (rhizobium, Azospirillum strain 41, Azospirillum strain 186 and Azotobacter) increased nearly by 35.7%, 24%, 21.2% and 27% grain yield, respectively. Similar findings were also reported by Malik et al. (2006).

Quality parameters

Maximum of protein content (41.7 %) was recorded at 75 kg urea/ha application when seed inoculated with Rhizobium, protein content was 19% higher than control treatment and minimum (33.71%) was recorded under control. It seems that applying integrated fertilizers provides more available nitrogen for the plant, possibly by preventing the dissipation of nitrogen due to the presence of bio fertilizer, and, therefore, the protein content of the integrated fertilizer levels, which consisted of biofertilizer and chemical fertilizer, was higher compared to the other levels. Luís et al. (2013) reported that inoculation with Bradyrhizobium japonicum enhances protein content of soybean seeds. Soybean takes part in a nitrogen-fixing symbiosis with several species of Bradyrhizobium genus, including Bradyrhizobium japonicum, which improves the growth, yield, nitrogen and protein content of this legume (Malik et al. 2006). Rudresh et al. (2005) and Sogut (2006) reported inoculation of seeds with Bradyrhizobium increases nodulation, nitrogen uptake and could be possible reason for increase of protein content and yield parameters of legume crops. In fact, the protein content of soybean seeds increases as the access to nitrogen increases. Basu et al. (2008) have also reported that the highest protein content for integrated treatments was found with chemical and biofertilizer.

Oil content in seeds was progressively increased with increasing levels of N up to 50 kg urea/ha; however, no significant difference was between 50 and 75 kg urea/ha application (Table 1). Application of 75 kg urea/ha and seed inoculation by rhizobium showed the highest oil content (14.5% increase over control) and in Pseudomonas 41, Pesedomonas 186 and Azotobacter (about 11.5% increase over control) plants, respectively. The lowest oil content was recorded in control (Table 2). It was vice versa of protein content which increased with increasing levels of N. Roche et al. (2006) reported that in oil crops, an increase in oil concentration is generally associated with a decrease in protein concentration as a result of a dilution effect. The synthesis of grain starch and oil mostly relies on current photosynthesis. Luis et al. (2013) reported that inoculation with Bradyrhizobium japonicum enhances the organic and fatty acids content of soybean seeds.

Table 2 Mean comparison effects of biofertilizer and nitrogen rates on some studied traits in soybean (mean of two years or combined analysis of the two years (2012-2013))

<table>
<thead>
<tr>
<th>Treatment compound</th>
<th>NGP</th>
<th>NN per plant</th>
<th>WN per plant</th>
<th>OC(%)</th>
<th>PC(%)</th>
<th>LINLA(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N₀S₀</td>
<td>9.4k</td>
<td>3.37h</td>
<td>3.8j</td>
<td>18.11</td>
<td>33.7J</td>
<td>46 c</td>
</tr>
<tr>
<td>N₀S₁</td>
<td>12.2hi</td>
<td>5.04fg</td>
<td>6.7hi</td>
<td>19.18</td>
<td>34.3i</td>
<td>47.6cd</td>
</tr>
<tr>
<td>N₀S₂</td>
<td>12i</td>
<td>5.04fg</td>
<td>5.7hij</td>
<td>18.88</td>
<td>35.7h</td>
<td>53.3ab</td>
</tr>
<tr>
<td>N₀S₃</td>
<td>11.3 j</td>
<td>4.22gh</td>
<td>4.75ji</td>
<td>19.45</td>
<td>39.0def</td>
<td>52.3 abc</td>
</tr>
<tr>
<td>N₀S₄</td>
<td>14.5de</td>
<td>6.31ef</td>
<td>8.42fg</td>
<td>19.85g</td>
<td>39def</td>
<td>56ab</td>
</tr>
<tr>
<td>N₁S₀</td>
<td>12i</td>
<td>5.04fg</td>
<td>6.73gh</td>
<td>19.46i</td>
<td>37.9g</td>
<td>49.6bcd</td>
</tr>
<tr>
<td>N₁S₁</td>
<td>13.5g</td>
<td>7.8de</td>
<td>9.24ef</td>
<td>20.19ef</td>
<td>39.49cde</td>
<td>53 ab</td>
</tr>
<tr>
<td>N₁S₂</td>
<td>13.8fg</td>
<td>7.83d</td>
<td>10.98de</td>
<td>19.77h</td>
<td>39.7cd</td>
<td>53 ab</td>
</tr>
<tr>
<td>N₁S₃</td>
<td>12.8h</td>
<td>8.72d</td>
<td>11.4d</td>
<td>20.34de</td>
<td>39.4cde</td>
<td>51.33abc</td>
</tr>
<tr>
<td>N₁S₄</td>
<td>16b</td>
<td>10.9c</td>
<td>14.25c</td>
<td>21.11ab</td>
<td>40.1bc</td>
<td>53 ab</td>
</tr>
<tr>
<td>N₁S₅</td>
<td>14.67d</td>
<td>6.2f</td>
<td>7.11gh</td>
<td>20.31def</td>
<td>38.4fg</td>
<td>52 ab</td>
</tr>
<tr>
<td>N₂S₀</td>
<td>15cd</td>
<td>13.6b1</td>
<td>16.93b</td>
<td>20.91bc</td>
<td>39.7cd</td>
<td>53.11ab</td>
</tr>
<tr>
<td>N₂S₁</td>
<td>13.9efg</td>
<td>13.6b6a</td>
<td>17.68b</td>
<td>20.83c</td>
<td>39.5cde</td>
<td>53 ab</td>
</tr>
<tr>
<td>N₂S₂</td>
<td>15.95b</td>
<td>13.7ib</td>
<td>17.1b</td>
<td>20.05fg</td>
<td>39.2de</td>
<td>55a</td>
</tr>
<tr>
<td>N₂S₃</td>
<td>17.39a</td>
<td>18.24a</td>
<td>24.03a</td>
<td>21.29a</td>
<td>40.5b</td>
<td>54.6a</td>
</tr>
<tr>
<td>N₂S₄</td>
<td>14.38def</td>
<td>5.97f</td>
<td>6.85 gh</td>
<td>19.85gh</td>
<td>38.7efg</td>
<td>52.6 ab</td>
</tr>
<tr>
<td>N₃S₀</td>
<td>14.7d</td>
<td>13.12b</td>
<td>16.32b</td>
<td>20.55d</td>
<td>40.2bc</td>
<td>51.3abc</td>
</tr>
<tr>
<td>N₃S₁</td>
<td>13.64g</td>
<td>13.17b</td>
<td>17.04b</td>
<td>20.52d</td>
<td>40.2bc</td>
<td>53.3ab</td>
</tr>
<tr>
<td>N₃S₂</td>
<td>15.64bc</td>
<td>13.22b</td>
<td>16.5b</td>
<td>20.48d</td>
<td>38.9def</td>
<td>53 ab</td>
</tr>
<tr>
<td>N₃S₃</td>
<td>17.05a</td>
<td>17.58a</td>
<td>23.16a</td>
<td>21.29a</td>
<td>41.7a</td>
<td>53.66ab</td>
</tr>
<tr>
<td>N₃S₄</td>
<td>0.657</td>
<td>1.51</td>
<td>2.01</td>
<td>0.265</td>
<td>.849</td>
<td>4.7</td>
</tr>
<tr>
<td>LSD (P<0.05)</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
</tr>
</tbody>
</table>

Means with similar letters in each column are not significantly different, NGP: Number of grains/plant; NN: Number of nodules; WN: weight of nodules; OC: oil content, PC: protein content; LINLA: linolenic acid.
et al. (1997) suggested that application of plant growth-promoting rhizobacteria to soybean increases protein and dry matter yield.

Soybean oil composition determines the oil quality. Soybean oil is composed of saturated and unsaturated fatty acids. Linoleic acid (C18:2) was the most abundant fatty acid, ranging between 50% and 53.32%, followed by oleic acid (C18:1) and linolenic acid (C18:3), with contents of (21-24% and 6.66-8.17%) in various levels of nitrogen fertilizer. The amount of palmitic acid (C16:0) and stearic acid (C18:1) were 10.46-12.06% and 3.66-4.93%, respectively (Table 1). These ranges were similar to those reported by Yin et al. (2005) in soybean. Application of 75 kg urea/ha increased about 6.22%, 3.86% and 0.8% higher linoleic acid content compared to application of 0 and 25 kg urea/ha increased about 6.22%, 3.86% and 0.8% higher linoleic acid content compared to application of 0 and 25 kg urea/ha, respectively (Table 2). But no significant difference was between 50 and 75 kg urea/ha application (Table 1).

Subedi and Ma (2009) found that lack of assimilate supply could result in a dramatic decline in grain weight and its composition such as starch and oil. Inoculation with rhizobium induced a 6% increase of linoleic acid content compared to control (Table 2). The saturated fatty acids (palmitic and stearic acids) declined in seed inoculation with Bradyrhizobium than the control, while it was vice versa in unsaturated fatty acids (linoleic, linoleic and oleic acids). Inoculation with rhizobium decreased content of palmitic acid (about 9.1% low control) and stearic acid (about 11.4% low control) compared to control (Table 1). Luís et al. (2013) reported that inoculation with Bradyrhizobium japonicum enhances unsaturated fatty acids content of soybean seeds. Similar results were obtained in seed inoculation by Pseudomonas 41, Pseudomonas 186 and Azotobacter. Dashti et al. (1997) suggested that application of plant growth-promoting rhizobacteria to soybean increases oil content.

It was concluded that application of suitable amounts of nitrogen fertilizer (i.e. between 50 and 75 kg/ha urea) as starter in seed inoculation with Bradyrhizobium japonicum can be recommended for profitable soybean production in the study area.

REFERENCES

